Development of a model for auto-ignition delays and its use for the prediction of premix combustion reliability
Résumé
Except in diesel engine applications, auto-ignition is an unwanted event from a general safety and reliability standpoint. It is especially undesirable in the premixing process involved in most low NOx combustion technologies. Therefore, in addition to auto-ignition temperature, auto-ignition delay (AID) is a key data for the design of modern combustors including gas turbine ones. The authors have investigated the detailed kinetic mechanisms leading to auto-ignition and established practical AID correlations involving the fuel composition, its temperature, pressure and equivalence ratio. The correlations brought about during this program offer a good reconciliation between calculated and experimental AID through a wide range of fuel composition, initial temperature and pressure. Validations were mainly done against data acquired with experimental setups consisting in shock tubes and rapid compression machines. The auto-ignition delay times of methane, pure light alkanes and various blends representative of several natural gas and process-derived fuels have been reviewed. For each fuel mixture, this study procures a simple equation linking the auto-ignition delay time to the temperature, pressure and equivalence ratio. As a direct application of this work, the authors have evaluated the risk of auto ignition in the premixing zone of a combustor characterized by a residence time and an associated probability density function. The results of this simulation stress the key role of larger hydrocarbon in the risk of flashback events.
Domaines
Génie chimiqueOrigine | Fichiers produits par l'(les) auteur(s) |
---|