Deep learning based design of thermal metadevices - Université de Franche-Comté
Article Dans Une Revue International Journal of Heat and Mass Transfer Année : 2022

Deep learning based design of thermal metadevices

Résumé

Thermal metadevices obtained from transformation optics have recently attracted wide attention due to their vast potential for thermal management. However, these devices require extreme material parameters that are difficult to achieve in large-scale applications. Here, we design a thermal concentrator using a machine learn- ing method and demonstrate the thermal concentration performance of the designed device. We first define an architecture with a single isotropic material. Deep learning models based on artificial neural networks are implemented to retrieve design geometry parameters ensuring that the required spatially varying anisotropy is achieved. We implement the optimized architecture into a thermal concentrator, fabricate samples and ex- perimentally demonstrate that the designed metamaterial can simultaneously concentrate the heat flux in its core and minimize perturbations to the external thermal field. Our approach paves new avenues for the design of thermal management devices and, more generally, enables feasible solutions for inverse heat manipulation problems.
Fichier principal
Vignette du fichier
6f4ce904-4393-4c00-a494-376bda0024f0-author.pdf (1.64 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03813041 , version 1 (13-10-2022)

Identifiants

  • HAL Id : hal-03813041 , version 1

Citer

Qingxiang Ji, Xueyan Chen, Jun Liang, Guodong Fang, Vincent Laude, et al.. Deep learning based design of thermal metadevices. International Journal of Heat and Mass Transfer, 2022, 196, pp.123149 (6). ⟨hal-03813041⟩
5 Consultations
117 Téléchargements

Partager

More