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Chapter 1

Introduction

1.1 The central objects

The empirical processes theory, and its applications to statistics, have been the core of my
research works. In the two following subsections I will give a definition of two central objects,
each of them having connections with distinct subfields of nonparametric statistics.

1.1.1 The general empirical process

Consider a measurable space
(
X,X

)
. Write M for the set of all probability measures on(

X,X
)
. Given P ∈M, and g ∈ L1(P), we shall write

P(g) :=

∫
X

gdP.

The general empirical process is defined as follows.
— Given a probability space (Ω,A,P), consider an independent, identically distributed

[i.i.d.] sequence of random variables (Zi)i≥1, from (Ω,A,P) to
(
X,X

)
. We will denote

by P0 ∈M the common law of each Zi.
— For fixed n ≥ 1, define the empirical measure

Pn :=
1

n

n∑
i=1

δZi ,

as a (composition) map from Ω to M.
— Consider a class of functions G ⊂ L1(P0). Given n ≥ 1, define the corresponding

empirical process by
Gn(·) := g →

√
n
(
Pn(g)−P0(g)

)
,

as a map from Ω to RG, where the latter is the space of all real functions on G.
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CHAPTER 1. INTRODUCTION

Note that Pn is random, for each n ≥ 1, while P0 is not.
In statistics, Gn has a particular relevance, since its stochastic behavior provides a description
of the random spatial setting of the sample (Z1, . . . , Zn), which, itself, rules the stochastic
behavior of general estimating procedures such as , e.g., Z-estimation,M -estimation, bootstrap
procedures, or empirical likelihood procedures (see, [92, Part 3] for a large, yet non exhaustive
overview of the possibilities).

1.1.2 The local empirical process

A particular domain of nonparametric statistics concerns smoothing techniques, toward the
estimation of Lebesgue densities or conditional expectations. In this framework, it is of interest
to understand the stochastic behavior of local empirical processes. Taking X := Rd and a class
of functions G ⊂ L1(P0), we can define, for n ≥ 1, z ∈ Rd, h > 0, and g ∈ G :

Tn(g, h, z) :=
n∑
i=1

gh,z(Zi)− E
(
gh,z(Zi)

)
, where

gh,z(z) :=g
(
h−1
(
z− z

))
, z ∈ Rd.

This object describes the random setting of the sample locally around z, with h > 0 (usually
called the bandwidth) playing the role of the localization strength.
Given a class of functions G, the asymptotic behavior, as n → ∞ together with h → 0, of
Tn(·, h, z) (as processes indexed by G) has been intensively investigated in the literature over
the past three decades (an illustrative, yet non exhaustive list of references is [8, 9, 11, 17, 18,
20, 21, 22, 23, 24, 37, 38, 41, 64, 65, 66]). It has to be noted that, the relationship between
the Tn(·, h, z) and nonparametric estimation should not be narrowed to the Parzen-Rosenblatt
and Nadaraya-Watson estimators. For example, estimation by wavelet expansions or by local
polynomials are also linked to Tn(·, h, z), and more generally, this is also the case for local
M -estimation or Z-estimation, bootstrap procedures, or empirical likelihood procedures.

1.2 Contributions to the study of the general empirical
process

In this section, I will sum up my contributions to the general empirical processes theory.

1.2.1 The uniform entropy condition

An important result in empirical processes theory is that a class of functions G having a
square integrable envelope and admitting a finite uniform entropy integral is Donsker. That
condition, very commonly encountered in practice, has the particularity of involving suprema
of packing numbers over all possible L2(Q)-norms induced by probability measures Q. I

10



1.2. CONTRIBUTIONS TO THE STUDY OF THE GENERAL EMPIRICAL PROCESS

investigated how these uniform bounds could be used as a basis for proving Donsker and
Glivenko-Cantelli theorems for sequences of random measures of the form

P̃n :=
∑
i≥1

βi,nδZi,n .

The initial motivation of this work came from Bayesian nonparametric theory, where discrete
priors and posteriors can be represented this way, most particularly the Dirichlet process
prior/posterior random measure.

— Contribution [105]. I showed that the finite uniform entropy integral condition still
does adapt very well to the more general form of P̃n, when the (Zi,n)i≥1 are conditionally
i.i.d given (βi,n)i≥1. Indeed, that uniform entropy numbers condition turns out to be
sufficient (beside a minimal integrability condition on the envelope of G) to prove a
Glivenko-Cantelli and a Donsker theorem, as soon as the conditional distributions of
Z1,n given (βi,n)i≥1 converge to a limit in the sense of Sheehy and Wellner [83]. Note
that boostraped empirical procedures fall into this framework (see, e.g., [92, Chapter
3.6]). A direct consequence of that result is an alternate proof of Doob’s theorem and
Bernstein-Von Mises theorem due to James [51], under the topology spanned by || · ||G,
for posterior distributions of the Dirichlet process prior.

1.2.2 Contributions to empirical likelihood theory

Empirical likelihood is a nonparametric method of building confidence regions, which was
developed by Owen [74]. It has many advantages over the usual asymptotic gaussian pivot, and
turns out to be a serious competitor to the pivotal bootstrap.

— Contribution [15], [107]. With J-Y Dauxois and A. Flesch, we investigated the esti-
mation of functional parameters by empirical likelihood, in a particular setup of lifetime
data analysis. The parameter of interest was the joint trajectories of the mean numbers
of recurrent events under competing risks, with independent right censoring, and in the
presence of a terminal event. These works led to investigating a more general frame-
work, where the functional parameter of interest can be expressed as T (Pn), with T
fulfilling some Gâteau and Hadamard differentiability conditions, relatively to norms of
the form || · ||G. These works are improvements of already existing results of Bertail [7]
and [50], to multisample, multivariate settings, and with an additional care on practical
implementation.

1.2.3 Contributions to associated discrete kernel estimation

Assume that the law of Z1 is discrete with support T. The nonparametric estimation of the
probability mass function (p.m.f) f(·) by the empirical p.m.f.

fn : z → Pn({z})

11



CHAPTER 1. INTRODUCTION

can be put into the wider framework of discrete associated kernel estimators

fn,h : z → 1

n

n∑
i=1

Kz,h(Zi)

where K =
{
Kz,h(·), z ∈ T, h ≥ 0

}
is a family of p.m.f on T. Despite its expression, fn,h has

nothing to do with the local empirical process.
— Contribution [56]. With C. Kokonendji, we investigated the consistency of this class

of estimators, for the total variation distance

TV (fn,h, f) :=
1

2

∫
T
| fn,h(x)− f(x) | dc(x) +

1

2

∣∣∣ ∫
T
fn,h(x)dc(x)− 1

∣∣∣,
where c denotes the counting measure on T, under assumptions on K that are satisfied
in practice. We could also derive concentration inequalities for TV (fn,h, f).

1.3 Contributions to the study of local empirical processes

Under an additional condition of uniform boundedness on G, or on integrability of its
envelope, both local an general empirical processes are viewed as random elements in

(
`∞(G), ||

· ||G
)
, where `∞(G) is the space of all bounded real functions on G, and where

|| ψ ||G:= sup
g∈G
| ψ(g) |, ψ ∈ `∞(G).

One can very rouhgly divide the existing literature into the following types of results.

1. Asymptotic results

(a) Donsker theorems and weak approximations.

(b) Functional limit laws and strong approximations.

(c) Large deviation principles.

2. Non asymptotic results
— Concentrations inequalities.
— Control of first moments by chaining techniques.

Concerning the local empirical process, most of my work takes place in (b) and (c). This is the
point of the next subsections.

1.3.1 Refinements of existing functional limit laws

Consider a compact set H ⊂ Rd, and assume that, for an open set O ⊃ H, the following
condition is satisfied :
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1.3. CONTRIBUTIONS TO THE STUDY OF LOCAL EMPIRICAL PROCESSES

(Hf) Z1 admits a Lebesgue density on O for which there exists a version f
that is continuous and bounded away from 0 and ∞ on O.

Now write, given n ≥ 1 and h > 0 :

Θn(h) :=

{
Tn(·, h, z)

rn(h, z)
, z ∈ H

}
,

Where rn(h, z) > 0. A functional limit law for the local empirical process is any theorem stating
the almost sure inner and outer topological limits (in (`∞(G), || · ||G)) of the sequence Θn(hn),
for appropriate normalizing sequences rn(hn, z), where hn > 0 is a deterministic bandwidths
sequence.

— When H is finite (say, a singleton {z0}), those type of results are called local functional
limit laws, and rn(h, z0) :=

√
2f(z0)nhd log log(n) is the appropriate type of normaliza-

tion.
— When H has a nonempty interior, those type of results are called global functional limit

laws, and rn(h, z) :=
√

2f(z)nhd log(1/hd) is the appropriate type of normalization.
— When the inner/outer topological limits are related to the large deviations properties

of the associated Gaussian processes (Strassen-type sets), those limit laws are called
standard. This happens when hn tends to zero, but not too fast. For local limit laws,
"not too fast" means

nhdn/ log log(n)→∞, (1.1)

while this term has to be understood as

nhdn/ log(1/hdn)→∞, (1.2)

for global functional limit laws. Standard functional limit laws entail several (strong)
consistency or uniform consistency (over a compact H) results for nonparametric or
semiparametric estimators.

— When the inner/outer topological limits are related to the large deviations properties of
the associated Poisson processes, those limit laws are called nonstandard. This happens
when the convergence hn is slightly too fast, which means replacing the symbol ∞ by a
nonzero constant in (1.1) or (1.2). Nonstandard functional limit laws entail several non
consistency or non uniform consistency results (in the strong sense) for estimators.

The simplest form of the local empirical process consists in taking d = 1, Zi uniformly
distributed in [0, 1], and G = G0 as the class of indicators of intervals of the form [0, t], t ∈ [0, 1]d.
The object Tn(·, h, z) is then called a functional increment of the uniform empirical process. The
pioneering works are due to [65], [22, 21], proving both standard and nonstandard functional
limit laws for those functional increments. Since then, the challenge was to extend those results
into the following directions

1. To extend G0 to more general classes of functions. In particular, to confront the usual
conditions of uniform entropy numbers and bracketing numbers with those functional

13



CHAPTER 1. INTRODUCTION

limit laws.
2. To go past the unidimensional case.
3. To handle other (continuous) distributions for the (Zi)i≥1.

My contributions on this field are
— Contribution 1 [96]. In the local standard functional limit law for the increments of

the uniform empirical process, I established that the clustering rates of Θn(hn) to the
corresponding Strassen set are of order log log(n)−2/3. This result is not surprising in
regard of a results in global standard limit laws established by Berthet [8, 9]. I also filled
a small gap in the Chung-Mogulskii laws for the local empirical process, providing rates
of approximation of a certain class of points belonging to the boundary of the Strassen
set.

— Contribution 2 [99, 100]. In the global nonstandard functional laws, I managed to
attain the multidimensional setting (d ≥ 2), under (Hf), for any uniformly bounded
class G with supports included in a common bounded set [−M,M ]d, admitting finite
bracketing numbers (for the uniform distribution on [−M,M ]d). I pointed out a conse-
quence of that result to the asymptotic behavior of estimators of densities by wavelet
projections.

— Contribution 3 [68]. With M. Maumy-Bertrand, we proved the local counterpart of
Contribution 2, and also extended this local law to the more general object Tn,c(g, ·, h, z),
where

Tn,c(g, g, h, z) :=
n∑
i=1

gh,z(Zi)g(Yi),

for a function g taking values in Rk, for which we made assumptions of finite conditional
exponential moments for g(Y1) (note the absence of a centering parameter). Our result
was limited to the particulat class G0,d of indicators of hypercubes of [0, 1]d.

1.3.2 The impact of the in-bandwidth uniformity to the usual func-
tional limit laws

A very central question has animated a significant part of my research works. It can be
stated as follows :

What is the impact, on the existing functional limit laws, of requiring an additional
in-bandwidth uniformity for the convergences?

More precisely, given two deterministic bandwidth sequences hn ≤ hn, can we still determine
the almost sure topological limits of

Θn :=
⋃

hn≤h≤hn

Θn(h),

14



1.3. CONTRIBUTIONS TO THE STUDY OF LOCAL EMPIRICAL PROCESSES

and do those limits depend on the widths of the intervals [hn, hn]?
The original motivation comes from nonparametric statistics, where in-bandwidth-uniform
consistency results for nonparametric estimators provides a rigorous justification for the use
of data driven bandwidth selection procedures. I provided the following answers.

— Contribution 1 [96]. When two bandwidths hn ≤ hn have different orders of conver-
gence to 0 (i.e hn = o(hn) = o(1)), an asymptotic independence shows up : for fixed z,
Tn(·, hn, z) and Tn(·, hn, z) obey the same large deviation principle and Strassen law as
of two independent Wiener processes. I will call this phenomenon between bandwidths
asymptotic independence. That phenomenon was already partially visible in [19].

— Contribution 2 [108]. For local standard functional limit laws (see [65, 41]), there is
an impact of requiring an in-bandwidth uniformity in h ∈ [hn, hn], which is clearly due
to the between bandwidths asymptotic independence. Indeed, when

log log(hn/hn)/ log log(n)→ δ ∈ (0, 1], (1.3)

the inner and outer topological limits of Tn are not anymore ∅ and SG,1, but SG,δ and
SG,1+δ, where for a ≥ 0, SG,a equals

√
a times the Strassen ball of the associated Gaussian

process.
— Contribution 3 [98]. For global standard functional limit laws ([25],[64]), there is no

impact of the uniformity in h ∈ [hn, hn]. At this level of normalization, nothing is visible.
— Contribution 4 [93]. With I. van Keilegom, we investigated the global functional limit

law for the more general sets

Θn,c =

{Tn,c(·, ·, h, z)− E
(
Tn,c(·, ·, h, z)

)
rn(h, z)

, h ∈ [hn, hn], z ∈ H
}
.

We did not prove that functional limit law. However, following initial works of Einmahl
and Mason [42], we proved a closely related result, which is weaker in its form (because
it is non functional), but which covers a larger framework in regression estimation.

1.3.3 Asymptotic results in a spatial setting

A very large part of the asymptotic results in empirical processes theory can be roughly
stated as "both the empirical process and the associated Gaussian process share the same
property". Wschebor [109] proved that the increments of the wiener process ε−1/2

(
W (t + ε)−

W (t)
)
almost surely satisfy the property

∀B Borel , lim
ε→0

λ

({
t ∈ [0, 1],

W (t+ ε)−W (t)√
ε

∈ B
})

= µ(B),

where µ is the standard normal distribution and λ stands for the uniform distribution on [0, 1].
This almost sure phenomenon can be roughly called an almost sure spatial convergence in
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distribution of the increments of the Wiener process.
— Contribution 1 [103, 101]. I extended that result for the functional increments of the

uniform empirical process, proving an almost sure spatial Donsker theorem , toward
a Wiener measure. I then extended this result to the general form of Tn(·, h, z), under
(Hf), for classes of functions G admitting a finite uniform entropy numbers integral, and
for a large class of probability distributions different from λ (including those admitting
a square integrable density, and excluding those having atoms).

— Contribution 2 [104, 101]. In the same vein, I also established the almost sure spatial
local standard functional limit law for Θn. I also proved the nonstandard version of that
limit law, but restricted to hn = hn, and for the uniform empirical process.

1.3.4 The probabilistic tools that have been developed

For all the above mentioned contribution, the proof relied on extensions and refinement of
already existing tools in empirical process theory. Two of them did involve a significant part of
my works.

Poissonization techniques

If the sample size is randomized by a Poisson random variable with expectation n, indepen-
dent of the sequence (Zi)i≥1, then the corresponding poissonized local empirical process

Πn(g, h, z) :=

ηn∑
i=1

gh,z(Zi)− E
(
gh,z(Zi)

)
,

inherits properties of random Poisson measures, which often turn out to be the nonasymptotic
counterparts of asymptotic properties of the Tn(·, h, z). This properties of independence are very
useful for probability calculus. Hence, an effort has been made to approximate the Tn(·, h, z)
by the corresponding Πn(·, h, z) during the past decades. For finite H and for very small
hn = O(log log(n)/n), this can be achieved by a direct strong approximation [21, 24]. Outside
this case, it is possible to obtain weaker but nevertheless useful approximations. One of them,
initiated by J. Einmhal [36] and generalized by Deheuvels and Mason [22, 65] provided a bound
of the form

P
(
Tn(·, ·, ·) ∈ A

)
≤ CP

(
Πn(·, ·, ·) ∈ A

)
,

as processes indexed by G×]0, h0] × H, where the constant C does not depend on A nor on
n. This happens as soon a there is a non null probability that Z1 falls outside the union of all
supports of gh,z, g ∈ G, h ≤ h0, z ∈ H.
This very useful inequality was put in a wider framework by Giné, Mason and Zaitsev [46], for
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sums of i.i.d. random variables in a measurable semigroup, proving that

P
( n∑

i=1

1B(Xi)Xi ∈ A
)
≤ CP

( ηn∑
i=1

1B(Xi)Xi ∈ A
)
,

as soon as P
(
X1 /∈ B

)
> 0.

— Contribution 1 [103]. I extended inequality (1.4) to a wider class of truncating func-
tions on (Xi)i≥1, for which the arguments are the partial sums histories up to n (or ηn),
namely the vector (

X1, X1 +X2, . . . , X1 + . . .+Xn

)
.

As an example of application, it is now possible to poissonize maximal inequalities for
sums of i.i.d random variables.

Though already very useful, inequalities (1.4) and (1.4) cannot make a connection, between
Tn(·, ·, ·) and Πn(·, ·, ·), of some crucial facts needed for functional limit laws. As a matter of
fact, it is not possible to directly translate assertions of the type

εn = O
(
P
(
Πn(·, hn, z) ∈ An

))
into an assertion of the same type for Tn(·, hn, z).

— Contribution 2 [108]. I proved an approximation result between Tn(·, hn, z) and
Πn(·, hn, z), by providing deviation probabilities for large exceedances of || Tn(·, hn, z)−
Πn(·, hn, z) ||G . Those deviation probabilities opened new possibilities of using Pois-
sonization in the local standard functional limit laws. Moreover, these deviation proba-
bilities almost entirely depend on the concentration of ηn around n, and thus hold even
if ηn and (Zi)i≥1 are not independent, or if ηn is not Poisson.

Uniform large deviation principles

Functional limit laws heavily rely on large deviation principles. Arcones [4, 5] proposed a
criterion to prove large deviation principles in

(
`∞(G), || · ||G

)
. That paradigm decomposes a

large deviation principle for a sequence of processes Wn into two parts :

1. First, prove a large deviation principle for processes discretized along any finite grid,(
Wn(g1), . . . ,Wn(gp)

)
.

2. Second, control their oscillations on the elements of suitable finite partitions.

Thanks to the paradigm of Arcones [4, 5], Mason [65] showed that it was possible to obtain
large deviation principles for Tn(·, h, z) without invoking any strong approximation argument.

— Contribution 1 [96, 98, 104, 108]. I investigated how the arguments of Arcones and
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Mason could be extended to obtain uniform large deviation principles of the form

lim
n→∞

sup
z∈Hn,

h∈[hn,hn]

1

vn(h)
log

(
P∗
(Tn(·, h, z)

rn(h)
∈ F

))
≤ −J(F ),

for any F closed in
(
`∞(G), || · ||G

)
, where the presence outer probabilities is due to well

known measurability issues for the empirical processes. The uniformity in h ∈ [hn, hn]
turns out to be crucial for proving in-bandwidth- uniform functional limit laws.

— Contribution 2 [97, 106]. The criterion of Arcones can be seen as follows :
1. Given a family of finite rank operators (Iα)α∈Υ of a Banach space (E, || · ||), prove a

large deviation principle for
(
Iα(Wn)

)
n≥1

for each α ∈ Υ.

2. Sharply control || Iα(Wn)−Wn || by a suitable choice of α.

I showed that this general idea was rigorously applicable in the context of Schauder
decomposable spaces, then more generally in spaces having the bounded approximation
property.

1.4 Inventory of publications and prepublications

1.4.1 Short notes

The short notes that are preceded by an asterisk have also been the subject of a full lenght
article, provided in the next subsection.

1. *Uniformity in h in the functional limit law for the increments of the empirical process
indexed by functions. C. R. Acad. Sci. Paris, Ser. I 340, p. 453-456 (2005).

2. *A nonstandard uniform functional law of the logarithm for the increments of the
multivariate empirical process . C. R. Acad. Sci. Paris, Ser. I 343, p. 427-430
(2006).

3. A note on large deviation principles in Schauder decomposable spaces. C. R. Acad.
Sci. Paris, Ser. I 343, p. 345-348 (2006).

4. Some asymptotic results on density estimators by wavelet projections. Statistics and
Probability Letters, 78, p. 2517-2521 (2008).

1.4.2 Full length articles

1. Some uniform in bandwidth functional results for the tail uniform empirical and quantile
processes. Annales de l’ISUP, 50, p. 83-103 (2006)

2. A limited in bandwidth uniformity for the functional limit law of the increments of the
empirical process. Electronic Journal of Statistics, 2, p. 1043-1064 (2008).
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3. A nonstandard uniform functional limit law of the iterated logarithm for the increments
of the multivariate empirical distribution function. Advances and Applications in
Statistical Sciences 1, p. 399-428 (2010).

4. (With I. Van Keilegom) Uniform in bandwidth exact rates for a class of kernel estimators.
Annals of the Institute of Statistical Mathematics Volume 63, p. 1077-1102
(2011).

5. (With M. Maumy-Bertrand) Non standard functional limit laws for the increments of
the compound empirical distribution function. Electronic Journal of Statistics, 4,
p.1324-1344 (2010).

6. Some new almost sure properties of the increments of the uniform empirical process.
Stochastic Processes and Applications, 121,No 2, p. 337-356 (2011).

7. Clustering rates and Chung laws of the iterated logarithm for empirical and quantile
processes. Annales de l’ISUP, 55, No 2-3, pp. 3-26 (2011)

8. A note on weak convergence, large deviations, and the bounded approximation property.
To appear in Theory of probability an its applications

1.4.3 Submitted articles

1. The almost sure behavior of some spatial repartitions of local empirical processes indexed
by functions.

2. A spatial Strassen-type functional limit law for the increments of the local empirical
process.

3. Simultaneous confidence bands for some functional plug-in parameters : a computation-
ally feasible approach.

4. The almost sure Kuratowski limit of local empirical processes with variable bandwidths
5. (With J-Y. Dauxois and A. Flesch) Empirical likelihood uniform confidence bands in

survival analysis under the assumption of competing risks.
6. Donsker and Glivenko-Cantelli theorems for a class of processes generalizing the empirical

process.

1.4.4 Articles in preparation

1. (With C. Kokonendji) Performances of the discrete associated kernel estimators for the
total variation distance.
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Chapter 2

Uniform large deviations and
Poissonization tools for local empirical
processes

This chapter is dedicated to the probabilistic tools that I progressively developed during
my research works. In this chapter, and in this chapter only, proofs are given in details. The
main motivation of providing such a level of details is that taking time to expose them with
precision will allow me to give to be a lot more elusive in the next chapter. Another underlying
motivation is that those results somehow reflect the very base of my works : almost every result
of Chapter 3 has his proof deeply relying on one of the probabilistic tools of the present chapter.

2.1 Uniform large deviation principles

2.1.1 The framework

A large deviation principle (LDP for short) states the rates of convergence to zero of rare
events of the form P

(
Wn ∈ A

)
, whereWn is a sequence of Borel random variables in a topological

space. It is an important tool for functional limit laws, because (roughly speaking) it allows to
determine the summability or non summability of sequences of such events, and hence apply
the Borel-Cantelli Lemma or its converse part. The rates of convergence to zero is determined
by a (rate) function J , which describes the stochastic cost of regions of E.

Definition 2.1.1 (Good rate function) Let (E,O) be a topological space. A map J : E →
[0,∞] is called a good rate function (or rate function for short) when the sets

{
e ∈ E, J(e) ≤

a
}
, a ≥ 0 are compact sets of (E,O).

For A ⊂ E, we shall write J(A) := infe∈A J(e).

When the topological space is Polish (metric, complete, separable), many criteria have been
established to prove large deviation principles (see, e.g. Lynch and Sethuraman [63] for contin-
uous processes with independent increments under the sup-norm, Pukhalskii [77, Theorem 2]
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for Skorokhod spaces, the abstract version of the Gärtner-Ellis theorem [27, Theorem 4.5.20,
p. 157], Bryc’s inverse lemma [27, Chapter 4.4]). Arcones [4, 5] was the first to provide such
a paradigm in a nonseparable space : the space

(
`∞(T ), || · ||T

)
, where we remind the reader

that, for a set T , `∞(T ) denotes the space of all real bounded functions on T , endowed with
the sup norm

|| ψ ||T := sup
t∈T
| ψ(t) | . (2.1)

He showed that a LDP in
(
`∞(T ), || · ||T

)
can always be decomposed into two parts :

— For any p ≥ 1 and (t1, . . . , tp) ∈ T p, prove the expected LDP for the finite dimensional
random vectors

(
Wn(t1), . . . ,Wn(tp)

)
.

— Prove that the oscillations on a suitable finite partition of T are negligible, in the sense
that their probabilities of exceeding arbitrarily small thresholds ε > 0 tend to zero at
sufficiently fast rates.

Arcones makes an explicit use of the particular structure of
(
`∞(T ), || · ||T

)
, by invoking the

Arzela-Ascoli theorem as well as extensions of uniformly continuous functions on a set T0 to its
completion.
Following a brief remark of Mason [65], and after a careful reading of the proofs in [4], I came
to the conclusion that all the arguments of Arcones could be extended with no efforts to a
larger setup of uniform large deviation principles. The problem of non (Borel) measurability
of empirical processes is well known. This is why the following definition uses the concept of
inner and outer probability measures (see, e.g. [92, Chapter 1]).

Definition 2.1.2 (Uniform large deviation principle) Let (Ω,A,P) be a probability space
and let (Wn,ρ)n≥1, ρ∈Hn be a sequence of collections of maps from Ω to E. Let J be a rate
function on (E,O). Let (vn,ρ)n≥1, ρ∈Hn be a sequence of collections of positive real numbers such
that

lim
n→∞

inf
ρ∈Hn

vn,ρ =∞.

We say that (Wn,ρ)n≥1, ρ∈Hn satisfies the uniform large deviation principle (ULDP) for (vn,ρ)n≥1, ρ∈Hn
and J , when :

— For all F closed in (E,O) we have

lim
n→∞

sup
ρ∈Hn

1

vn,ρ
log

(
P∗
(
Wn,ρ ∈ F

))
≤ −J(F ).

— For all O open in (E,O) we have

lim
n→∞

inf
ρ∈Hn

1

vn,ρ
log

(
P∗
(
Wn,ρ ∈ O

))
≥ −J(O).

When the Hn are singletons, we will rather speak of a large deviation principle (LDP) for a
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sequence (Wn)n≥1.

The conclusion of my early works was as follows. For ψ ∈ RT , p ≥ 1 and ~t = (t1, . . . , tp)

Π~t(ψ) :=
(
ψ(t1), . . . , ψ(tp)

)
. (2.2)

Proposition 2.1.1 (Varron, derived from Arcones, 2004) Take (E,O) as the Banach space
(`∞(T ), || · ||T ). Assume that

1. (Finite dimensional ULDP) For each p ≥ 1 and ~t = (t1, . . . , tp) ∈ T p, the sequence of
collections

(
Π~t(Wn,ρ)

)
n≥1, ρ∈Hn

is Borel measurable, and satisfies the ULDP in Rp, for
(vn,ρ)n≥1, ρ∈Hn and for a rate function J~t.

2. (Asymptotic equicontinuity) For each ε > 0, there exists a finite partition T of T such
that, for each T ′ ∈ T , we have

lim
n→∞

sup
ρ∈Hn

1

vn,ρ
log

(
P∗
(

sup
(t1,t2)∈T ′2

∣∣∣Wn,ρ(t1)−Wn,ρ(t2)
∣∣∣ ≥ ε

))
≤ −1/ε.

Then (Wn,ρ)n≥1, ρ∈Hn satisfies the uniform large deviation principle (ULDP) for (vn,ρ)n≥1, ρ∈Hn
and the rate function

J : ψ → sup
p≥1, ~t∈T p

J~t

(
Π~t(ψ)

)
.

Before emphasizing the usefulness of such a criterion for the local empirical process, I will
briefly open a parenthesis to a work I made in large deviation theory [97, 106], and which has
his foundations in the works of Arcones for `∞(T ).

2.1.2 Large deviations in spaces having the bounded approximation
property

When (E,O) is a Banach space admitting a Schauder basis (or more generally, a Schauder
decomposable space), Suquet [86] proved a tightness criterion for sequences of Borel random
variables that involves finite dimensional projections on Schauder basis. Following his ideas, and
having in mind the similarity between large deviations and weak convergence in

(
`∞(T ), || · ||T

)
,

I investigated the possibility of establishing a similar criterion, for large deviations in such
spaces. This was achieved by making use of the concept of LD-tightness introduced by Lynch
an Sethuraman [63], which is an appropriate tool when (E,O) is Polish. The next step was
then to extend those results to the more general case of spaces (E, || · ||) having the bounded
approximation property (BAP spaces), for which the definition is as follows.

Definition 2.1.3 (BAP spaces) Let
(
Iα
)
α∈Υ

be a net of finite rank linear operators from E
to E. The space (E, || · ||) is said to satisfy the bounded approximation property (BAP for
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short) with the net
(
Iα
)
α∈Υ

when it is a Banach space, and when :

lim
α∈Υ

sup
e∈K
|| Iα(e)− e || for each compact K,

sup
α∈Υ
||| Iα |||<∞,

where limα∈Υ stands for the limit along the net Υ, and where : ||| L |||:= sup{| L(x) |, x ∈ E, ||
x ||= 1} for a linear operator L in E.

Note that this framework encompasses
(
`∞(T ), || · ||T

)
, as well as spaces having a Schauder

basis.
Any Banach space (E, || · ||) can be identified to a closed subspace of

(
`∞(T ), || · ||T

)
, by taking

T as the unit ball of its topological dual. In empirical processes theory, such an identification
can lead to wrong tracks, as it is for example the case for the central limit theorem in Banach
spaces (see, e.g., [92, p. 92]). The result of my works, however, is that the above-mentioned
identification turns out to be an efficient way to extend the results of Arcones to BAP spaces.

Theorem 1 (Varron, 2014 [106]) Let
(
Wn

)
n≥1

be a sequence of maps from Ω to E. Con-
sider the following conditions :

— (B1) For each α ∈ Υ, the sequence
(
Iα(Wn)

)
n≥1

is Borel measurable, and satisfies the
LDP in (E, || · ||) for vn and the rate function Jα.
— (B2) For each ε > 0 we have

lim
α∈Υ

lim
n→∞

1

vn
logP∗

(
|| Wn − Iα(Wn) ||> ε

)
≤ −1/ε.

— (b1) The sequence (Wn)n≥1 satisfies the LDP for the rate function J .

Then (B1), (B2) together imply (b1), with J defined as

J(x) := sup
α∈Υ

Jα
(
Iα(x)

)
, x ∈ E.

Moreover, (b1) implies both (B1) and (B2) with

Jα(x) := inf
{
J(y), Iα(y) = x

}
.

A by product of this result was a functional limit law, in Hölderian topologies, for smoothed
versions of the uniform empirical process on the real line, by convolutions with K(h−1

n ·), where
K is Hölder (see, [106, Theorem 2.4]).

2.1.3 A ULDP for the local empirical process

The extension of the works of Arcones did open several opportunities for my works on
functional limit laws for the local empirical process, for which I recall the definition for n ≥
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1, z ∈ Rd, h > 0, and g ∈ G :

Tn(g, h, z) :=
n∑
i=1

gh,z(Zi)− E
(
gh,z(Zi)

)
, where

gh,z(z) :=g
(
h−1
(
z− z

))
, z ∈ Rd.

Our assumption on the law of Z1 is as follows (as indicated in the introduction).

(Hf) Z1 admits a Lebesgue density on an open set O for which there exists
a version f that is continuous and bounded away from 0 and ∞ on O.

We will then consider a compact set H ⊂ O. Such a regularity condition as (Hf) allows to
have in mind the heuristic (λ standing for the Lebesgue measure)

P
(
Z1 ∈ z + hJ

)
∼ λ(J)hdf(z), (2.3)

for bounded J , as h→ 0, uniformly in z ∈ H.
The main advantage of Proposition 2.1.1 is that, taking Hn := H × [hn, hn], it allows to
simultaneously control probabilities of rare events of Tn(·, h, z), z ∈ H, h ∈ [hn, hn], even if
the rate of converge to depends on h (for example, it can be of order hJ(F ) for closed F ). Each
article I wrote or co-wrote on standard functional limit laws involves the proof of an ad-hoc
ULDP, which then is used as the very base of asymptotic probability calculus. At the price
of very slightly strengthening the assumptions made in those articles, it is possible to unify
all of these ULDP into a single one, which I will present and prove here. Before stating our
assumptions on G we will recall some definitions that are usual in empirical processes theory.

Definition 2.1.4 (Covering numbers) Let (E, d) be a metric space, and let E0 ⊂ E be an
arbitrary set. For all ε > 0, we denote by N(ε, E0, d) the minimal (possibly infinite) number of
closed d-balls of radius ε needed to cover E.

Definition 2.1.5 (Pointwise separable class) A class G of real functions on a set X is said
to be pointwise separable when there exists a countable subclass G0 such that, for each g ∈ G
there exists a sequence (gn)n≥1 ∈ GN0 such that gn(x)→ g(x), as n→∞, for all x ∈ X.

We will consider a class of functions G satisfying :

(Pointw. sep.) The class G is pointwise separable on Rd,
(Bounded) There exists M > 0 such that | g |≤M for each g ∈ G,
(Support) There exists M > 0 such that g(z) = 0 for each g ∈ G and z /∈ [−M,M ]d,

(Unif. entropy) We have
∫ ∞

0

sup
Q probab.

√
logN

(
ε,G, || · ||Q,2

)
dε <∞,
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where, for any measure Q and r > 0, the symbol || · ||Q,r denotes the corresponding Lr(Q)-
norm. Note that, when both assumptions (Bounded) and (Support) are made simultaneously,
I will implicitly use a parameter M > 0 fulfilling both of them.
A combination of assumptions (Unif. entropy) and (Support) is largely sufficient to ensure the
existence of L2(λ) isonormal Gaussian process WG on G, namely a centered gaussian process
having covariance function

Cov
(
WG(g1),WG(g2)

)
:=

∫
[−M,M ]d

g1g2dλ,

for which we can consider the associated rate function

JG : ψ → inf

{
|| g ||2λ,2, g Borel, ψ(·) ≡ g →

∫
Rd

ggdλ

}
, (2.4)

with the convention inf ∅ =∞. It is well known that JG rules the large deviation properties of
WG (see [28, p. 85]).
In a metric space (E, d) we shall write

Aε :=
{
x ∈ E, d(x,A) < ε

}
, A ⊂ E, ε > 0, with (2.5)

d(x,A) := inf
y∈A

d(x, y).

Our general ULDP can be stated as follows. An indexation in k has been chosen (instead of
n), because this ULDP will be systematically used for subsequences. Note that, form now on,
unless otherwise specified, each vector space Rp will be endowed with its Euclidian norm || · ||p.

Proposition 2.1.2 (Varron, 2008-2014, from [95, 98, 108]) Let ñk be a strictly increas-
ing sequence of integers, and let h̃k, h̃k, εk be three sequences of non negative real numbers such
that h̃k ≤ h̃k, h̃k → 0 and εk → 0. Let (vk(h))k≥1,h∈[h̃k,h̃k] be a sequence of collections of
nonnegative real numbers such that

lim
k→∞

inf
h∈[h̃k,h̃k]

vk(h) =∞, (2.6)

rk := inf
h∈[h̃k,h̃k]

ñkh
d

vk(h)
→∞. (2.7)

Let G be a class of functions fulfilling (Pointw. sep.), (Bounded), (Support), and (Unif. entropy).
Then, under (Hf), the following assertions hold :

∀F closed in
(
`∞(G), || · ||G

)
,

lim
k→∞

sup
z∈H, ||z′−z||d≤εk

h∈[h̃k,h̃k]

1

vk(h)
log

(
P∗
(

Tñk(·, h, z′)√
2f(z)ñkhdvk(h)

∈ F
))
≤ −JG(F );
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∀Oopen in
(
`∞(G), || · ||G

)
,

lim
k→∞

inf
z∈H, ||z′−z||d≤εk

h∈[h̃k,h̃k]

1

vk(h)
log

(
P∗
(

Tñk(·, h, z′)√
2f(z)ñkhdvk(h)

∈ O
))
≥ −JG(O).

Some comments on the assumptions

In the next paragraphs, I will decompose the proof into several steps, with a particular
emphasis on the role of each of the assumptions made upon G, the bandwidths, and Z1. This
complete proof can be skipped at first reading, (in that case, the reader can go directly to §2.2)
but it is nevertheless recommended to have in mind the following sum up of the different roles
of the assumptions :

— The only role of (Pointw. sep.) is to make the suprema of empirical processes measurable.
— Assumption h̃k → 0 in conjunction with (Support) and (Hf) makes the covariance

structure of the local empirical processes converge to the covariance structure of WG
uniformly in z ∈ H (see Lemma 2.1.1 in the sequel).

— Assumption (2.7) has to be understood as follows : by the heuristic (2.3), and by
(Support), the average number of Zi that play a role in the expression of Tñk(·, h, z)
is roughly ñkhdf(z)λ([−M,M ]d) This average number can be considered as the "true
sample size". Hence vk(h) is required to be large in front of this "sample size", in order
to consider deviations sufficiently large to observe Gaussian tails.

— Those Gaussian tails are determined by a concentration inequality, initiated by Talagrand
(see Fact 2.1.2). Assumption (Bounded) plays its role for the use of that concentration
inequality. It also plays a role to use an approximation result due to Zaitsev (see Fact
2.1.1) between finite dimensional marginals of the Tñk(·, h, z) and those of WG.

— Such a concentration inequality holds around the expectations of suprema of empirical
processes. Assumption (Unif entropy) is essential to control these expectations by the
usual chaining argument for Rademacher processes (see also §2.1.5 for a discussion about
bracketing conditions).

— Allowing z′ to vary in small balls around z is handled by continuity of f . This additional
technicality can be ignored at first reading.

Proof : Since O is open, εk → 0, and by (Support), we can assume without loss of generality
that

∀k ≥ 1, h ∈ [h̃k, h̃k], || z′ − z ||d≤ εk, z /∈ O, gh,z′(z) = 0. (2.8)

Finite dimensional ULDP by Zaitsev’s inequality

Following Proposition 2.1.1 we will first prove point 1 of that proposition. To that end, we
will use the powerful approximation result of Zaitsev [111] for, e.g., sums of independent and
bounded random vectors. For p ≥ 1, and for two probability measures P and Q on Rp, we shall
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write :

π(P,Q, ε) := sup
A Borel

max
{
P (A)−Q(Aε), Q(A)− P (Aε)

}
, for ε > 0.

Fact 2.1.1 (Consequence of Zaitsev [110]) There exists universal constants c1, c2 such that,
for any p ≥ 1, n ≥ 1, τ > 0, and any sequence (Ui)i=1,...,n of centered, independent random
vectors in Rp for which each coordinate is almost surely bounded by τ , we have

∀ε > 0, π(P,Q, ε) ≤ c1p
2 exp

(
− ε

c2p2τ

)
, (2.9)

where P and Q are respectively the law of
n∑
i=1

Ui and of its Gaussian analogue.

Assumption (Bounded) plays its first role here, since it entails, for each k ≥ 1, z ∈ H,
|| z′ − z ||d≤ εk and h ∈ [h̃k, h̃k], that the random vectors

Ui,k,h,z,z′ :=

(
g1h,z′(Zi)− E

(
g1h,z′(Zi)

)
√

2f(z)ñkhdvk(h)
, . . . ,

gph,z′(Zi)− E
(
gph,z′(Zi)

)
√

2f(z)ñkhdvk(h)

)
i=1...,ñk

have each of their coordinates almost surely bounded by

τk,h,z,z′ :=
2M√

2f(z)ñkhdvk(h)
,

from where, for arbitrary ε > 0, taking the notations of Fact 2.1.1 :

π
(
Pk,h,z,z′ , Qk,h,z,z′ , ε

)
≤c1p

2 exp

(
−
ε
√

2f(z)ñkhdvk(h)

2Mc2p2

)
,

≤c1p
2 exp

(
−
ε
√

2f(z)rkvk(h)

2Mc2p2

)
,

where rk is defined in (2.7), and where Pk,h,z,z′ and Qk,h,z,z′ respectively denote the law of
ñk∑
i=1

Ui,k,h,z,z′ and of its Gaussian analogue. Hence, since both (2.6) and (2.7) hold, we have, for

each ε > 0 :
lim
k→∞

sup
z∈H, ||z′−z||d≤εk

h∈[h̃k,h̃k]

1

vk(h)
log
(
π
(
Pk,h,z,z′ , Qk,h,z,z′ , ε

))
= −∞.

By standard topological arguments, (2.10) provides sufficiently fast approximations to prove
that the sought ULDP for

(
Pk,h,z,z′

)
z∈H, ||z′−z||d≤εk, h∈[h̃k,h̃k]

is the same as that of
(
Qk,h,z,z′

)
z∈H, ||z′−z||d≤εk, h∈[h̃k,h̃k]

.

Now, each Qk,h,z,z′ can be represented as the law of (2vk(h))−1/2Σ
1/2
h,z,z′Z, where Z is standard
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normal on Rp, and where

Σh,z,z′ [j, j
′] := f(z)−1h−dCov

(
gjh,z′(Z1), gj′h,z′(Z1)

)
, (j, j′) ∈ {1, . . . , p}2.

Now write Σ[j, j′] :=
∫
gj, gj′dλ for (j, j′) ∈ {1, . . . , p}. By standard analysis for Gaussian

distributions, if we prove that

lim
k→∞

sup
z∈H, ||z′−z||d≤εk

h∈[h̃k,h̃k]

|| Σh,z,z′ − Σ ||p2→ 0, (2.10)

then
(
Qk,h,z,z′

)
z∈H, ||z′−z||d≤εk, h∈[h̃k,h̃k]

will satisfy the ULDP for the rate function Jg1,...,gp which
is defined as the quadratic form on Rp associated to Σ. Now (2.10) is a consequence of the
following crucial remark.

Lemma 2.1.1 We have

lim
k→∞

sup
z∈H, ||z′−z||d≤εk

h∈[h̃k,h̃k]

sup
(g,g′)∈G2

∣∣∣ 1

f(z)hd
Cov

(
gh,z′(Z1), g′h,z′(Z1)

)
−
∫
gg′dλ

∣∣∣ = 0,

lim
k→∞

sup
z∈H, ||z′−z||d≤εk

h∈[h̃k,h̃k]

sup
(g,g′)∈G2

∣∣∣ 1

f(z)hd
E
(
gh,z′(Z1)g′h,z′(Z1)

)
−
∫
gg′dλ

∣∣∣ = 0.

Proof : We use the change of variable u := z+hv in the next calculus for arbitrary (g, g′) ∈ G2.

Cov
(
gh,z′(Z1), g′h,z′(Z1)

)
=

∫
O

gh,z′(u)g′h,z′(u)f(u)du−
∫
O

gh,z′(u)f(u)du×
∫
O

g′h,z′(u)f(u)du, by (2.8)

=hdf(z)

∫
[−M,M ]d

g(v)g′(v)
f(z′ + hv)

f(z)
dv

− hdf(z)2

∫
[−M,M ]d

g(v)
f(z′ + hv)

f(z)
dv × hd

∫
[−M,M ]d

g′(v)
f(z′ + hv)

f(z)
dv, (2.11)

where assumption (Support) plays its role here, since it makes possible to integrate on
[−M,M ]d. Then assumption (Hf) allows the following crucial argument

lim
k→∞

sup
z∈H, ||z′−z||d≤εk

h∈[h̃k,h̃k]

sup
v∈[−M,M ]d

∣∣∣f(z′ + hv)

f(z)
− 1
∣∣∣ = 0, (2.12)

and (2.11) is always negligible in front of the first term because h ≤ h̃k → 0. �
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Local representation and concentration inequalities

A well understood heuristic about the local uniform empirical process is that, when looking
at the spatial repartition of a uniform sample restricted to a small interval [t, t + hn], with hn
"small", the quantity of observed points is of order nhn. This is roughly speaking the true
observed sample size. For the local empirical process, the same heuristic is appealing, because,
by assumption (Support), the support of any function gh,z is contained in

A(h, z) := z + [−Mh,Mh]d, z ∈ O, h > 0. (2.13)

Hence, the observations falling outside this small ball do not play any role in the value of
Tñk(·, h, z). Einmahl and Mason [41] gave a form to this heuristic by noticing the following
equality in distributions (fo which we will use the symbol =d) holds for collections of G-indexed
processes, for any k ≥ 1, h > 0 and z′ ∈ Hεk ,(

gh,z′(Z1), . . . , gh,z′(Zñk)
)
g∈G

=d

(
τ

(h,z′)
1 g

(
Y

(h,z′)
1

)
, . . . , τ

(h,z′)
ñk

g
(
Y

(h,z′)
ñk

))
g∈G

, (2.14)

where
—
(
Y (h,z′)

)
i≥1

is an i.i.d. sequence having the distribution

P
(h,z′)
0 (·) := P

(
h−1(Z1 − z′) ∈ ·

∣∣∣Z1 ∈ A(h, z′)
)
. (2.15)

—
(
τ

(h,z′)
i

)
i≥1

is an i.i.d. Bernoulli sequence, independent of
(
Y

(h,z′)
i

)
i≥1

, and having expec-
tation a(h, z′), with

a(h, z) := P
(
Z1 ∈ Ah,z

)
, z ∈ O, h > 0. (2.16)

Assumption (Support) plays an essential role for that representation, for which a consequence
intensively used by Einmahl and Mason [41] is that

Tñk(·, h, z′) :=d

( bk,h,z′∑
i=1

g
(
Y

(h,z′)
i

)
− E

(
g
(
Y

(h,z′)
i

))
+ πk,h,z′ E

(
g
(
Y

(h,z′)
i

)))
g∈G

, (2.17)

where
— bk,h,z′ is a binomial (ñk, a(h, z′)) random variable, independent of (Y

(h,z′)
i )i≥1, with

— πk,h,z′ is defined as (bk,h,z′ − ñka(h, z′))

Hence, at the price of a randomness of the sample size, of modifying the law of the sample, and
up to a remaining term that can be controlled by usual inequalities for binomial distributions,
the local empirical process can be represented as a general empirical process indexed by the
same class of functions G.
The symmetrizations techniques are very useful in empirical processes theory. Another con-
sequence of (2.14) is the following representation for the symmetrized versions of the local
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empirical process (
ñk∑
i=1

σigh,z′(Zi)

)
g∈G

=d

( bk,h,z′∑
i=1

σig
(
Y

(h,z′)
i

))
g∈G

, (2.18)

where, on each side of the representation, (σi)i≥1 denotes an i.i.d Rademacher sequence (P
(
σ1 =

1
)

= P
(
σ1 = −1

)
= 1/2).

Now let us go back to our initial ULDP problem. Straightforward analysis (see, e.g., [5, Lemma
4.1]) shows that (recall (2.2)) :

∀ψ ∈ `∞(G), sup
p≥1, ~g=(g1,...,gp)∈Gp

J~g
(
Π~g(ψ)

)
= JG(ψ).

Hence, it only remains to prove the (Asymptotic equicontinuity) part of Proposition 2.1.1.
This has to be done through the uniform control of the oscillations of the Tñk(·, h, z) on the
elements of a suitable finite partition of T = G. By (Unif. entropy) and (Support), G is totally
bounded for the norm || · ||λ,2. Hence it is sufficient to prove that, for any ε > 0, we have

lim
δ→0

lim
k→∞

sup
z∈H, ||z′−z||d≤εk

h∈[h̃k,h̃k]

1

vk(h)
log

(
P
(

sup
(g,g′)∈G2,
||g−g′||λ,2≤δ

∣∣∣Tñk(g′, h, z′)− Tñk(g, h, z′)∣∣∣√
2f(z)ñkhdvk(h)

> ε

))
= −∞.

Note that the preceding inequality involves probabilities (instead of outer probabilities) since
(Pointw. sep.) is satisfied.
Clearly, (2.19) involves suprema of empirical processes, for which powerful concentration in-
equalities around their expectations have been established, first by Talagrand [88], and then
refined by Bousquet [13] and Klein and Rio [55]. On the other hand, assumptions (Bounded)
and (Unif. entropy), combined with representation (2.18) will provide sharp enough bounds for
the expectations of these suprema. The following concentration inequality is due to Talagrand
[87], and then improved by Einmahl and Mason to a maximal inequality [42].

Fact 2.1.2 (Talagrand, Einmahl, Mason [87, 42]) Let G be a class of measurable real
functions on a measurable space (X,X ), fulfilling (Pointw. sep.) and (Bounded) for some
0 < M < ∞. Let (Yi)i≥1 be an i.i.d. sequence of random variables on

(
X,X

)
and (σi)i≥1

an i.i.d Rademacher sequence independent of the first sequence. Then, for suitable universal
constants A1, A2 > 0 we have, for each t > 0 and n ≥ 1 :

P

(
max

m=1,...,n
sup
g∈G

∣∣∣ m∑
i=1

g(Yi)− E
(
g(Yi)

)∣∣∣ ≥ A1

(
E
(

sup
g∈G
|

n∑
i=1

σig(Yi) |
)

+ t

))

≤2

(
exp

(
− A2t

2

nσ2
G

)
+ exp

(
− A2t

M

))
, with

σ2
G := sup

g∈G
Var
(
g(Y1)

)
.
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That powerful inequality has to be accompanied by a control of first moment. In our particular
setup, the local representation (2.18), combined with Dudley’s chaining argument for subgaus-
sian processes leads to a simple bound for those expectations. This is the aim of the following
lemma.

Lemma 2.1.2 (Varron, from [108]) There exists a universal constant C0 such that, for all
k ≥ 1, z ∈ O, h > 0, and for all class of function G fulfilling (Pointw. sep.), we have

E
(

sup
g∈G

∣∣∣ ñk∑
i=1

σigh,z(Zi)
∣∣∣) ≤ C0

∫ ∞
0

sup
Q probab.

√
logN

(
ε,G, || · ||Q,2

)
dε×

√
ñka(h, z). (2.19)

Proof : The proof uses arguments that are very similar to those of Dony and Einmahl
[31]. Assume without loss of generality that the RHS of (2.19) is finite. We first remark
that, by subgaussianity of Rademacher processes (see, e.g., [92, p. 127-128]), we have for all
n ≥ 1, z ∈ O, h > 0 :

E
(

sup
g∈G

∣∣∣ n∑
i=1

σig
(
Y

(h,z)
i

)∣∣∣) =E
Y

(h,z)
1 ,...,Y

(h,z)
n

Eσ1,...,σn
(

sup
g∈G

∣∣∣ n∑
i=1

σig
(
Y

(h,z)
i

)∣∣∣)
≤E

Y
(h,z)
1 ,...,Y

(h,z)
n

(
C0

√
n

∫ ∞
0

√
logN

(
ε,G, || · ||

P
(h,z)
n ,2

)
dε

)
,

≤C0

√
n

∫ ∞
0

sup
Q probab.

√
logN

(
ε,G, || · ||Q,2

)
dε,

where P
(h,z)
n = n−1

n∑
i=1

δ
Y

(h,z)
i

, and where C0 denote a universal constant. Next, using represen-

tation (2.18) we have, for all k ≥ 1, z ∈ O, h > 0 :

E
(

sup
g∈G

∣∣∣ ñk∑
i=1

σigh,z(Zi)
∣∣∣)

=E
(

sup
g∈G

∣∣∣ bk,h,z∑
i=1

σig(Y h,z
i )

∣∣∣)
≤
√
ñka(h, z)C0

∫ ∞
0

sup
Q probab.

√
logN

(
ε,G, || · ||Q,2

)
dε.� (2.20)

The next Proposition is a combination of the two preceding ones. It is a refinement of existing
arguments in the literature [42, 43, 65]. Its contribution consists in giving precise threshold
conditions to give a sense to the heuristics "h has to be small and nhd has to be large to observe
Gaussian tails". I also tried properly determine which parameters of the framework (the law of
Z1 and the structural assumptions on G) do determine those thresholds.
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Proposition 2.1.3 (Varron, from [108]) Let (Zi)i≥1 be an i.i.d. sequence for which the law
of Z1 fulfills (Hf) for some open set O. There exist universal constants C0, C1, C2 > 0 such that
the following assertion is true : Given a compact set H ⊂ O, and given C3 < ∞ and M > 0,
there exists h0 > 0 and ε0 > 0 depending only on M ,f and H such that, for any pointwise
separable class of functions G fulfilling

∀g ∈ G, | g |≤M1[−M,M ]d , (2.21)∫ ∞
0

sup
Q probab.

√
logN(ε,G, || · ||Q,2)dε ≤ C3, (2.22)

there exists K0 > 0 such that, for each h > 0, u > 0, n ≥ 1, z ∈ H and z′ ∈ Rd fulfilling
h ≤ h0, u > (C0C3)22d+1Md, nhd > K0u and || z′ − z ||d≤ ε0, we have :

P

(
max

m=1,...,n
sup
g∈G

∣∣∣ m∑
i=1

gh,z′(Zi)− E
(
gh,z′(Zi)

)∣∣∣ > C1

√
f(z)nhdu

)
≤ 4 exp

(
− C2u

∆2
G

)
,

where
∆2
G := sup

g∈G
|| g ||2λ,2 . (2.23)

Proof : Fix M > 0. By (Hf) we can choose h0 > 0 and ε0 > 0 such that

sup
z∈H, ||v||d≤Mh0, ||z′−z||d≤ε0

f(z′ + v)

f(z)
≤ 2. (2.24)

Then, by the same arguments as those used in the proof of Lemma 2.1.1 we have, for any G
fulfilling (2.21) :

sup
0<h≤h0

sup
z∈H

sup
||z′−z||d≤ε0

sup
g∈G

1

f(z)hd
Var
(
gh,z′(Z1)

)
≤ 2∆2

G, (2.25)

sup
0<h≤h0

sup
z∈H

sup
||z′−z||d≤h0

1

f(z)hd
a(h, z′) ≤ 2(2M)d. (2.26)

Now fix C3 > 0. By Lemma 2.1.2 and by (2.26) we see that, for fixed n ≥ 1, h ≤ ε0, z ∈ H and
|| z′ − z ||d≤ h0, we have :

C0C3

√
na(h, z′) ≤

√
f(z)nhdu, for all u ≥ (C0C3)22d+1Md. (2.27)

Moreover, the class
G(h, z′) :=

{
gh,z′ , g ∈ G

}
,

is uniformly bounded by M , and satisfies σ2
G(h,z′) ≤ 2f(z)hd∆2

G, by (2.25). Now, for all
h ≤ h0, u ≥ (C0C3)22d+1Md, || z′ − z ||d≤ ε0, and n ≥ 1, inserting (2.27) in Fact 2.1.2
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(applied to G(h, z′)) leads to :

P

(
max

m=1,...,n
sup
g∈G

∣∣∣ m∑
i=1

gh,z′(Zi)− E
(
gh,z′(Zi)

)∣∣∣ > 2A1

√
f(z)nhdu

)

≤2

[
exp

(
− A2f(z)nhdu

nσ2
G(h,z′)

)
+ exp

(
−
A2

√
f(z)nhdu

M

)]

≤4 exp

(
− A2u

2∆2
G

)
, as soon as

nhd

u
≥ M2

4∆4
G infz∈H f(z)

=: K0. (2.28)

This concludes the proof of Proposition 2.1.3.�

Asymptotic equicontinuity

Recall that we aim to prove that, for any ε > 0, we have

lim
δ→0

lim
k→∞

sup
z∈H, ||z′−z||d≤εk

h∈[h̃k,h̃k]

1

vk(h)
log

(
P
(

sup
(g,g′)∈G2,
||g−g′||λ,2≤δ

∣∣∣Tñk(g′, h, z′)− Tñk(g, h, z′)∣∣∣√
2f(z)ñkhdvk(h)

> ε

))
= −∞.

(2.29)
We use the notations of Proposition 2.1.3. First, note that, by (Bounded) and (Unif. entropy),
and by standard covering numbers arguments, all the classes

G ′δ :=
{
g − g′, || g − g′ ||λ,2≤ δ

}
, δ > 0, (2.30)

do simultaneously satisfy assumptions (2.21) and (2.22) with the same constants M and C3.
Since h̃k → 0, and by (2.6), we have, for all large k, and for all z ∈ H, || z′ − z ||d≤ εk, h ∈
[h̃k, h̃k] :

εk ≤ ε0, h ≤ h0, vk(h) ≥ (C0C3)22d+1Md, and || z′ − z ||d≤ h0,

which implies, by Proposition 2.1.3

P

(
sup

(g,g′)∈G2, ||g−g′||λ,2≤δ

∣∣∣Tñk(g′, h, z′)− Tñk(g, h, z′)∣∣∣√
2f(z)ñkhdvk(h)

> ε

)

=P

(
sup
g∈G′δ

∣∣∣ ñk∑
i=1

gh,z(Zi)
∣∣∣ > ε

√
2f(z)ñkhdvk(h)

)

≤4 exp

(
− 2A2ε

2vk(h)

2∆2
G′δ

)
.
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Since ∆2
G′δ

= δ2, this proves (2.29) and hence concludes the proof of Proposition 2.1.2.�

2.1.4 Asymptotic independence of two local empirical processes at
very different scales

In this subsection, I will give a more precise meaning to the between bandwidths asymptotic
independence phenomenon which I evoked in the introduction (see, §1.3.2). When investigating
the large deviation properties of two independent copies (W1

G,W2
G) of WG (recall (2.4)), the

appropriate rate function on `∞(G)× `∞(G) is the following :

J⊗2
G (ψ1, ψ2) := JG(ψ1) + JG(ψ2), (ψ1, ψ2) ∈ `∞(G)× `∞(G), (2.31)

where the presence of a summation should not be surprising, as large deviations deal with
logarithm of probabilities. The following ULDP is an unpublished extension of a result I
published in [96] for the local uniform empirical process.

Proposition 2.1.4 (Varron, 2014, extension of [96]) Under the assumptions and nota-
tions of Proposition 2.1.2, if, in addition, h̃k = o(h̃k) and vk(h̃k) ∼ vk(h̃k) as k → ∞, we
have :

∀F closed in
(
`∞(G), || · ||G

)
×
(
`∞(G), || · ||G

)
,

lim
k→∞

sup
z∈H, ||z′−z||d≤εk

1

vk(h̃k)
log

(
P∗
(( Tñk(·, h̃k, z′)√

2f(z)ñkh̃dkvk(h̃k)
,

Tñk(·, h̃k, z′)√
2f(z)ñkh̃dkvk(h̃k)

)
∈ F

))
≤ −J⊗2

G (F );

∀Oopen in
(
`∞(G), || · ||G

)
×
(
`∞(G), || · ||G

)
,

lim
k→∞

inf
z∈H, ||z′−z||d≤εk

1

vk(h̃k)
log

(
P∗
(( Tñk(·, h̃k, z′)√

2f(z)ñkh̃dkvk(h̃k)
,

Tñk(·, h̃k, z′)√
2f(z)ñkh̃dkvk(h̃k)

)
∈ O

))
≥ −J⊗2

G (O).

Proof : The proof of Proposition 2.1.2 already established the (Asymptotic equicontinuity)
criterion uniformly in h ∈ [h̃k, h̃k], so it remains valid when requiring only simultaneity in
{h̃k, h̃k}. Hence, we need only to prove the analogue of (Finite dimensional ULDP ) in
`∞(G) × `∞(G). Taking arbitrary p ≥ 1 and (g1, . . . , gp) ∈ Gp, the same remark as in the
first sentence of the proof holds for the approximation of the law of

Sk,z,z′ :=

(
Tñk(g1, h̃k, z

′)√
2f(z)ñkh̃dkvk(h̃k)

, . . . ,
Tñk(gp, h̃k, z

′)√
2f(z)ñkh̃dkvk(h̃k)

,
Tñk(g1, h̃k, z

′)√
2f(z)ñkh̃dkvk(h̃k)

, . . . ,
Tñk(gp, h̃k, z

′)√
2f(z)ñkh̃dkvk(h̃k)

)

by their gaussian analogues on R2p. Finally, since vk(h̃k) ∼ vk(h̃k), the only assertion to prove is

that the covariance matrix of
√
vk(h̃k) Sk,z,z′ converges uniformly in z ∈ H, || z′ − z ||d≤ εk to

a block diagonal matrix having two blocks of size p× p, which is a consequence of the following
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assertion

∀(g, g′) ∈ G2, lim
k→∞

sup
z∈H, ||z′−z||d≤εk

1

f(z)
√
h̃dkh̃

d
k

∣∣∣Cov
(
gh̃k,z′(Z1), g′

h̃k,z′
(Z1)

)∣∣∣ = 0. (2.32)

Now (2.32) is proved by noting first that, by Lemma 2.1.1, we have, for fixed (g, g′) ∈ G2 :

lim
k→∞

sup
z∈H, ||z′−z||d≤εk

1

f(z)
√
h̃dkh̃

d
k

∣∣∣E(gh̃k,z′(Z1)
)
E
(
g′
h̃k,z′

(Z1)
)∣∣∣

= lim
k→∞

√
h̃dkh̃

d
k sup
z∈H, ||z′−z||d≤εk

f(z)
∣∣∣ 1

f(z)h̃dk
E
(
gh̃k,z′(Z1)

)∣∣∣× ∣∣∣ 1

f(z)h̃dk
E
(
g′
h̃k,z′

(Z1)
)∣∣∣

=0.

On the other hand we have, for each k ≥ 1, z ∈ H, || z′ − z ||d≤ εk,

1

f(z)
√
h̃dkh̃

d
k

∣∣∣E(gh̃k,z′(Z1)g′
h̃k,z′

(Z1)
)∣∣∣

=
h̃dk

f(z)
√
h̃dkh̃

d
k

∣∣∣ ∫ g(u)g′
( h̃k
h̃k
u
)
f(z′ + h̃ku)du

∣∣∣
=

√
h̃dk
h̃dk
M2(2M)d sup

z∈H, ||z′−z||d≤εk,
u∈[−M,M ]d

f(z′ + h̃ku)

f(z)
,

where we used both (Bounded) and (Support) in the last inequality. Now, since h̃k = o(h̃k),
and by (2.24), that last bound tends to 0, which concludes the proof of (2.32) and also concludes
the proof of Proposition 2.1.4. �

2.1.5 Some words on bracketing

Another structural assumption frequently made on a class of functions is that it admits a
finite bracketing numbers integral, namely

(Bracketing)

∫ ∞
0

√
logN[]

(
ε,G, || · ||Q,2

)
dε <∞,

for some particular probability measure Q, (see, e.g., [92, Definition 2.1.6] for more details).
For example, a class G with square integrable envelope is Q-Donsker under this assumption.
As shown in the preceding subsection, the local empirical process Tn(·, h, z) can be more or
less considered as an empirical process with underlying sample (Y

(h,z)
i )i≥1 having distribution
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P
(h,z)
0 , (recall (2.15)). Moreover, we have, under (Hf) :

lim
h→0

sup
z∈H

sup
(g,g′)∈G2

∣∣∣ ∫ gg′dP
(h,z)
0 −

∫
gg′dQ

∣∣∣ = 0,

where Q is the uniform distribution on [−M,M ]d. This convergence of the P
(h,z)
0 toward Q for

a strong enough seminorm is the key argument to prove that all the results of §2.1.3 are still
true when (Unif. entropy) is replaced by (Bracketing), with the choice of Q as the uniform
distribution on [−M,M ]d. Indeed, the reader probably noticed, throughout the reading of
§2.1.3, that assumption (Unif. entropy) was used at only one single step : when bounding the
expectation of suprema of empirical processes over classes of functions fulfilling (Unif. entropy)
that are contained in small || · ||λ,2-balls (see Lemma 2.1.2). Using, e.g., [91, Lemma 19.34],
it is possible to obtain similar bounds for classes of functions fulfilling (Bracketing) that are
contained in small || · ||λ,2 brackets.
I hope that those few words can convince the reader that all the results of the present chapter
and of Chapter 3 implying the local empirical processes Tn(·, h, z) can be extended, when
replacing the uniform entropy number assumptions by their bracketing counterparts, with Q
being the uniform distribution on [−M,M ]d.

2.1.6 Perspectives

My main perspective of improvement of these ULDP concerns the uniform boundedness of G
(assumption (Bounded)). The boundedness of G plays its crucial role in the use of Talagrand’s
concentration inequality, so as the second term exp(−A2t/M) become negligible in front of the
first (see (2.28)). Following an idea already present in [42], I would like to relax the boundedness
assumption to a (high order) integrability of the envelope, perhaps at the price of truncating, by
making use of Fuk-Nagaev type inequalities. Einmahl and Li [40] did improve the Fuk-Nagaev
inequality which, in its improved form, and applied to empirical processes, can be stated as
follows.

Fact 2.1.3 (Fuk-Nagaev type inequality, Einmahl, Li, 2008) Take the notations of Fact
2.1.2 but, instead of assuming (Bounded), suppose that the class G admits an envelope G which
satisfies E

(
Gp(Z1)

)
<∞ for some p > 2. Then given η ∈ (0, 1] and δ > 0, there exists C such

that, for all t > 0 and n ≥ 1, we have :

P

(
max

m=1,...,n
sup
g∈G

∣∣∣ m∑
i=1

g(Zi)− E
(
g(Zi)

)∣∣∣ ≥ (1 + η)βn + t

)
≤ exp

(
− t2

(2 + δ)nσ2
G

)
+ CE

(
Gp(Z1)

) n
tp
.
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2.2 Poissonization

Consider a sequence (ηn)n≥1 of random variables on (Ω,A,P). The ηn-randomized local
empirical process is defined as follows, with the convention

∑
∅

= 0.

Πηn(g, h, z) :=

ηn∑
i=1

gh,z
(
Zi
)
− E

(
gh,z
(
Zi
))
, g Borel and bounded. (2.33)

When each ηn is Poisson with expectation n and independent of (Zi)i≥1, the Πηn(·, h, z) are
called Poissonized versions of the local empirical process (or local Kac processes), and shall be
written Πn(·, h, z) for short. The main feature of Πn(·, h, z) is that those processes inherit of
a crucial property of Poisson random measures, which, in terms of empirical measures, can be
written as follows.

Proposition 2.2.1 If (G1, . . . ,Gp) are classes of functions respectively vanishing out of disjoint
subsets J1, . . . , Jp, then the family of processes

(
g1 →

ηn∑
i=1

g1(Zi), . . . , gp →
ηn∑
i=1

gp(Zi)
)

is mutually independent, as processes defined respectively on G1, . . . ,Gp.

Poissonization can be seen a way to switch from a probability calculus on empirical processes
to a related calculus for their Poissonized versions, in order to use the preceding property.

2.2.1 The negligible effect of sample size randomization for large
deviation events

Up to far in the literature, Poissonization techniques heavily relied on some interplay between
Poisson and binomial distributions (see, e.g., [85, Chapter 8], [92, Chapter 3.5]). My first main
contribution to these techniques is that, when considering large deviation events, neither the
fact that ηn is Poisson nor that it is independent of the sample are required to obtain suitable
good approximations. It is sufficient that the ηn concentrate enough around their expectations
n, in regard with the large deviation principle that is involved (hence the "Poissonization"
terminology should be relaxed to a general sample size randomization). Our next proposition
explicitly uses the ULDP framework of Proposition 2.1.2, to make the arguments more clear an
coherent. However, it has to be noted that such techniques are not limited to local empirical
processes. They can be translated into results of the same type for general empirical processes.

Proposition 2.2.2 (Varron, 2014, from [108]) Take all the notations and assumptions of
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Proposition 2.1.2. Assume that the sequence ηñk fulfills the following condition :

∀δ > 0, lim
k→∞

sup
h∈[h̃k,h̃k]

1

vk(h)
log

(
P
(ηñk
ñk

/∈ [1− δ, 1 + δ]
))

= −∞, (2.34)

then we have, for each ε > 0 :

lim
k→∞

sup
z∈H, ||z′−z||d≤εk

h∈[h̃k,h̃k]

1

vk(h)
log

(
P
(∣∣∣∣∣∣Πηñk

ñk
(·, h, z′)− Tñk(·, h, z′)

∣∣∣∣∣∣
G√

2f(z)ñkhdvk(h)
> ε

))
= −∞.

As a consequence, Proposition 2.1.2 is still true with the formal replacement of Tñk(·, h, z′) by
Πηñk (·, h, z′).

Before giving a short proof, I would like to point out that, at least in the theory of functional
limit laws, assumption (2.34) is always very largely satisfied when needed.

Proof : First fix B > 0, and set δ := C2ε
2/(8B∆2

GC
2
1), where C1 and C2 are as in Fact

2.1.2. Writing Nk(δ) :=
{
n ∈ N, n/ñk ∈ [1− δ, 1 + δ]

}
, we have, for fixed k ≥ 1, z ∈ H, h ∈

[h̃k, h̃k], || z′ − z ||≤ εk :

P

(∣∣∣∣∣∣Πηñk
ñk

(·, h, z′)− Tñk(·, h, z′)
∣∣∣∣∣∣
G√

2f(z)ñkhdvk(h)
> ε

)

≤P
(
ηñk /∈ Nk(δ)

)
+ P

(
max

n∈Nk(δ)

supg∈G

∣∣∣ ñk∑
i=n+1

gh,z′(Zi)− E
(
gh,z′(Zi)

)∣∣∣√
2f(z)ñkhdvk(h)

> ε

)
,

with the convention
q∑

i=p+1

ui := −
p∑

i=q+1

ui for p > q. By (2.34) it is sufficient to bound the

second term. This is done by applying Proposition 2.1.3, noticing that, for all large enough k,
we have :

sup
h∈[h̃k,h̃k]

h = h̃k ≤ h0, εk ≤ ε0,

uk(h) :=
ε2

4δC2
1

vk(h) ≥ (C0C3)22d+1Md, for all h ∈ [h̃k, h̃k],

inf
h∈[h̃k,h̃k]

[δñk + 1]hd

uk
=

[δñk + 1]h̃dk
uk

≥ K0,
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which yields, ñk ≥ δ−1, and uniformly in h ∈ [h̃k, h̃k], || z′ − z ||≤ εk :

P

(
max

n∈Nk(δ)

supg∈G

∣∣∣ ñk∑
i=n+1

gh,z′(Zi)− E
(
gh,z′(Zi)

)∣∣∣√
2f(z)ñkhdvk(h)

> ε

)

≤2P

(
max

0≤m≤[δñk+1]

supg∈G

∣∣∣ m∑
i=1

gh,z′(Zi)− E
(
gh,z′(Zi)

)∣∣∣√
2f(z)ñkhdvk(h)

> ε/2

)

≤2P

(
max

0≤m≤[δñk+1]
sup
g∈G

∣∣∣ m∑
i=1

gh,z′(Zi)− E
(
gh,z′(Zi)

)∣∣∣ ≥ C1

√
f(z)[δñk + 1]hd

ε2

4δC2
1

vk(h)

)

≤8 exp

(
− C2ε

2vk(h)

4δC2
1∆2
G

)
≤8 exp

(
− 2Bvk(h)

)
,

which concludes the proof, as B was arbitrarily chosen. �

2.2.2 A general Poissonization tool for i.i.d. sums in a measurable
semigroup

In this subsection I will expose a Poissonization technique which heavily relies on the
interplay between binomial and Poisson distributions. Einmahl [36] established a Poissonization
technique for the local uniform empirical process. In the setup of general empirical processes,
his result can be stated as follows. Recall the general notation Q(f) =

∫
fdQ.

Proposition 2.2.3 (Derived from J. Einmahl, 1986) Let J ∈ X such that P
(
Z1 ∈ J

)
<

1. Let G be a class of functions such that g(z) = 0 for each z /∈ J and g ∈ G. There exist a
constant C, depending only upon P

(
Z1 ∈ J

)
, such that, for any A ⊂ RG, which is measurable

for each Gn(·), n ≥ 1, we have :

∀n ≥ 1, P
( n∑

i=1

δZi(·) ∈ A
)
≤ CP

( ηn∑
i=1

δZi(·) ∈ A
)
,

where ηn is Poisson with expectation n, and is independent of the Zi in the RHS. Moreover,
when P

(
Z1 ∈ J

)
≤ 1/2, C can be chosen equal to 2.

That result turned out to be crucial when proving global functional limit laws for the local
empirical process. Indeed, when G satisfies (Support), and a soon as P

(
Z1 ∈ HMh0

)
< 1 for

some h0 > 0 then all the function gh,z, z ∈ H, h ∈]0, h0[, g ∈ G have their supports included in
J := HMh0 . Hence, Proposition 2.2.3 allows to Poissonize probabilities for events simultaneously
involving local empirical processes at different points z and at different bandwidths h.
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Giné et. al. [46] put Einmahl’s result in the more abstract framework of sums of i.i.d. random
variables (Xi)i≥1 in a measurable semigroup (D,+,D).

Proposition 2.2.4 (Giné, Mason, Zaitsev, 2001) Let (Xi)i≥1 be i.i.d random variables in
a measurable semigroup (D,+,D). Let B ∈ D such that P

(
X1 ∈ B

)
< 1. Then there exists a

constant C such that, for each measurable map H from (D,D) to [0,∞[, we have :

∀n ≥ 1, E
(
H
( n∑
i=1

1B(Xi)Xi

))
≤ CE

(
H
( ηn∑
i=1

1B(Xi)Xi

))
,

where ηn is Poisson with expectation n, and is independent of the Xi in the RHS. Moreover,
when P

(
X1 ∈ B

)
≤ 1/2, the constant C can be chosen equal to 2.

When working on spatial functional limit laws [103], I was seeking a way to Poissonize maximal
inequalities for sums of random variables in a Banach space, namely, to obtain inequalities of
the form

∀n ≥ 1, P
(

max
m=1,...,n

∣∣∣∣∣∣ m∑
i=1

1B(Xi)Xi

∣∣∣∣∣∣ ≥ ε

)
≤ CP

(
max

m=1,...,ηn

∣∣∣∣∣∣ m∑
i=1

1B(Xi)Xi

∣∣∣∣∣∣ ≥ ε

)
.

This research led to a more general Poissonization technique, which may open new possibilities.
To enounce it, I will first introduce some notations. We shall write D̃ :=

⋃
n≥1

Dn.

Definition 2.2.1 (Truncating maps) Let E0 be an arbitrary set. A map φ : D̃ 7→ E0 is said
to be truncating if, for any p ≥ 2 and (d1, . . . , dp) ∈ Dp we have

φ(d1, . . . , dp, dp) = φ(d1, . . . , dp).

We shall write, for simplicity of notations,

→p∑
i=q

di :=
(
dq, dq + dq+1, . . . ,

p∑
i=q

di

)
, when p ≥ q,

:=0 otherwise.

Hence, the symbol
→p∑
i=1

is understood as the history record of partials sums up to p.

My Poissonization result is as follows :

Proposition 2.2.5 (Varron, 2011, from [106]) Let (Xi)i≥1 be i.i.d random variables in a
measurable semigroup (D,+,D). Let D̃ :=

∨
n≥1D⊗n. Let (E0,A0) be a measurable space and

let φ : (D̃, D̃) 7→ [0, . . . ,∞[ be measurable. Let B ∈ D such that P
(
X1 ∈ B

)
< 1. Then there
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exists a constant C, depending only upon P
(
X1 ∈ B

)
, such that, :

∀n ≥ 1, E
(
φ
( →n∑
i=1

1B(Xi)Xi

))
≤ CE

(
φ
(→ηn∑

i=1

1B(Xi)Xi

))
,

where ηn is Poisson with expectation n, and is independent of the Xi in the RHS.

This general framework encompasses that of Proposition 2.2.4, by choosing

φ(s1, . . . , sp) = sp, p ≥ 1, (s1, . . . , sp) ∈ Dp.

It also encompasses maxima of partial sums, by choosing, when D is a normed space :

φ(s1, . . . , sp) = max
j=1,...p

|| sj ||, p ≥ 1, (s1, . . . , sp) ∈ Dp.

Proof : Write pB := P(X1 ∈ B). By an application of Stirling’s formula, and since (1−pB) > 0,
we have

sup
n≥1

(
n(1−pB)

)[n(1−pB)]

en(1−pB)[n(1−pB)]!

nn

enn!

=: C <∞, (2.35)

and direct calculation for small values of n shows that C ≤ 2 when pB ≤ 2 (see [46, p. 8]). Now
denote by (τi, Yi)i≥1 an i.i.d. sequence for which Yi is independent of τi, P(τi = 1) = 1− P(τi =
0) = pB and Yi has the distribution of Xi conditionally to Xi ∈ B. A simple calculation shows
that

(
1B(Xi)Xi

)
i≥1

=d

(
τiYi
)
i≥1

, from where, by conditioning on (τ1, . . . , τn) :

E
(
φ
( →n∑
i=1

1B(Xi)Xi

))
=

∑
P⊂{1,...,n}

p]PB (1− pB)n−]P E
(
φ
( →n∑
i=1

1P(i)Yi

))
,

with the notation ]P for the number of elements of P .
Now notice that, for fixed P and for each permutation of indices σ, we have(

1P(1)Y1, . . . ,1P(n)Yn
)

=d

(
1P(σ(1))Y1, . . . ,1P(σ(n))Yn

)
.

By choosing σ such that (1P(σ(1)), . . . ,1P(σ(n))) = (1, . . . , 1, 0, . . . , 0) the vector
→n∑
i=1

1P(σ(i))Yi

has his last n− ]P + 1 coordinates equal, from where, since φ is truncating :

E
(
φ
( →n∑
i=1

1B(Xi)Xi

))
=

n∑
k=0

(
n

k

)
pkB(1− pB)n−k E

(
φ
( →k∑
i=1

Yi

))
.

The remainder of the calculus continues as in the proof of Lemma 2.1 in [46], namely, introducing
independent Poisson random variables ηB and ηBC with respective expectations npB and n(1−
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pB), which are also independent of (Yi)i≥1 :

n∑
k=0

(
n

k

)
pkB(1− pB)n−k E

(
φ
( →k∑
i=1

Yi

))

=
n!en

nn

n∑
k=0

(npB)k

k!ek

(
n(1− pB)

)n−k
(n− k)!en−k

E
(
φ
( →k∑
i=1

Yi

))

=
1

P
(
ηn = n

) n∑
k=0

E
(
φ
( →k∑
i=1

Yi

)
1{ηB=k}

)
P
(
ηBC = n− k

)
≤

maxk=0,...,n P
(
ηBC = n− k

)
P
(
ηn = n

) E
(
φ
(→ηB∑

i=1

Yi

))

=
P
(
ηBC = [n(1− pB)]

)
P
(
ηn = n

) E
(
φ
(→ηB∑

i=1

Yi

))

≤CE
(
φ
(→ηB∑

i=1

Yi

))
, by 2.35.

The end of the proof now requires an additional work, which consists in proving that

E
(
φ
( →η∑
i=1

τiYi

))
= E

(
φ
(→ηB∑

i=1

Yi

))
,

This is done by using the interplay between Poisson and Binomial distributions :

E
(
φ
( →η∑
i=1

τiYi

))
=
∑
m≥0

P(η = m)
∑

P⊂{1,...,m}

p]PB (1− pB)m−]P E
(
φ
( →m∑
i=1

1P(i)Yi

))

=
∑
m≥0

nm

m!
e−n

m∑
k=0

(
m

k

)
pkB(1− pB)m−k E

(
φ
( →k∑
i=1

Yi

))
(by the same truncating arguments as above)

=
∑
k≥0

E
(
φ
( →k∑
i=1

Yi

)) ∑
m≥k

nm

m!

m!

k!(n− k)!
pkB(1− pB)m−ke−n

=
∑
k≥0

E
(
φ
( →k∑
i=1

Yi

))
e−npB

(npB)k

k!

∑
m′≥0

(n(1− pB))m
′

m′!
e−n(1−pB)
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=
∑
k≥0

P(ηB = k)E
(
φ
( →k∑
i=1

Yi

))
,

which proves Proposition 2.2.5. �

2.2.3 Perspectives

As a perspective for future works, I would like to investigate the possible applications of
Proposition 2.2.5. Since a wide variety of maps do satisfy the truncating property, such a
Poissonization tool may open new research directions for empirical processes, or more generally,
to i.i.d. sums in a semigroup. Some leads of applications are stated in [103].

44



Chapter 3

Contributions to the study of local
empirical processes

My contributions to the study of local empirical processes can be decomposed into three
parts :

— The independence between bandwidths phenomenon, ands its consequences to in-bandwidth
uniformity in the standard functional limit laws. Those results are stated in §3.2.

— Spatial-type limit results for the local empirical process : endowing a set H with a finite
measure µ, I studied the asymptotic repartitions of the Tn(·, hn, z), when z is distributed
by µ. Those results are stated in §3.3.

— A collection of more or less incremental improvements in the existing functional limit
laws, without considering in-bandwidth uniformity or spatial repartitions. Those results
are stated in the following section.

Each of the presented results is accompanied with some words about the key elements of its
proof, with frequent references to Chapter 2.

3.1 Improvements of existing functional limit laws

3.1.1 Some preliminary words on the usual tools used in functional
limit laws

In the proof of functional limit laws, several arguments are recurrent. In this subsection, I
will briefly explain them, in order to mention them when needed in the sequel.

Blocking arguments

In both local and global functional limit laws, the main idea is to prove that probabilities of
events An, involving collections of processes Tn(·, h, z), are a summable in n, in order to use the
Borel-Cantelli lemma. Systematically, it appears that those probabilities are summable only
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along subsequences of the form nk := [(1 + γ)k], for γ > 0. A key argument to interpolate
between the nk is to use maximal inequalities for partial sums of i.i.d. processes. One of them
is the Montgomery-Smith inequality, which I chose to write down here, for its concision and
simplicity.

Fact 3.1.1 (Montgomery-Smith, 1993) Let (E, || · ||) be a Banach space, and let (Xi)i≥1

be an i.i.d. sequence, for which || X1 || is Borel measurable. Then for all n ≥ 1 and for all
t ≥ 0, we have :

P
(

max
m=1,...,n

∣∣∣∣∣∣ m∑
i=1

Xi

∣∣∣∣∣∣ ≥ t

)
≤ 9P

(∣∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣∣ ≥ t

30

)
.

Interpolating between the nk is (up to small technicalities due to the variation of hn with n) is
essentially finding bounds, for fixed ε > 0, for probabilities

P
(

max
m=1,...,nk−nk−1

∣∣∣ m∑
i=1

gh,z(Zi)− E
(
gh,z(Zi)

)∣∣∣ ≥ ε
√

2f(z)nkhdnk log log(nk)

)
≤9P

(∣∣∣∣∣∣Tnk−nk−1
(·, h, z)

∣∣∣∣∣∣
G
≥ ε

30

√
2f(z)nkhdnk log log(nk)

)
,

≤9P
(∣∣∣∣∣∣Tnk−nk−1

(·, h, z)
∣∣∣∣∣∣
G
≥ ε

30
√
γ

√
2f(z)hdnk(nk − nk−1) log log(nk)

)
,

where, in the last inequality, the term √γ could be inserted because nk − nk−1 ≤ γnk for all
large k. Next, a use, e.g. of Proposition 2.1.3, provides the right deviation bounds, with a
choice of γ small enough to make the threshold ε/√γ large enough.

Stochastic renewal

Local functional limit laws use the converse part of the Borel-Cantelli lemma. Such a
converse part only involves mutually independent events An. The Tn(·, ·, ·) clearly fail to be
independent in n. However, along sufficiently spread subsequences nk, these processes can be
proved to be "almost" independent. By sufficiently spread, we can typically choose sequences
for which nk−1/nk tends to 0 (or at least, has a negligible upper limit). The idea is to first
prove asymptotic results for the mutually independent sequences of processes

T k(g, h, z) :=

nk∑
i=nk−1+1

gh,z(Zi)− E
(
gh,z(Zi)

)
√

2f(z)nkhd log log(nk)
, k ≥ 1 (3.1)

for which the normalization makes senses since nk − nk−1 ∼ nk. Then the distance to the
original sequence can be rendered negligible by the following calculus∣∣∣∣∣∣T k(·, h, z)− Tnk(·, h, z)√

2f(z)nkhd log log(nk)

∣∣∣∣∣∣ =

√
nk−1

nk
×

Tnk−1
(·, h, z)√

2f(z)nk−1hd log log(nk)
,
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where the second factor is properly normalized to be stochastically controlled, and the first
factor (nk−1/nk)

1/2 tends to zero.

3.1.2 Perspectives

A careful reading of the proof of Fact 3.1.1 (see [70]) shows that neither the Banach structure,
nor the vector space structure does play a role. A perspective of future works wound be to
extend Fact 3.1.1 for Xi taking values in an abelian group (D,+), with null element 0D, and
endowed with a norm-like map || · ||, or more generally, a map || · || taking values in R+, for
which || 0D ||= 0, and for which, writing k� e := e+ . . .+ e (k times) and (−k)� e := −(k� e)
for k ∈ N∗ and 0� e := 0D, we have

C1 | k |α1|| e ||≤|| k � e ||≤ C2 | k |α2|| e ||,

where neither C1, C2 nor α1, α2 depends on k ∈ Z or e ∈ D.

3.1.3 Clustering rates and Chung-Mogulskii functional limit laws for
the local uniform empirical process

When d = 1, G is the particular class

G0 :=
{
1[0,t], t ∈ [0, 1]

}
,

and when the Zi are uniform on [0, 1], the Tn(·, h, z) are identified to the functional increments
of the uniform empirical process. Those processes were the first to be studied (see, e.g., [85]),
because, in addition to being rich enough to have connections with a lot of statistical procedures,
they benefit of particularly strong mathematical tools. I will expose some of them in the next
paragraph. It first seems convenient to introduce notations that are adapted to the specific
framework of the uniform empirical process. We shall write the empirical process

αn(t) :=
√
n(Fn(t)− t), where

Fn(t) :=
1

n

n∑
i=1

1[0,t](Ui), t ∈ [0, 1],

and the (Ui)n≥1 are independent, identically distributed (i.i.d) random variables on (Ω,A,P),
uniformly distributed on [0, 1]. Define the quantile process by

βn(t) =
√
n
(
F−1
n (t)− t

)
, t ∈ [0, 1], where

F−1
n (t) := inf{u : Fn(u) ≥ t}.
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We shall denote by W a Wiener Process on [0, 1], and by B a Brownian bridge on [0, 1] (the
law of the Brownian bridge is, e.g., defined as the law of W (·)−W (1)· on [0, 1]). Throughout
this subsection we will place ourselves in the metric space (`∞([0, 1]), || · ||[0,1]).

First tool : Strong approximation by Gaussian processes

Strong approximation of empirical processes by their Gaussian counterparts has been the
object of several research works [43, 58, 59, 60, 67, 79, 80, 90]. Among them, the Komlos-
Major-Tusnady construction [59, 60, 90] for the uniform empirical process is the only one that
provides rates of approximations of order log(n)/

√
n. These rates of approximations have been

proved to hold for the bivariate uniform empirical process [60] (replacing log(n) by log(n)2 in
the rate of approximation).

Fact 3.1.2 (Komlos-Major-Tusnady [59]) At the price of enriching the probability space
(Ω,A,P), one can construct a sequence Bn of copies of B, such that, for some constants
C1, C2, C3 we have, for all n ≥ 1 and z > 0 :

P
(
|| αn −Bn ||[0,1]≥ C1

log n+ z√
n

)
≤ C2 exp

(
− C3z

)
.

A similar result was proved by the authors [60] for the standard Poisson process on the real
line, involving copies Wn of W .
Such a powerful strong approximation result not only allows to prove appropriate large deviation
principles, but it also allows to explore second order convergence in these large deviations. For
example, while a large deviation result may only give rates of convergence for open ball with
fixed radius (namely O = ψε in Proposition 2.1.2), the KMT approximation allows, by Gaussian
analysis, to investigate balls with radii tending to 0 as n→∞ (namely O = ψεn , with εn → 0).

Second tool : Gaussian analysis for enlarged Strassen sets

The description of the first tool leads to the question of small ball probabilities (or more
generally, probabilities involving Aεn , for a fixed region A). When d = 1, Gaussian analysis
provides sharp bounds for these probabilities. When d ≥ 2, generalizing such results is an open
an tough problem (see, e.g., [61] for an overview on this field).
Define the Strassen sets

S1 :=

{
f ∈ `∞([0, 1]), ∃f ′ Borel, f(·) :=

∫ ·
0

f ′(t)dt,

∫ 1

0

f ′2(t)dt ≤ 1

}
, and

S2 :=
{
f(t) ∈ S1, f(1) = 0

}
.

Note that S2 (resp. S1) is the unit ball of the reproducing kernel Hilbert space of the Brownian
bridge (resp. of the Wiener process) on [0,1]. The next inequalities, due to Talagrand, involve
small enlargements of those Strassen sets (recall (2.5)).
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Fact 3.1.3 (Talagrand [87]) There exists two constants L0 and u0 >0 such that, for any
0 < u < u0 and c > 0, we have :

P
(
B /∈ (cS2)u

)
≤ exp

(L0

u2
− cu

2
− c2

2

)
.

There exist two constants u1 and L1 such that, for any 0 < u < u1 and c > 0, we have

P
(
W /∈ (cS1)u

)
≤ exp

(L1

u2
− cu

2
− c2

2

)
.

Berthet [8] used inequality (3.2) coupled with the KMT approximation of Fact 3.1.2 to obtain
clustering rates in the global standard functional limit laws for the functional increments of the
uniform empirical process. In the same spirit, I proved a similar result for the local standard
law of Mason [64] and for the functional limit law of Finkelstein [45]. Those are stated in the
next two theorems.

Theorem 2 (Varron, 2011 [102]) There exists a universal constant ε0 >0 such that, for any
choice of ε > ε0 we have almost surely, for all large n :

αn√
2 log log(n)

∈ Sε(log log(n))−2/3

2 ,

βn√
2 log log(n)

∈ Sε(log log(n))−2/3

2 .

Theorem 3 (Varron, 2011 [102]) Let hn be positive real numbers satisfying, as n→∞,

nhn ↑ ∞,
nhn

(log log(n))7/3
→∞, hn ↓ 0. (3.2)

Then there exists a universal constant ε1 > 0 such that, for any choice of ε > ε1 we have almost
surely, for all large n :

αn(hn·)√
2hn log log(n)

∈ Sε(log log(n))−2/3

1 .

If, in addition, nhn/(log log(n))11/3 →∞, then we have, almost surely, for all larg n :

βn(hn·)√
2hn log log(n)

∈ Sε(log log(n))−2/3

1 .

Third tool : Small ball probabilities

The two preceding theorems clearly establish outer clustering rates in Strassen functional
limit laws. Another interesting topic is to establish inner rates of approximations of fixed
elements of S1 (or S2). Such results are known under the name of functional Chung-type
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limit laws. Those inner rates involve small ball probabilities, which have been intensively
investigated for the Wiener process W . With the help of the works of de Acosta [2], Deheuvels
[17] established a Chung-type limit law for (αn(hn·))n≥1, by showing that, if hn is a sequence of
constants satisfying nhn ↑ ∞, hn ↓ 0 and nhn/(log log(n))3 → ∞, we have, almost surely, for
each f ∈ S1 satisfying || f ||2Hilb:=

∫ 1

0
f ′2(t)dt < 1 :

lim
n→∞

(log log(n))
∣∣∣∣∣∣αn(hn·)√

hnbn
− f

∣∣∣∣∣∣
[0,1]

=
π

4
√

1− || f ||2Hilb
.

His result, however, left open the problem of finding inner rates when || f ||2Hilb= 1.
Since the works of Acosta, several researchers managed to obtain small ball probability estimates
for elements f pertaining to the border of S1. Such estimates were obtained for two particular
classes of functions, which are defined as follows.

Definition 3.1.1 Denote by SBV1 the subset of S1 of functions f for which
∫ 1

0
f ′2(t)dt = 1, and

for which f ′ admits a version which has a bounded variation on [0, 1].
Denote by SLIV1 the subset of S1 of functions f for which

∫ 1

0
f ′2(t)dt = 1, and for which f ′

admits a version which is locally of infinite variation, namely : there exist x1, . . . , xk ∈ [0, 1]
such that, for ε > 0 we have (V, denoting the total variation on [0, 1])

V
( k∑
i=1

f ′1{[0,1]−[xi−ε,xi+ε]}

)
< V

( k∑
i=1

f ′1{[xi−ε,xi+ε]}

)
=∞.

The works of Csáki [14], Grill [48], Gorn and Lifshits [47], and Berthet and Lifshits [11] on
small ball probabilities for Wiener processes can be summed up in a single inequality.

Inequality 3.1.1 (From Csáki, Grill,Gorn, Berthet, Lifshits [14, 48, 47, 11]) For any
f ∈ SBV1 ∪SLIV1 , there exists a function ∇f (·) from ]0,∞[ to itself, as well as a constant χf > 0,
such that the following assertion holds : for each δ > 0, there exist γ+ = γ+(δ, f) > 0 and
γ− = γ−(δ, f) > 0 such that for all T sufficiently large :

P
(
∇f

(T 2

2

)∣∣∣∣∣∣W
T
− f

∣∣∣∣∣∣
[0,1]
≤ (1 + δ)χf

)
≥ exp

(
− T 2

2
+ γ+

∇2
f (T

2/2)

T 2

)
,

P
(
∇f

(T 2

2

)∣∣∣∣∣∣W
T
− f

∣∣∣∣∣∣
[0,1]
≤ (1− δ)χf

)
≤ exp

(
− T 2

2
− γ−

∇2
f (T

2/2)

T 2

)
.

Note that ∇f and χf do have explicit forms. However, for sake of simplicity, I chose not to give
the details of their definitions here.
My contribution to Chung-Mogulskii functional limit laws is as follows. It is the expected
counterpart of Berthet’s result in the global standard functional limit laws [9].
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Theorem 4 (Varron, 2011 [102]) Let f ∈ Sbv1 ∪S liv1 be arbitrary and let hn be a sequence of
real numbers satisfying, as n→∞,

nhn ↑ ∞, hn ↓ 0,

lim
n→∞

nhn
log log(n)∇2

f (log log(n))
=∞. (3.3)

Then we have, almost surely :

lim
n→∞

∇f (log log(n))
∣∣∣∣∣∣ αn(hn·)√

2hn log log(n)
− f

∣∣∣∣∣∣
[0,1]

= χf .

Some words about the proofs

In each theorem, the growth assumption made upon nhn is slightly stronger than the usual
condition nhn/ log log(n) → ∞. The sequence log log(n) is replaced by a power of log log(n),
similarly as in [8, 9]. We imposed that condition so that the KMT strong approximation can be
sharp enough to be negligible in front of the small ball/ small enlargements Gaussian analysis.
Beside the crucial use of the KMT approximation and the above-mentioned Gaussian inequal-
ities, the proof is routine use of blocking and stochastic renewal arguments, with contextual
minor improvements in regard of the existing literature. Note that, in the original article [102],
I needed to impose an additional assumption on hn, by requiring that this sequence is not too
slow, namely

hn log log(n)→ 0. (3.4)

This assumption was imposed in order to use a Poissonization technique ([102, Lemma 3.2]),
which was later made obsolete by the Poissonization written in Proposition 2.2.2. That later
Proposition could then get rid of (3.4). To conclude this paragraph, the results involving βn
and βn(hn·) are obtained by the Bahadur-Kiefer representation [54] and its local version [39,
Theorem 5].

3.1.4 Perspectives

Berthet [10] showed that, for the problem of small balls around functions f ∈ SBV1 , the
KMT approximation could be bypassed by making use of estimates of small ball probabilities
for Poisson processes with high intensity, due to Shmileva [84]. Using those estimates, and
applying them in the context of the global standard functional limit law for the increments of
αn, Berthet [10] could exhibit an uncrossable lower bound for the strong approximation of αn
by Brownian bridges, namely :

Fact 3.1.4 (Berthet, 2010 [10]) Let (Ω,A,P) be a probability space, let (Ui)i≥1 be a sequence
of i.i.d. random variable uniformly distributed on [0, 1], let (αn)

n≥1
be the corresponding sequence

of uniform empirical processes, and let Bn be a sequence of Brownian bridges on (Ω,A,P). Then
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we have, almost surely :

lim
n→∞

√
n

log(n)
|| αn −Bn ||[0,1]≥

1

6
.

That lower bound is explained by the fact that αn does have an intrinsic dissymmetry at
small scales, which makes him approximate more closely the target functions f which satisfy∫
f ′(t)3dt > 0 than a Brownian bridge does. That dissymmetry comes from the fact that αn

is the difference between the stepwise increasing function Fn and the continuously decreasing
identity function on [0, 1].
For the local empirical process αn(hn·) Mason and van Zwet [66] did prove a strong approxima-
tion result which takes in account the fact that hn → 0, and hence is more precise that using
Bn(hn·) in the KMT approximation (recall Fact 3.1.2).
An interesting perspective is to investigate how the estimates of Shmileva [84] could give infor-
mation on an uncrossable lower bound for the strong approximations of α(hn·).

3.1.5 Nonstandard functional limit laws

Let us close this parenthesis on the uniform empirical process, and consider again the general
objects Tn(·, h, z) In this subsection, the centering in not necessary, so we will rather focus on
the process

T̃n(g, h, z) :=
n∑
i=1

gh,z(Zi)

When H = {z0} is a singleton, and when considering a bandwidths sequence hn fulfilling
nhdn ∼ c log log(n) for c ∈]0,∞[, the asymptotic behavior of T̃n(·, hn, z0) is not Gaussian
anymore. Indeed, the inherent large deviation principle and limit set are related to large
deviations of Poisson random measures.

Definition 3.1.2 (Rate function of Poisson type) Let G be a class of functions fulfilling
(Support). Define the following rate function on

(
`∞(G), || · ||G

)
.

IG(ψ) := inf

{∫
[−M,M ]d

h1

(
g
)
dλ, ∀g ∈ G, ψ(g) =

∫
[−M,M ]d

ggdλ

}
,

where h1(x) := x log(x)−x+1 for x ≥ 0 (with an extension by continuity at 0), and h1(x) =∞
otherwise.
Define the associated levels

ΓG,a :=
{
ψ ∈ `∞(G), IG(ψ) ≤ a

}
=

{
g →

∫
[−M,M ]d

ggdλ,

∫
[−M,M ]d

h1

(
g
)
dλ ≤ a

}
.
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The first (local) nonstandard functional limit law was stated by Deheuvels and Mason [21], for
the uniform empirical process. It was then extended by Deheuvels and Mason to a multivariate
setting, with G being a class of indicators of sets which can be included in finite reunions of
|| · ||λ,2 brackets generated by finite partitions of a set [−M,M ]d. (see, [24] for more details).
Their two basic ingredients are a strong approximation by a sequence of Poissonized local
empirical processes Π̃n(·, hn, z0), (which is possible since hn tends rapidly to 0), then the use
of the fact that, on an arbitrary partition (A1, . . . , Ap) of [−M,M ]d a Poisson random measure
defines a mutually independent family. They then use that independence to tensorize the large
deviation properties of each Π̃n(1Aj , hn, z0) and hence obtain a large deviation principle for the
joint laws

(
Π̃n(1Aj , hn, z0)

)
j≤p. With M. Maumy-Bertrand [68], we provided an extension of

their result to processes of the type Tn,c(g, ·, h, z), where

Tn,c(g, g, h, z) :=
n∑
i=1

gh,z(Zi)g(Yi),

for a function g taking values in Rk, for which we made assumptions of finite conditional
exponential moments for g(Y1).
Such a nonstandard functional limit law also occurs when H is a compact with nonempty
interior , as showed by Deheuvels and Mason [22] for the uniform empirical process (in which
case it is required that nhdn ∼ c log(n) instead of c log log(n)). My contribution (in [100]) is a
generalization of the set-indexed local law of Deheuvels and Mason [24] to a global law. In its
published form, it is restricted to the class

G0,d :=
{
1[0,t1]×...×[0,td](·), (t1, . . . , td) ∈ [0, 1]d

}
.

Theorem 5 (Varron, 2010, [100]) Assume that the law of Z1 fulfills (Hf) for some open
set O. Let H ⊂ O be a compact set with nonempty interior. Let hn be a bandwidths sequence
such that nhdn ∼ c log(n) for some c ∈]0,∞[. Then, almost surely, the two following assertions
hold

(i) lim
n→∞

sup
z∈H

inf
ψ∈ΓG0,d,cf(z)

∣∣∣∣∣∣Tn(·, hn, z)
nhdn

− ψ
∣∣∣∣∣∣
G0,d

= 0,

(ii)∀z ∈ H, ∀ψ ∈ ΓG0,d,cf(z), lim
n→∞

inf
z∈H

∣∣∣∣∣∣Tn(·, hn, z)
nhdn

− ψ
∣∣∣∣∣∣
G0,d

= 0.

Corollary 5.1 The preceding theorem still holds for a class of function G fulfilling (Support),
(Bounded), and which admits finite || · ||λ,2 bracketing numbers.

Proof of the corollary : Identifying the T̃n(·, hn, z) to random distribution functions on
[0, 1]d, and by integration by parts, the preceding theorem can be directly generalized to
arbitrary finite classes G of functions on [0, 1]d that are of bounded variation (in the sense
that they are themselves distribution functions of finite signed measures on [0, 1]d). This is a
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consequence of the fact that, for such a function g, the map ψ →
∫

[0,1]d
ψdg is continuous on(

`∞([0, 1]d), || · ||[0,1]d
)
. The support [0, 1]d can be extended to any [−M,M ]d with no efforts.

Now, since h1(x) is finite only for x ≥ 0 the limit sets ΓG,a, for any G fulfilling (support) and
a ≥ 0, contain elements of the form ψ : g →

∫
[−M,M ]d

gddλ, where g is nonnegative. This
automatically entails an ordered structure

g1 ≺ g ≺ g2 ⇒ ψ(g) ∈ [ψ(g1), ψ(g2)],

where ≺ stands for the partial order on real functions. The same remark holds for the pro-
cesses T̃n(·, hn, z). Hence, by a simple bracketing argument as in proof of the Glivenko-Cantelli
theorem under bracketing (see, [92, p. 122]), Theorem 5 can be directly extended to any class
of functions G satisfying (Support) and admitting finite || · ||λ,2 bracketing numbers, as soon
as the brackets [g, g′] are defined with g and g′ of bounded variation. Any bounded measurable
function on [−M,M ]d can be || · ||λ,2-approximated from below and from above by functions
of bounded variation, so the brackets can be taken without imposing bounded variation.

3.1.6 Perspective

My main perspective is to investigate wether a condition on uniform covering numbers may
lead to a variant of Theorem 5. The works of Menneteau [69], giving general conditions for the
Poisson large deviations of local empirical measures may be a good starting point.

3.2 Uniform-in-bandwidth functional limit laws

In this section, I will give a description of my contributions to the study of the impact of
the in-bandwidth uniformity to standard functional limit laws for the local empirical process.
At this stage of the manuscript, it is convenient to remind the notion of Strassen-type sets.

Definition 3.2.1 (Strassen-type set) Let G be a class of functions satisfying (Support) and
(Unif. entropy). Recall that JG has been defined in (2.4). Given a ≥ 0, the associated Strassen-
type set is defined by :

SG,a :=
{
ψ ∈ `∞(G), JG(ψ) ≤ a

}
=
{
g →

∫
Rd

ggdλ, g Borel,
∫
Rd

g2dλ ≤ a
}
.

In the next results, we will make structural assumptions on G that may be slightly stronger
that those used in the ULDP of Propositions 2.1.2 and 2.1.4.
Define

Gρ :=
{
g
(
λ−1 ·

)
− g(·), λ ∈ [1, ρ], g ∈ G

}
, (3.5)
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G+,δ :=
{
g
(
·+u

)
− g(·), || u ||d≤ δ, g ∈ G

}
. (3.6)

The assumptions that will be made are (recalling (2.23)) :

(Unif. entropy dilatations) There exists ρ > 1 such that Gρ satisfies∫∞
0

sup
Q probab.

√
logN(ε,Gρ, || · ||Q,2)dε <∞;

(Unif. entropy translations) There exists δ > 0 such that G+,δ satisfies∫∞
0

sup
Q probab.

√
logN(ε,G+,δ, || · ||Q,2)dε <∞;

(Contin. dilatations) lim
ρ→1

∆2
Gρ,2 = 0;

(Contin. translations) lim
δ→0

∆2
G+,δ,2 = 0.

Those assumptions allow to use the empirical processes theory in order to make small inter-
polations between finite grids of points, z ∈ H or of bandwidths h ∈ [hn, hn]. As pointed out
by Mason [65, Section 3], several classes of functions that are used in practice do satisfy those
assumptions. Moreover, as mentioned in §2.1.5, all the results of the present section remain
valid when the uniform entropy conditions are replaced by their bracketing counterparts.
In metric spaces, the topological limit of sequence of sets can be defined as follows.

Definition 3.2.2 (Inner and outer topological limits in a metric space) Let (E, d) be
a metric space, and let (En)n≥1 be a sequence of subsets of E. The inner topological limit of
(En)n≥1 is defined as

top

lim
n→∞

En :=
{
e ∈ E, lim

n→∞
d(e, En) = 0

}
,

and the outer topological limit of (En)n≥1 is defined as

top

lim
n→∞

En :=
{
e ∈ E, lim

n→∞
d(e, En) = 0

}
.

When those two sets are equal, we denote them as the topological limit of (En)n≥1.

3.2.1 Asymptotic independence in the local standard functional limit
law

Proposition 2.1.4 has a direct consequence in terms of functional limit laws, when considering
two local empirical processes sequences Tn(·, hn, z0) and Tn(·, hn, z0), with hn = o(hn). Our next
result is an unpublished generalization of a published result which was restricted to the local
uniform empirical process. We will denote the bivariate strassen type sets as follows (recall
that J⊗2

G (ψ1, ψ2) := JG(ψ1) + JG(ψ2))

S⊗2
G,a :=

{
(ψ1, ψ2) ∈ `∞(G)× `∞(G), J⊗2

G (ψ1, ψ2) ≤ a
}
, a ≥ 0.
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Theorem 6 (Extension of Varron, 2006 [96]) Assume that the law of Z1 fulfills (Hf) for
an open set O. Let z0 ∈ O. Assume that G fulfills (Pointw. sep), (Bounded), (Support),
(Unif. entropy dilatations) and (Contin. dilatations). Let hn ≤ hn be two subsequences of
non negative numbers such that hn = o(hn) and

hn ↓ 0, nhdn ↑,
nhdn

log log(n)
→∞.

Then the sequence (
Tn(·, hn, z0)√

2f(z0)nhdn log log(n)
,

Tn(·, hn, z0)√
2f(z0)nhdn log log(n)

)
n≥2

almost surely admits S⊗2
G,1 as cluster set in

(
`∞(G), || · ||G

)
×
(
`∞(G), || · ||G

)
.

Remark : Theorem 6 can be also stated in terms of almost sure topological limits. It states
that, almost surely, the outer topological limit of the sequence of singletons

Θlocal⊗2
n (hn, hn, z0) :=

{(
Tn(·, hn, z0)√

2f(z0)nhdn log log(n)
,

Tn(·, hn, z0)√
2f(z0)nhdn log log(n)

)}
,

is S⊗2
G,1, while its inner topological limit is ∅.

Some words about the proof

The essential part of the proof relies on a ULDP which is a consequence of Proposition
2.1.4, taking H = {z0} and εk = 0. We then use blocking and stochastic renewal arguments.
By looking at the definition of S⊗2

G,1, Theorem 6 can be roughly interpreted as follows : two
local empirical processes at the same point z0, but at radically different scales, cannot simulta-
neously hit (neighborhoods of) functions both having a high stochastic cost. If the first hits a
(neighborhood of) function ψ with JG close to 1, then the second has to compensate by hitting
(neighborhood of) functions with low stochastic costs.

3.2.2 In bandwidth uniformity in the local standard functional limit
law

For stating local standard functional limit laws, we will use the notations :

Θlocal
n (h, h, z0) :=

{
Tn(·, h, z0)√

2f(z0)nhd log log(n)
, h ∈ [h, h]

}
n ≥ 2, 0 < h ≤ h.

I will now state my contribution. In order to gain in concision and clarity, I will formulate it
in a very slightly weaker form than that written in [108], in order to emphasize the notions of
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inner and outer topological limits.

Theorem 7 (Varron, 2014, from [108]) Assume that the law of Z1 fulfills (Hf). As-
sume that G fulfills (Pointw. sep.), (Bounded), (Support), (Unif. entropy dilatations),
(Unif. entropy translations), (Contin. dilatations) and (Contin. translations). Let H =
{z0} be a singleton. Let hn ≤ hn be two subsequences of non negative numbers such that, for
some δ ∈ (0, 1], we have :

hn ↓ 0, nhdn ↑,
nhdn

log log(n)
→∞, log log(hn/hn)

log log(n)
→ δ. (3.7)

Then, almost surely, the inner and outer topological limits of
(
Θlocal
n (hn, hn, z0)

)
n≥2

in
(
`∞(G), ||

· ||G
)
are SG,δ and SG,1+δ.

Sketch of the proof and comments

Let us point out some key arguments of that proof.

Outer bounds

Consider, for arbitrary ε > 0, the closed set F := `∞(G) − S2ε
G,1+δ, which satisfies JG(F ) >

1 + δ + 3τ for some τ > 0 (this comes from the fact that JG is a good rate function). We will
focus on finding upper bounds for the probabilities P(An), where

An :=
⋃

h∈[hn,hn]

{
Tn(·, h, z0)√

2f(z0)nhd log log(n)
∈ F

}
.

A natural way to handle this probability of union is to discretize [hn, hn] into a finite grid,

hn,` :=ρ`nhn, ` = 0, . . . , Rn, where, [·] denoting the integer part

Rn :=

[
log(hn/hn)

log(ρn)

]
, (3.8)

and then focus on P(A′n), where

A′n :=
Rn⋃
`=0

{
Tn(·, hn,`, z0)√

2f(z0)nhdn,` log log(n)
∈ F

}
.

This strategy is possible if we choose ρn such that ρn → 1. In that case the oscillations be-
tween two consecutive elements Tn(·, hn,`, z0) and Tn(·, ρnhn,`, z0) are uniformly (in `) negligible,
because they are suprema of empirical processes on classes Gρ, with ρ close to 1. Those are
handled by using Proposition 2.1.3, which is possible because (Unif. entropy dilatations) and
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(Contin. dilatations) have been made. Now, using Bonferroni’s inequality, we have

P(A′n) ≤(Rn + 1) max
`=0, ...,Rn

P

(
Tn(·, hn,`, z0)√

2f(z0)nhdn,` log log(n)
∈ F

)

≤(Rn + 1) exp

(
−
(
J(F )− τ

)
log log(n)

)
,

where that last inequality holds for n large enough, by a use of Proposition 2.1.2 with ñk := n,
h̃k := hn, h̃k := hn, εk = 0, vk(h) = log log(n). A choice of ρn := exp(log(n)−τ ) entails
log(ρn) = log(n)−τ . Now, since log log(hn/hn)/ log log(n) → δ we have Rn ≤ log(n)δ log(n)τ ,
from where :

P(A′n) = O
(

log(n)J(F )−2τ
)

= O
(

log(n)−1+τ
)
.

This sequence is summable along any subsequence nk = [(1 + γ)k], for arbitrarily small γ > 0.
Now the interpolation between elements of that subsequence is made by making use of the usual
blocking arguments. Hence, by the Borel-Cantelli lemma we have

P

(
lim
n→∞

⋃
h∈[hn,hn]

{
Tn(·, h, z0)√

2f(z0)nhd log log(n)
/∈ S2ε

G,1+δ

})
= 0,

which proves that, if it exists, the almost sure topological limit of Θlocal
n (hn, hn, z0) is included

in SG,1+δ.

Inner bounds

It is already known ([43]) that, when hn = hn, the outer topological limit of Θn(hn, hn, z0)
(which, in this case, are singletons) is SG,1. So the outer bound SG,1+δ is either too rough
(because of Bonferroni’s inequality), or it has a stochastic explanation. In the next lines, we will
provide such an explanation. I already evoked the between bandwidths asymptotic independence
phenomenon, which was illustrated in Proposition 2.1.4 and Theorem 6. Note that the just
mentioned results admit a natural extension to finite collections of local empirical processes.
Since hn = o(hn), it is possible choose ρn → ∞ in the discretization of [hn, hn]. This would
lead to the exhibition of finite grids hn,`, ` = 0, Rn, with max`≤Rn hn,`+1/hn,` → 0. Using the
heuristic of independence between bandwidths, this would result in the fact that T locn (hn, hn, z0)
contains Rn "mutually independent" local empirical processes, with Rn →∞. Hence, even if ψ
has a stochastic cost greater that 1 (JG(ψ) > 1) it is still probable enough that at least one of
the Rn independent processes does hit a neighborhood of ψ (because "we run many independent
trials"). Write ψε for the open ball with center ψ and radius ε > 0 in `∞(G). First, since JG
is a rate function, we have, JG(ψε) < 1 + δ − 3τ , for some τ > 0. We now explicitly choose
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ρn := exp
(

log(n)τ
)
in the discretization of [hn, hn]. Writing

Bn :=
⋃

h∈[hn,hn]

{
Tn(·, h, z0)√

2f(z0)nhd log log(n)
∈ ψε

}
,

we can make the following heuristic calculus

P

( ⋃
h∈[hn,hn]

{
Tn(·, h, z0)√

2f(z0)nhd log log(n)
∈ ψε

})

≥P
( Rn⋃
`=0

{ Tn(·, hn,`, z0)√
2f(z0)nhdn,` log log(n)

∈ ψε
})

'1−
Rn∏
`=0

(
1− P

(
Tn(·, hn,`, z0)√

2f(z0)nhdn,` log log(n)
∈ ψε

))
by "independence" (3.9)

≥1− exp

(
Rn min

`=0,...,Rn
P
( Tn(·, hn,`, z0)√

2f(z0)nhdn,` log log(n)
∈ ψε

))
, since 1− u ≤ exp(−u), u ∈ R

≥1

2
∧

[
1

2
Rn min

`=0,...,Rn
P
( Tn(·, hn,`, z0)√

2f(z0)nhdn,` log log(n)
∈ ψε

)]
, since 1− exp(−u) ≥ 1

2
∧ u

2
, u ≥ 0

≥ log(n)δ−τ log(n)−1−δ+2τ

= log(n)−1+τ ,

where, again, we used the ULDP of Proposition 2.1.2 and the fact that log(n)δ−τ ≤ Rn for all
large n. Now by the usual renewal arguments used in Strassen laws, we can suppose that the
Bn are "sufficiently independent" between sufficiently spread subsequences. This is for example
the case for nk ∼ exp

(
log(k)τ/2), for which we also have∑

k≥1

P(Bnk) =∞.

A use of the converse part of the Borel-Cantelli lemma then leads to

P
(

lim
k→∞

Bnk

)
= 1,

which can conclude the proof of the "outer topological limit" part of Theorem 7.
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Explanation of the heuristic of (3.9)

We will explain how the heuristic of (3.9) is justified. As mentioned earlier, Proposition
2.1.4 admits a generalization for more than two processes. Hence, that proposition would
be the appropriate tool if Rn was bounded. Since it is not the case, we will approximate
these local empirical processes by truly mutually independent processes. First, a use of the
Poissonization technique of Proposition 2.2.2 allows to switch from

{
Tn(·, hn,`, z0), ` ≤ Rn

}
to{

Πn(·, hn,`, z0), ` ≤ Rn

}
. However, the classes of functions

G` :=
{
ghn,`,z0 , g ∈ G

}
, ` = 0, . . . , Rn

have their supports included respectively in A(hn,`, z0), ` = 0, . . . , Rn (recall (2.13)). This
family of sets is not mutually disjoint, so we cannot directly use Proposition 2.2.1 to achieve
rigorous independence. The last trick is to construct, by successive translations of respective
lengths 2Mhn,`, a sequence of points zn,` such that, writing | u |d:= max{| u1 |, . . . , | ud |} :

zn,0 := z0,(
zn,` + [−Mhn,`,Mhn,`]

d
)
∩
(
zn,`′ + [−Mhn,`′ ,Mhn,`′ ]

d
)

= ∅, if ` 6= `′, (3.10)

∀` ≤ Rn, | zn,` − z |d≤ 2M
`−1∑
`′=0

hn,`′ , from where

δn := max
`=0,...,Rn

h−1
n,` | zn,` − z0 |d→ 0. (3.11)

For example, for d = 1, we can recursively set zn,`+1 := zn,` + 2Mhn,`. Now, by (3.10), the
family of processes {

Πn(·, hn,`, zn,`)√
2f(z0)nhdn,` log log(n)

, ` = 0, . . . , Rn

}
is mutually independent. Moreover, the fact that we take local processes at points different
from z0 does not hurt for using large deviations, because the ULDP of Proposition 2.1.2 allows
to take z′ 6= z, a soon as || z′ − z ||d≤ εn, for εn → 0. Assertion (3.11) is largely sufficient to
ensure these proximities between the zn,` and z0 (take εn := δnhn). What remains to show is a
uniform bound for the following probabilities

P
(∣∣∣∣∣∣Πn(·, hn,`, zn,`)− Πn(·, hn,`, z0)

∣∣∣∣∣∣
G
≥ ε
√

2f(z0)nhdn,` log log(n)

)
, ` = 0, . . . , Rn,

or, equivalently, find bounds for

P
(∣∣∣∣∣∣Tn(·, hn,`, zn,`)− Tn(·, hn,`, z0)

∣∣∣∣∣∣
G
≥ ε
√

2f(z0)nhdn,` log log(n)

)
, ` = 0, . . . , Rn,
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in which case the Poissonization occurs after the introduction of the zn,`. Now since, for any
g ∈ G

ghn,`,zn,`(·) = ghn,`,z0
(
·+h−1

n,`(zn,` − z0)
)
,

we always have (recall (3.6)):

P
(∣∣∣∣∣∣Tn(·, hn,`, zn,`)− Tn(·, hn,`, z0)

∣∣∣∣∣∣
G
≥ ε
√

2f(z0)nhdn,` log log(n)

)
≤P
(∣∣∣∣∣∣Tn(·, hn,`, z0)

∣∣∣∣∣∣
G+,δn

≥ ε
√

2f(z0)nhdn,` log log(n)

)
,

Now assumptions (Unif. entropy translations) and (Contin. translations) play their only
role here, to control those deviations probabilities, uniformly in ` ≤ Rn, through the use of
Proposition 2.1.3.�

3.2.3 Asymptotic independence in the global standard functional
limit law

Before entering into the subject, I will briefly revisit an important result due to Mason :
the global standard functional limit law for the local empirical process.

Removing the Euclidian condition in Mason’s global standard functional limit law
for the local empirical process

Now consider a compact H ⊂ O with nonempty interior and consider, for a sequence of
bandwidths hn, the collections of processes :

Θglobal
n (hn, H) :=

{
Tn(·, hn)√

2f(z)nhdn log(1/hdn)
, z ∈ H

}
.

Mason [65] did prove a functional limit law for Θglobal
n (hn, H), under the usual Csörgő-Révész-

Stute conditions (see (3.12) below). His result was a major step. Indeed, in the setting of global
functional limit laws, this result was the first to consider the general object Tn(·, h, z), instead of
the uniform empirical process, bypassing the use of the KMT approximation. Beside assump-
tions (Pointw. sep), (Bounded), (Support), (Contin. translations) and (Contin. dilatations),
he had to strengthen the structural assumptions (Unif. entropy dilatations) and
(Unif. entropy translations) to an assumption of polynomial uniform entropy numbers,
namely :

(Euclidian) ∃C0 > 0, v0 > 0, ∀ε ∈ (0, 1), sup
Q probab

N(ε,F , || · ||Q,2) ≤ C0ε
−v0 ,

where
F :=

{
gh,z(·), z ∈ Rd, h > 0, g ∈ G

}
.
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That assumption, though more stringent that, e.g., (Unif. entropy), still encompasses Vapnik-
Chervonenkis classes of sets, or more generally uniformly bounded V-C subgraph classes of
functions (see, e.g. [92, Chapter 2.6]). Mason’s result is stronger than an almost sure topological
limit, as it was already the case for the uniform empirical process [22]. It is a convergence for
the Hausdorff distance.

Definition 3.2.3 (Hausdorff distance) In a metric space (E, d), the Hausdorff distance be-
tween sets is defined as

dHaus(A,B) := max
{

sup
ψ∈A

d(ψ,B); sup
ψ∈B

d(ψ,A)
}
.

Note that a sequence of sets (En) has topological limit E when dHaus(En, E) → 0, but the
converse is not true.

Fact 3.2.1 (Mason, 2004, [65]) Assume that the law of Z1 fulfills (Hf) for a set O. Let
H ⊂ O be a compact set with nonempty interior. Assume that G fulfills (Pointw. sep),
(Bounded), (Support), (Euclidian), (Contin. translations) and (Contin. dilatations). Let
hn be a sequence of bandwitdhs fulfilling the Csörgő-Révész-Stute conditions :

hn ↓ 0, nhn ↑,
nhdn

log(1/hdn)
→∞, log(1/hn)

log log(n)
→∞.

Then, almost surely
lim
n→∞

dHaus

(
Θglobal
n (hn, H),SG,1

)
= 0.

In a discussion following his theorem, Mason wrote that it was "not clear at all wether assump-
tion (Euclidian) could be relaxed to a less stringent condition" (see his remarks 1 and 2 in
[65]). My contribution to the problem is as follows. I did not send it to publication.

Proposition 3.2.1 (Varron, 2014) Fact 3.2.1 is still true if (Euclidian) relaxed to
(Unif. entropy dilatations) and (Unif. entropy translations), or their bracketing counter-
parts.

Sketch of the proof and comments

In this subsection I will explain the technical difficulty that led Mason to strengthen
(Unif. entrpoy dilatations) to (Euclidian), and how I could (somewhat simply) bypass the
difficulty. Second, some aspects of his proof will come in handy to explain some heuristics of
my contribution in the next paragraph.
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Outer part

To prove the outer part of Fact 3.2.1, we need to control the probabilities

P
(
∃z ∈ H, Tn(·, hn, z)√

2f(z)nhdn log(1/hdn)
/∈ SεG,1

)
.

The first idea is, for n ≥ 1, to discretize H into a finite grid zn,`, ` = 1, . . . ,Mn, and hope
to control the oscillations between the corresponding (2f(zn,`)nh

d
n log(1/hdn))−1/2Tn(·, hn, zn,`).

For some δ > 0, we choose zn,`, ` = 1, . . . ,Mn such that

∀z ∈ H, ∃` ≤Mn, || z − zn,` ||d≤ δhn, (3.12)

hoping to control the oscillations between the grid. Note that we can chooseMn ∼ λ(H)(δhn)−d

in (3.12).
By making use of, e.g., the ULDP of Proposition 2.1.2, with vk(hn) := log(1/hdn) we obtain, for
some η > 0

P

(
Mn⋃
`=1

{
Tn(·, hn, zn,`)√

2f(zn,`)nhdn log(1/hdn)
/∈ SεG,1

})

≤Mn max
`=1,...,Mn

P

(
Tn(·, hn, z)√

2f(zn,`)nhdn,` log(1/hdn,`)
/∈ SεG,1

)

≤λ(H)(δhn)−d exp
(
− (1 + η) log(1/hdn)

)
=O(hdηn ).

Since log(1/hn)/ log log(n)→∞, that sequence is summable along any subsequence of the type
nk ∼ (1 + γ)k (the blocking arguments then play their role).
We now turn to controlling the oscillations between the zn,`. Such a global oscillation is
described by the following probabilities, for which it would be sufficient to prove that (if δ > 0
is sufficiently small) those are O(hη

′
n ), a n→∞, for some η′ > 0.

P

(
max

`=1,...,Mn

sup
||z−zn,`||d≤δhn

∣∣∣∣∣∣Tn(·, hn, z)− Tn(·, hn, zn,`)
∣∣∣∣∣∣
G√

2f(zn,`)hdn log(1/hdn)
≥ ε

)
(3.13)

≤P

(
sup

g∈G, z∈H,
||z′−z||d≤δhn

∣∣∣ n∑
i=1

ghn,z(Zi)− E
(
ghn,z(Zi)

)∣∣∣ ≥ ε
√

2 inf
z∈H

f(z)nhdn log(1/hdn)

)
(3.14)

≤P
(∣∣∣∣∣∣Gn(·)

∣∣∣∣∣∣
F ′hn,δ

≥ ε
√

2 inf
z∈H

f(z)hdn log(1/hdn)

)
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F ′hn,δ :=
{
ghn,z(·)− ghn,z(·+ vhn), g ∈ G, z ∈ H, || v ||d≤ δ

}
.

Since F satisfies (Contin. dilatations), and by a usual change of variable, the class F ′hn,δ satisfies

sup
g∈F ′hn,δ

Var
(
g(Z1)

)
≤ r(δ)hdn,

where limδ→0 r(δ) = 0 and where r does not depend upon n. In view of the concentration
inequality of Talagrand (Fact 2.1.2, with t ∼

√
nhdn log(1/hdn)), appropriate exponential bounds

will be achieved if it is proved that

E
(∣∣∣∣∣∣Gn(·)

∣∣∣∣∣∣
F ′hn,δ

)
≤ r′(δ)

√
hdn log(1/hdn). (3.15)

where limδ→0 r′(δ) = 0. Mason used assumption (Euclidian) to prove (3.15). Very roughly
speaking, since sup

Q probab
N(ε,F , || · ||Q,2) ≤ C0ε

−v0 for all ε > 0, we have, for some universal

constants C and C ′ : ∫ hd

0

√
log sup

Q probab
N(ε,F , || · ||Q,2)dε

≤ C

∫ hd

0

√
log(1/ε)

≤ C ′
√
hd log(1/hd),

for small values of h. All the subtilties to obtain a proper bound for (3.15) are due to Einmahl
and Mason [42, Proposition A.1].
To sum up : inequality (3.14) involves suprema of empirical processes over a class of functions
where the point z is not fixed, but varies on the whole set H, (contrarily to local functional
limit laws). Hence it is impossible to handle the whole class through a local representation
such as (2.17), and hence we have to consider empirical processes over classes of function of
the form gh,z, instead if the class of G directly. Moreover, without a local representation at
hand such as (2.17), the considered empirical processes are built on sample of size n instead of
na(h, z) ∼ f(z)nhd, which introduce another difficulty for controlling their first moments. That
difficulty was overcome by Mason by strengthening (Unif. entropy dilatations) to (Euclidian).
Now, if we go back to (3.13), we can also bound

P

(
max

`=1,...,Mn

sup
||z−zn,`||d≤δhn

∣∣∣∣∣∣Tn(·, hn, z)− Tn(·, hn, zn,`)
∣∣∣∣∣∣
G√

2f(zn,`)hdn log(1/hdn)
≥ ε

)
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≤Mn max
`=1,...,Mn

P

(
sup

||z−zn,`||d≤δhn

∣∣∣∣∣∣Tn(·, hn, zn,`)− Tn(·, hn, zn,`)
∣∣∣∣∣∣
G√

2f(zn,`)hdn log(1/hdn)
≥ ε

)

=Mn max
`=1,...,Mn

P

( ∣∣∣∣∣∣Tn(·, hn, z)
∣∣∣∣∣∣
G+,δ√

2f(zn,`)hdn log(1/hdn)
> ε

)
(3.16)

By this simple remark, we see that each of the Mn probabilities can be handled by a local
representation around each zn,`. More precisely, it is possible to use Proposition 2.1.3 uniformly
in zn,`, taking u := ε log(1/hdn). Since Proposition 2.1.3 requires (Unif. entropy), it is clear
that, under (Unif. entropy translations), we have :

Mn max
`=1,...,Mn

P

( ∣∣∣∣∣∣Tn(·, hn, z)
∣∣∣∣∣∣
G+,δ√

2f(zn,`)hdn log(1/hdn)
> ε

)

≤λ(H)δ−dh
d(−1+ε∆−2

G+,δ
)

n (3.17)

By (Contin. translations) that last bound can be O(hη
′
n ), as n → ∞, for some η′ > 0 if δ is

chosen small enough in the construction of the zn,`. This concludes my explanation on how to
relax (Euclidian).

Inner part

I will now give the idea on how to prove the inner part of Fact 3.2.1. It is sufficient to prove
that, for arbitrary ψ ∈ SG,1 the probabilities

P

( ⋂
z∈H

{
Tn(·, hn, z)√

2f(z)nhdn log(1/hdn)
/∈ ψε

})

are summable in n (no subsequence argument is involved here). The idea to prove that summa-
bility is that Θglobal

n (hn, H) contains an increasing number of "almost mutually independent"
processes. Contrarily to what happens in Theorem 7, the independence does not happens
between bandwidths, but between the points z. Suppose, that instead of local empirical pro-
cesses, we were studying their Poissonized versions (this is possible by the usual Poissonization
of Einmahl, see, Proposition 2.2.3). Then, by (Support), if two points z, z′ have distance
|| z − z′ ||d≥ 2Mhn, then, by Proposition 2.2.1, the processes Πn(·, hn, z) and Πn(·, hn, z′) are
rigorously independent. This can be generalized to finite collections of points zn,` which are at
distance at least || z − z′ ||d≥ 2Mhn one from each other. Since H has nonempty interior, it
is possible construct a number Mn ∼ λ(H)h−dn of such points. By independence we then have,
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writing JG(ψε) = 1− 2η, with η > 0 :

P

( ⋂
z∈H

{
Πn(·, hn, z)√

2f(z)nhdn log(1/hdn)
/∈ ψε

})

≥P

(
Mn⋂
`=1

{
Πn(·, hn, zn,`)√

2f(zn,`)nhdn log(1/hdn)
/∈ ψε

})

=
Mn∏
`=1

(
1− P

( Πn(·, hn, zn,`)√
2f(zn,`)nhdn log(1/hdn)

∈ ψε
))

≤ exp

(
−Mn min

`
P
(

Πn(·, hn, zn,`)√
2f(zn,`)nhdn log(1/hdn)

∈ ψε
))

≤ exp
(
− λ(H)h−dn hd(1−η)

n

)
by a ULDP

≤ exp
(
− λ(H)h−dηn

)
,

which is summable, since log(1/hn)/ log log(n)→∞.

The asymptotic independence phenomenon in this framework

The first work of my PhD thesis was to generalize Fact 3.2.1 to couples (Tn(·, hn, z), Tn(·, hn, z)),
with hn = o(hn), generalizing a result of Deheuvels [18] for the uniform empirical process. This
result was not sent for publication. Before stating it, I will need the definition of another type
of Strassen set, given α ∈]0, 1[ :

S⊗2
G (α) :=

{
(ψ1, ψ2) ∈ `∞(G)× `∞(G), JG(ψ2) ≤ 1, JG(ψ1) + αJG(ψ2) ≤ 1

}
.

Also define, for n ≥ 1 and for two bandwidths hn ≤ hn:

Θglobal,⊗2
n (hn, hn, H) :=

{( Tn(·, hn, z)√
2f(z)nhdn log(1/hdn)

,
Tn(·, hn, z)√

2f(z)nhdn log(1/hdn)

)
, z ∈ H

}
.

Theorem 8 (Varron, 2003, [94]) Assume that the law of Z1 fulfills (Hf) for a set O. Let
H ⊂ O be a compact set with nonempty interior. Assume that G fulfills (Pointw. sep.),
(Bounded), (Support), (Unif. entropy dilatations), (Unif. entropy translations),
(Contin. translations) and (Contin. dilatations). Let hn ≤ hn both fulfilling the Csörgő-
Révész-Stute conditions :

hn ↓ 0, nhdn ↑,
nhdn

log(1/hdn)
→∞, log(1/hn)

log log(n)
→∞.
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Assume in addition that
log(1/hn)

log(1/hn)
→ α ∈]0, 1[.

Then, almost surely,
(
Θglobal,⊗2
n (hn, hn, H)

)
n≥2

converges to S⊗2
G (α) for the Hausdorff distance.

Sketch of the proof and comments

The structure of the limit set S⊗2
G,1(α) depends on α := limn→∞ log(1/hn)/ log(1/hn). That

parameter measures how different the rates of convergence to 0 of hn and hn are (typically, hn
and hn are two different powers of 1/n). Let us consider the two extreme cases :

— When α gets close to 1, this means that those rates of convergence tend to be sim-
ilar (but note that hn is always o(hn), whatever the value of α < 1). In that
case, the limit set S⊗2

G (α) is close to the limit set exhibited in Theorem 6. Theo-
rem 8 then has the following rough interpretation : if, for some z ∈ H, the process
(2f(z)nhdn log(1/hdn))−1/2Tn(·, hn, z) hits a function ψ with stochastic cost JG(ψ) close to
1, then (2f(z)nhdn log(1/hdn))−1/2Tn(·, hn, z) (at the same point) has to compensate by
hitting a function with low cost.

— When α gets close to 0, this means that hn and hn have very different rates of conver-
gence to zero. In that case, the limit set S⊗2

G,1(α) can have elements (ψ1, ψ2) with ψ1

simultaneously having their respective stochastic costs close to 1. Hence, the compen-
sation phenomenon softens : it may happens (in fact, it happens almost surely for all
large n) that, for some z ∈ H, both the processes (2f(z)nhdn log(1/hdn))−1/2Tn(·, hn, z)
and (2f(z)nhdn log(1/hdn))−1/2Tn(·, hn, z) simultaneously hit (neighborhoods of) functions
having respective stochastic costs 1 and 1− α.

I will now give a heuristic argument to understand why this strange phenomenon occurs :
1. As showed in the heuristics of the proof of Fact 3.2.1, H contains, for each n, a number
Mn ∼ λ(H)h−dn of points zn,` (distant one from each other of at least hn), which define
"mutually independent processes" (2f(zn,`)nh

d
n log(1/hdn))−1/2Tn(·, hn, zn,`). Given ψ2

fulfilling JG(ψ2) ≤ 1, the probability that at least one of these processes hits ψ2 is
high enough because "we run Mn independent trials".

2. But, for a given small value δ > 0, since hn = o(hn) it is possible, for each zn,`,
to construct a number mn ∼ (δhn/hn)d ∼ δdh

−d(1−α)
n of points zn,`,q, q ≤ mn,

which are distant from each other of at least hn (hence defining "independent" pro-
cesses (2f(zn,`,q)nh

d
n log(1/hdn))−1/2Tn(·, hn, zn,`,q) but which are still at distance at most

δhn of their corresponding point zn,`. That proximity with respect to the scale hn
allows to approximate all the (2f(zn,`,q)nh

d
n log(1/hdn))−1/2Tn(·, hn, zn,`,q), q ≤ mn by

(2f(zn,`)nh
d
n log(1/hdn))−1/2Tn(·, hn, zn,`).

3. Roughly speaking, each zn,` is accompanied bymn ∼ δdh
−d(1−α)
n independent trials for the

realization of (2f(zn,`)nh
d
n log(1/hdn))−1/2Tn(·, hn, zn,`). Hence, even if, for fixed ` ≤ Mn

the process (2f(zn,`)nh
d
n log(1/hdn))−1/2Tn(·, hn, zn,`) hits a target ψ2 with high stochastic,
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there are still h−d(1−α+J(ψ1))
n independent possibilities that (2f(zn,`)nh

d
n log(1/hdn))−1/2Tn(·, hn, zn,`)

hits a target ψ1, which allows ψ1 to have a non negligible stochastic cost, less than 1−α.

3.2.4 In bandwidth uniformity for the global standard limit law

My second main result concerning in-bandwidth uniformity is related to global standard
functional limit laws for the local empirical process.

Theorem 9 (Varron, 2008 [98]) Let hn ≤ hn be two bandwidths sequences fulfilling (3.12).
Then, under the assumptions of Fact 3.2.1, we have, almost surely

lim
n→∞

sup
h∈[hn,hn]

dHaus

(
Θglobal
n (h,H),SG,1

)
= 0.

Later Deheuvels and Ouadah [26] did remove condition log(1/hn)/ log log(n) → ∞, for the
uniform empirical process, at the price of relaxing the almost sure convergence to a convergence
in probability. Sketch of the proof and comments :
Let us consider the outer part of the proof. As I tried to emphasize in a brief description of the
proof of Fact 3.2.1, one of the key aspects of the problem is that, given a sequence hn fulfilling
(3.12), the probability of

En(ε, hn) :=
{

Θglobal
n (hn, H)− SεG,1 6= ∅

}
is (for fixed ε > 0) of order hηn, for some η > 0. Now, proving (3.18) would necessarily require
a discretization of the intervals [hn, hn]. As it was already shown in the proof of Theorem
7, assumptions (Unif. entropy dilatations) and (Contin. dilatations) allow to control the
oscillations between bandwidths of the form [h, ρh], as soon as ρ > 1 is small enough. We will
therefore define, for fixed ρ > 1, the grid hn,` := ρ`hn, ` ≤ Rn, with Rn ≤ log(hn/hn)/ log(ρ).
Now, using the ULDP of Proposition 2.1.2, with ñk := n and vk(h) := log(1/hd) it is possible to
uniformly control the probabilities of En(ε, hn,`), ` ≤ Rn, and hence use Bonferroni’s inequality

P
( Rn⋃
`=0

Θglobal
n (hn,`, H)− SεG,1 6= ∅

)

≤
Rn∑
`=0

P
(
En(ε, hn,`)

)
≤

Rn∑
`=0

hηn,`

=hηn

Rn∑
`=0

ρη`
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≤hηn
ρη(Rn+1)

ρη − 1

=
ρη

ρη − 1
hηn exp

(
δRn log(ρ)

)
=

ρη

ρη − 1
hηn.

Which is of the same order as if we had taken hn = hn. The same arguments hold for the inner
part of the proof.
Hence, contrarily to what happens in the local standard functional limit law, summing all these
probabilities does not hurt at all, since those probabilities form a geometric sequence. In other
words the probability of En(ε, hn) is preponderant in front of the others, which roughly speaking
means that

sup
h∈[hn,hn]

dHaus

(
Θglobal
n (h),SG,1

)
' dHaus

(
Θglobal
n (hn),SG,1

)
.

3.2.5 Perspectives

My main perspective is to investigate how these functional limit laws can be extended to
classes that fail to be uniformly bounded. This perspective is completely embedded in the
perspective of improvements of the ULDP of the preceding chapter (see §2.1.6).

3.2.6 A nonfunctional uniform-in-bandwidth limit law for an object
related to nonparametric regression

Several techniques developed for the local empirical processes can be used out of the context
of functional limit laws. This is typically the case for concentration inequalities coupled with
control of first moments, as it was pointed out by Einmahl and Mason [42]. In this article, they
could prove the exact almost sure rates of convergence for objects related to nonparametric
density/ regression estimation, which is described as follows.
Given an i.i.d sample (Yi, Zi)i=1,...,n taking values in Rd′ × Rd, with the same distribution as a
vector (Y, Z), we assume that the law of (Y, Z) satisfies (Hf) for some product of open sets
O = O1 ×O2, with O1 ⊂ Rd′ and O2 ⊂ Rd. Now write

Vn(g, h, z) :=fZ(z)−1/2

n∑
i=1

[(
cg(z) • g(Yi) + dg(z)

)
Kh,z(Zi)− E

((
cg(z) • g(Yi) + dg(z)

)
Kh,z(Zi)

))]
,

(3.18)

where
— K denotes a kernel
— h > 0 is a bandwidth
— g is a Borel function from Rd′ to Rk
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— fZ is (a version of) the density of Z
— cg maps Rd to Rk and dg maps Rd to R
— The symbol • stands for the canonical inner product on Rk.

As pointed out by Einmahl and Mason [42], those objects are of statistical interest, since they
encompass the main stochastic term of several estimators, ranging from the Parzen-Rosenblatt
density estimator to the kernel estimator of the conditional distribution functions.
Given a class G, of functions from Rd′ to Rk, we will write, for ` = 1, . . . , k the class G` := π`(G),
where π`(x1, . . . , x`, . . . , xk) := x` for (x1, . . . , xk) ∈ Rk. The following structural assumptions
are commonly fulfilled in practice.

(V Csubgraph) Each class G` is a pointwise separable VC subgraph,
(Envelope) Each class G` has a finite valued measurable envelope function G`

satisfying, for some p ∈ (2,∞] :
max`=1,...,k supy∈O1

|| G`(·) ||LY |Z=z ,p<∞,

where || G`(·) ||LY |Z=z ,p is the Lp-norm of G` under the distribution of Y | Z = z (which is
uniquely defined if we use the continuous version of fY,Z). For a definition of a VC subgraph
class, we refer, e.g., to [92, p.141].
The assumptions made upon the collections

(
cg(·)

)
g∈G and

(
dg(·)

)
g∈G are as follows.

(HC) The classes of functions D1 := {cg, g ∈ G} and D2 := {dg, g ∈ G} are uniformly
bounded and uniformly equicontinuous on O2.

The assumption on the kernel K, involves the class.

K :=
{
Kh,z, h > 0, z ∈ Rd

}
.

(HK1) K has bounded variation and the class K is VC subgraph,
(HK2) K(s) = 0 when s /∈ [−1/2, 1/2]d,
(HK3)

∫
Rd K(s)ds = 1.

Einmahl and Mason have studied the almost sure asymptotic behavior of supz∈H ∆n(G, hn, z),
with

∆n(G, h, z) := sup
g∈G

| Vn(g, h, z) |√
2f(z)nhd log(1/hd)

(recall (3.18)), along a bandwidth sequence (hn)n≥1 that satisfies the following conditions

(HV ) hn ↓ 0, nhn
d ↑ ∞, log(1/hn)/ log log(n)→∞, hdn

(
n/ log(1/hn)

)1−2/p →∞,

where p is as in condition (Envelope).Let us define

∆2(g, z) :=E
((

< cg(z), g(Y ) > +dg(z)
)2 | Z = z

)
, z ∈ Rd, g ∈ G, (3.19)
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∆2(G, z) := sup
g∈G∈H

∆2(g, z), z ∈ H, (3.20)

∆2(G) := sup
z∈H

∆2(G, z).

Under the above mentioned assumptions, Einmahl and Mason have proved the following theo-
rem, λ denoting the Lebesgue measure.

Theorem 10 (Einmahl, Mason, 2000) Assume that the law of (Y, Z) fulfills (Hf) for some
product of open set O1 × O2 with O1 ⊂ Rd′ and O2 ⊂ Rd. Assume that (V C subgraph),
(Envelope), (HC) and (HK1) − (HK3) are satisfied. Let hn be a sequence fulfilling (HV ).
Then, given a compact H ⊂ O2 with nonempty interior we have, almost surely :

lim
n→∞

sup
z∈H

∆n(G, hn, z) = ∆(G) || K ||λ,2 .

Their proof uses the same discretization techniques as in Theorem 7. The fact that the classes
G` are not necessarily bounded, but satisfy (Envelope) is handled by a truncating argument
involving the Fuk-Nagaev inequality (see Fact 2.1.3).
With I. van Keilegom, we worked on proving the in-bandwidth uniform version of Theorem 10,
by using discretizations of [hn, hn] as in the proof of Theorem 9. We obtained the following
result.

Theorem 11 (Varron, van Keilegom, 2011, [93]) Assume that the law of (Y, Z) fulfills
(Hf) for some product of open set O1 × O2 with O1 ⊂ Rd′ and O2 ⊂ Rd. Assume that
(V C subgraph), (Envelope), (HC) and (HK1)− (HK3) are satisfied. Let (hn)n≥1 and (hn)n≥1

be two sequences of constants fulfilling (HV ). Then, given a compact H ⊂ O2 with nonempty
interior we have, almost surely

lim
n→∞

sup
h∈[hn,hn]

sup
z∈H

∣∣∣∆n(G, h, z)

∆(G, z)
− || K ||λ,2

∣∣∣ = 0.

In fact, our result in [93] has a weaker form that assertion (3.21), but is can be extended with
no major technical difficulty.
Since their initial work in [42], Einmahl and Mason (sometimes in collaboration with Dony)
did prove in-bandwidth-uniform results for objects such as Vn(g, h, z) (see [30, 31, 32, 34, 33]).
Our contribution with regard of these results is that we could make explicit the limits and
normalizations, at the price of slightly strengthening conditions upon hn an hn.

3.2.7 Perspectives

A first perspective of improvement will be to relax the (V C subgraph) assumption to a
condition of the type (Unif. entropy). At the light of the improvement of Fact 3.2.1, I am
pretty certain that such an extension is reachable.
A second perspective of improvement would be to relax the assumption that the whole vector
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(Y, Z) admits a density. That condition is somewhat unsatisfactory, because the smoothing is
only made on the Zi.
A third tough challenge is to establish Bickel-Rosenblatt limit laws for such estimators, namely
proving that, for some sequence an, bn →∞

an

[
sup

h∈[hn,hn]

sup
z∈H

∣∣∣∆n(G, h, z)−∆(G, z) || K ||λ,2
∣∣∣]− bn →L U,

where U is a probability distribution on R. Obtaining such results would have a more significant
practical impact that the functional limit laws, since a convergence in distribution may allow
calibrations. Such a limit law was proved by Bickel and Rosenblatt [12] for the Parzen-
Rosenblatt density estimator, for univariate distributions (i.e. G =

{
1
}
, d = 1 and hn = hn).

In that case an = log(1/hdn) and bn = log log(1/hn). In their proof they make use of two crucial
tools

— The KMT strong approximation.
— The analysis of the distributions of suprema of Gaussian processes over increasing inter-

vals, following ideas of Pickands [75].

It is essentially the KMT approximation that prevents a generalization to d ≥ 3 of their
methods. I am currently working on using the modern tools in empirical processes theory
(concentration inequalities and approximations results of Zaitsev) to extend such a limit law to
d ≥ 3. I however, came across to a stumbling block, which can be described as follows.

— Poissonization works, so we can directly study the Πn(1, hn, z).
— Such a level of precision imposes the analysis of

max
`=0,...,Mn

Πn(1, hn, zn,`), (3.21)

where, in the definition of the zn,`, we choose δn ∼ δ log(1/hdn)−1 instead of δ > 0 (as in
3.12).

— The joint law of those Mn random variables cannot be approximated by the joint
law of Gaussian random variables : the dimensionality explodes with n, which makes
Zaitsev’s bounds unusable. However, it is possible to make a sharp enough approximation
separately on subblocks of cardinalities log(1/hdn). This defines δ−dh−dn log(1/hdn) sub
blocks. The distances between two consecutive sub blocks is δhn, with δ small. Hence,
there is a non negligible dependency between the blocks.

— In their proof, Bickel and Rosenblatt could directly work on a joint Gaussian law for
all those blocks (thanks to the KMT approximation). Even if those Gaussian blocks
are not mutually independent, the authors could work on the covariance structure of
these random variables, and conclude to a convergence of these maxima by making use
of results of Pickands [75].

— Without a strong approximation, I do no know how to translate their Gaussian analysis
(a control of the covariance structure) to a Poisson analysis. The underlying reason is
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that, for
∫
fgdλ = 0 implies WG(f) ⊥⊥ WG(g), while, for a Poisson process, such an

independence is guaranteed only when f and g have disjoint supports.

3.3 Spatial-type limit laws

This section is dedicated to another type of functional limit laws (as well as a Donsker
theorem) which are different from the usual functional limit laws for local empirical processes,
in the sense that they are spatial.

3.3.1 A spatial Donsker theorem

First results for the uniform empirical process

Wschebor [109] discovered the following property of the Wiener process W on [0, 1] : almost
surely, for each 0 ≤ a < b < 1, and for each Borel set B ⊂ R,

1

(b− a)
λ

({
z ∈ [a, b], ε−1/2

(
W (z + ε)−W (z)

)
∈ B

})
→
ε→0

P
(
N (0, 1) ∈ B

)
.

Recall that λ denotes the Lebesgue measure. That result was later extended to a much wider
class of processes by Azaïs and Wschebor [6]. It can be interpreted as an almost sure spatial
convergence in distribution. Here, the word "spatial" refers to the fact that it involves the
almost sure limits of (Lebsesgue) measures of random sets of points of [0, 1].
A first question of interest is to establish the same limit result for the functional increments of
the Wiener process, namely

ε1/2
(
W (z + ε·)−W (z)

)
∈ `∞([0, 1]), (3.22)

hence replacing a limit normal distribution by a Wiener measure.
A second natural question is to determine how this property of the Wiener process is shared
by the empirical process αn (see §3.1.3).
My first result in that direction [103] is stated as follows, writing

∆n(·, hn, z) := h−1/2
n

(
αn(z + hn·)− αn(z)

)
,

as processes on [0, 1], and writing λ∗ for the outer Lebesgue measure on [0, 1].

Theorem 12 (From Varron, 2011 [103]) Assume that :

hn ↓ 0, nhn ↑ ∞, lim
n→∞

log(1/hn)/ log log(n) > 1. (3.23)

Then almost surely, for each interval I = [a, b] with 0 ≤ a < b < 1, the following assertion is
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true :

For each closed set F of
(
`∞([0, 1]), || · ||[0,1]

)
, we have

lim
n→∞

λ∗
(
{z ∈ I, ∆n(·, hn, z) ∈ F}

)
λ(I)

≤ P(W ∈ F ).

Strong approximation under || · ||[0,1] (such as the KMT approximation) is a too heavy mathe-
matical tool to handle this problem, since we only need to control Lebesgue measures. Hence, it
is not surprising that the preceding theorem has a direct extension to the multivariate uniform
empirical process on [0, 1]d, as it is stated in its complete form in [103].

Sketch of the proof and comments

In his original result, Wschebor used the property of independence of increments of the
Wiener process. His proof is decomposed as follows : By a separability argument, we only need
to prove that, for any fixed bounded Lipschitz function φ, from R to R, we have

lim
ε→0

Z(φ, ε) =a.s. E
(
φ(Z)

)
with

Z(φ, ε) :=
1

λ(I)

∫
I

φ
(√

ε
(
W (z + ε)−W (z)

))
dz,

and with Z denoting a standard normal random variable.
— (Expectation) The expectation of the random variables of interest is simply computed

as

E
(
Z(φ, ε)

)
=

1

λ(I)

∫
I

E
(
φ
(√

ε
(
W (z + ε)−W (z)

)))
dz

=E
(
φ
(
Z
))
.

Hence, the almost sure limit to establish is simply the expectation of the Z(φ, ε), which
does not depend upon ε.

— (V ariance) Now the independence of increments plays its role in the computation of the
related variance (equality (3.24) below) :

Var
(
Z(φ, ε)

)
=

1

λ(I)2

∫
I2

Cov

(
φ
(√

ε
(
W (z + ε)−W (z)

))
, φ
(√

ε
(
W (z′ + ε)−W (z′)

)))
dzdz′

=
1

λ(I)2

∫
|z−z′|≤ε

Cov

(
φ
(√

ε
(
W (z + ε)−W (z)

))
, φ
(√

ε
(
W (z′ + ε)−W (z′)

)))
dzdz′

(3.24)
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=O(ε), as ε→ 0.

— (Interpolation) The preceding variance bound proves the required almost sure conver-
gence along each sequence εn = n−(1+δ), with δ > 0. Then, the almost sure Hölder
property of W ensures the interpolation between the εn.

Those three key arguments can be extended with no efforts to obtain the same limit result for
the functional increments in (3.22).
The idea of the proof of Theorem 12 is to use similar arguments for the ∆n(·, hn, z).

— The counterpart of Step (Expectation) is simple : for each z ∈ [0, b[, and for hn ≤ [1−b],
the law of ∆n(·, hn, z) is exactly the law of ∆n(·, hn, 0), hence, writing, for any bounded
Lipschitz function φ on

(
`∞([0, 1]), || · ||[0,1]

)
:

Zn(φ, hn) :=
1

λ(I)

∫
I

φ
(
∆n(·, hn, z)

)
dz, (3.25)

we have

E
(
Zn(φ, hn)

)
=

1

λ(I)

∫
I

E
(
φ
(
∆n(·, hn, 0)

))
dz

=E
(
φ
(
∆n(·, hn, 0)

))
.

But, since nhn → ∞, Donsker’s theorem for the local uniform empirical process (see
[64]) states that

lim
n→∞

E
(
φ
(
∆n(·, hn, 0)

))
= E

(
φ
(
W (·)

))
,

which provides an adapted counterpart of (Expectation). Note that the preceding argu-
ments are not rigorous, since φ

(
∆n(·, hn, 0)

)
may fail to be Borel measurable. The proof

can nevertheless be handled by considering only a subclass of measurable functions φ,
involving evaluations at a countable number of elements of G. However, for concision, I
will skip all the technicalities used to tackle such a lack of measurability, and state all
the subsequent arguments "as if φ

(
∆n(·, hn, 0)

)
was measurable".

— The counterpart of (V ariance) is based on Poissonization, in order to take advantage
of the independent increments of a Poisson process on the real line. By a simple union
argument, it can be supposed that P

(
U1 ∈ I

)
< 1/2 without losing generality. In that

case, the random variables Zn(φ, hn) are entirely determined by the values Ui falling in
Ihn . In view of the Poissonization technique in Proposition 2.2.4, it is hence not surprising
that one can Poissonize the variance of Zn(φ, hn) (beside some small technicalities that
are voluntarily skipped - for more details, see [103, Proposition 3.2]). This leads to the
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following calculus, writing

∆Πn(·, h, z) :=

ηn∑
i=1

(
1[z,z+h·](Ui)− h ·

)
√
nh

,

where ηn is a Poisson random variable with expectation n and independent of (Ui)i≥1.

Var
(∫

I

φ
(
∆Πn(·, hn, z)

)
dz
)

=

∫
I2

Cov
(
φ
(
∆Πn(·, hn, z)

)
, φ
(
∆Πn(·, hn, z′)

))
dzdz′

=O(hn), by independence of the increments

— The counterpart of (Interpolation) is the use of the usual blocking arguments, which
hold between consecutive terms of geometrical subsequences nk ∼ (1 + γ)k. Combining
those arguments with the preceding variance calculus concludes the proof, but under the
technical condition that hnk is summable in k for any geometric subsequences nk. This
explains why I had to impose condition limn→∞ log(1/hn)/ log log(n) > 1 in (3.23), which
excludes sequences hn tending too slowly to 0. I do not know if this condition can be
bypassed or if some new phenomenon arises when, e.g., limn→∞ log(1/hn)/ log log(n) < 1.

Extension to more general local empirical processes

The preceding results was written here for the concision and clarity of the main arguments
of its proof. I could, however, generalize it to the wider class of objects Tn(·, hn, z), under
assumptions that are very similar to those used in the results of §3.2. I could also use the same
trick as in the proof of Theorem 9, to enrich the generalization with an additional uniformity
in h ∈ [hn, hn].

Theorem 13 (From Varron, 2014, [101]) Assume that Z1 satisfies (Hf) for some O. Let
H be a set with nonempty interior fulfilling H ⊂ O (H denoting the closure of H). Let µ be a
continuous probability measure on H having a version of Lebesgue density which is uniformly
bounded. Let hn and hn be two bandwidths sequences fulfilling

hn ↓ 0, nhdn ↑ ∞, as well as

lim
n→∞

log(1/hdn)/ log log(n) > 1.

Assume that G fulfills (Unif. entropy dilatations), (Contin dilatations), (Pointw. sep.)
(Support), and admits an envelope that is square integrable under the Lebesgue measure. Then
the following assertion holds with probability one : for each closed set F of

(
`∞(G), || · ||G

)
, we
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have

lim
n→∞

sup
h∈[hn,hn]

µ∗

({
z ∈ H, Tn(·, h, z)√

f(z)nhd
∈ F

})
≤ P

(
WG ∈ F

)
,

where WG is the isonormal Gaussian process spanned by
(
G, || · ||λ,2

)
.

Note that the preceding theorem holds under conditions that are slightly weaker that those
written here, but somewhat cumbersome to expose. For more details see [101].

Sketch of the proof an comments

Write, for a bounded Lipschitz function φ :

Zn(φ, h) :=

∫
H

φ

(
Tn(·, hn, z)√
f(z)nhdn

)
dµ(z),

ignoring measurability issues for simplicity of the presentation.

— The usual blocking arguments still hold for the general objects Tn(·, h, z), h ∈ [hn, hn], z ∈
H.

— The Poissonization technique of Giné et. al (Proposition 2.2.4) adapts with very few
efforts to the objects Tn(·, h, z) (for more details, see [101, Proposition 2]).
By assumption (Support), we have Πn(·, h, z) ⊥⊥ Πn(·, h, z′) as soon as || z−z′ ||d≥ 2Mh.
Hence, the (V ariance) argument can be easily generalized. The assumption that µ
admits a bounded density ensures that the measure of the diagonal µ⊗2

({
(z, z′) ∈ H2, ||

z − z′ ||d≤ 2Mh
})

is O(hd) as h→ 0. Since hn → 0 we obtain

Var
(
Zn(φ, h)

)
≤ Chd, uniformly in h ∈ [hn, hn],

for a constant C, and for n large enough. In addition, since the involved variances are
of order hd, it is possible to use the discretization procedure hn,` = ρ`hn, ` ≤ Rn and
sum up the corresponding variances to obtain a sum

Rn∑
`=0

Var
(
Zn(φ, hn,`)

)
≤ C

ρd − 1
hdn. (3.26)

Hence requiring a uniformity in hn,` does not hurt. The interpolation arguments be-
tween consecutive hn,` are standard, and involve (Unif. entropy dilatations) and
(Contin. dilatations).

— It remains to prove an adapted counterpart of the (Expectation) arguments. Consider
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the problem of proving

E
(
φ
(
WG
))

= lim
n→∞

E
(∫

I

φ
(Tn(·, hn, z)√

f(z)nhdn

)
dµ(z)

)
= lim

n→∞

∫
I

E
(
φ
(Tn(·, hn, z)√

f(z)nhdn

))
dµ(z). (3.27)

The law of Tn(·, hn, z) is not constant in z ∈ H, as it was the case for the uniform
empirical process. However, by the dominated convergence theorem (under the measure
µ) it is sufficient to prove that

lim
n→∞

E
(
φ
(Tn(·, hn, z)√

f(z)nhdn

))
= E

(
φ
(
WG
))

,

for µ-almost each z. That convergence is simply Donsker’s theorem for local empirical
processes, which is a consequence of Einmahl and Mason [41].

Because our result involves a uniformity in h ∈ [hn, hn], such a uniformity has to be added in
(3.27), and hence raises additional technicalities that will not be detailed in this manuscript.
For more details, see [101].

3.3.2 Spatial functional limit laws

Since the preceding results are spatial-type Donsker theorems, it seemed natural to me
to investigate spatial-type standard/nonstandard functional limit laws. After first results
concerning the uniform empirical process [103], I could obtain the following spatial standard
functional limit law, which is the spatial counterpart of Theorem 7.

Theorem 14 (Varron, 2014 [104]) Assume that the law of Z1 satisfies (Hf) for some open
set O. Let H ⊂ O be a compact set and let µ be a probability measure on H. Let hn ≤ hn be
two non random sequences fulfilling :

(HV ) nhdn ↑, hn ↓ 0, nhdn/ log log(n)→∞, lim
n→∞

log log(hn/hn)

log log(n)
= δ ∈]0, 1].

Then, under assumption (Bounded), (Support), (Pointw. sep.), (Unif. entropy dilatations),
(Contin. dilatiations), (Unif. entropy translations), (Contin. translations), the following
assertions hold with probability one :

P

(
µ

({
z ∈ H,

top

lim
n→∞

Θlocal
n (hn, hn, z) = S1+δ

G

})
= 1

)
= 1; (3.28)
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P

(
µ

({
z ∈ H,

top

lim
n→∞

Θlocal
n (hn, hn, z) = SδG

})
= 1

)
= 1.

Sketch of the proof and comments

The arguments of §3.3.1 show that, for particular bounded functions φ, we have almost
surely Zn(φ, hn)→ E

(
φ
(
WG
))
. A functional limit law relies of large deviations, which provide

rates of convergence to zero of probabilities of rare events. Hence, my first idea was to replace
the function φ by sequences of functions φn of indicators of rare events (i.e. φn

(
Tn(·, hn, z)

)
→ 0

almost surely) and see how the (Expectation) and (V ariance) arguments could be translated
in this context. This work took form in a first result for the uniform empirical process (see
[103]). However, that methodology imposed the condition

lim
n→∞

log(1/hdn)

log log(n)
> 2,

which was required to obtain better rates of approximations between Zn(φn, hn) and their
expectations, in order to have

Zn(φn, hn) = Oa.s.

(
E
(
Zn(φn, hn)

))
, (3.29)

the latter tending to zero as n → ∞. With approximation results such as (3.29), I could then
obtain almost sure estimates for Zn(φn, hn) which are "almost sure µ-large deviations". I then
used these large deviations under µ, coupled with a blocking argument to obtain such a spatial
functional limit law. In a sense, I did my best to mimic the arguments of the usual Strassen
laws, adapting them to a spatial setting.
Afterwards, when I tried to generalize my result to the more general objects Tn(·, hn, z), I
realized that I did not actually need to mimic those arguments. Indeed, there is a different way
to prove it, by noticing that some crucial random sequences are almost surely monotonic, and
hence only their convergences in probability need to be proved. Let us illustrate this through
one particular step of the proof. To prove the inner part of (3.28), we need to prove that

µ

( ⋃
n0≥1

⋂
n≥n0

⋂
h∈[hn,hn]

{
z ∈ H, Tn(·, h, z)√

2f(z)nhd log log(n)
/∈ ψε

})
= 0, a.s.

Since, for each n0, the sequence

µ

( n0+p⋂
n=n0

⋂
h∈[hn,hn]

{
z ∈ H, Tn(·, h, z)√

2f(z)nhd log log(n)
/∈ ψε

})
.
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is almost surely decreasing in p, it is sufficient to prove the convergence to 0 (as p→∞) of

E

(
µ

( n0+p⋂
n=n0

⋂
h∈[hn,hn]

{
z ∈ H, Tn(·, h, z)√

2f(z)nhd log log(n)
/∈ ψε

}))

≤ sup
z∈H

P
( n0+p⋂
n=n0

Rn⋂
`=0

{ Tn(·, hn,`, z)√
2f(z)nhdn,` log log(n)

/∈ ψε
})

,

where we introduced a sufficiently spread grid hn,` := ρ`nhn, ` ≤ Rn, with ρn → ∞. By the
usual stochastic renewal argument, the first intersection symbol can be converted to a product
of probabilities of independent events (along sufficiently spread subsequences nk), this leads to
the following heuristic :

sup
z∈H

P

(
n0+p⋂
n=n0

Rn⋂
`=0

{
Tn(·, hn,`, z)√

2f(z)nhdn,` log log(n)
/∈ ψε

})

≤ exp

(
− inf

z∈H

n0+p∑
n=n0

P
( Rn⋃
`=0

{ Tn(·, hn,`, z)√
2f(z)nhdn,` log log(n)

∈ ψε
}))

. (3.30)

Now the idea is to use the same arguments as those used to prove the heuristic (3.9), with the
formal replacement of z0 by z. An additional uniformity in z ∈ H is required though, but that
uniformity is perfectly handled by the ULDP and the Poissonization techniques of Propositions
2.1.2 and 2.2.2. The obtained lower bounds are large enough to ensure the required convergence
to 0, along the sequence nk used in the stochastic renewal argument. We can see that, using
those kind of arguments, it is not needed to have precise almost sure estimates for random
sequences of the form Zn

(
φn, hn,`

)
. For example, looking at (3.30), it is sufficient to obtain

lower large deviations bounds for Tn(·, hn,`, z), which hold uniformly in z ∈ H and hn,`, ` ≤ Rn.
Since precise estimates are not required, so are the assumption on limn→∞ log(1/hn)/ log log(n),
and so is the assumption that µ has a bounded density, because the (V ariance) step can be
bypassed.�.

3.3.3 Perspectives

As already mentioned for problems involving the local empirical process, an important
perspective would be to relax the (Bounded) assumptions to high-order integrability of the
envelope.
Another perspective is as follows : if we compare the assumptions in Theorems 13 and 14,
we can see that the second does not require µ to be continuous, nor any condition upon
log(1/hn)/ log log(n). It is somewhat surprising because functional limit laws usually require
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stronger assumptions than Donsker theorems. I will continue my investigations in the direction
of removing those two conditions. Note, however, that Theorem 13 automatically excludes
discrete measures with finitely many atoms, because le limit measure takes all possible values
in [0, 1].
A crucial perspective is to investigate the possible connections between those spatial limit laws
and some statistical procedures.
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Chapter 4

Contributions to the study of the general
empirical process, and its applications to
statistics

In this chapter, the central object will be the general empirical process, namely :

Gn(·) := g →
√
n
(
Pn(g)− P0(g)

)
,

as defined in the introduction. My works on that object can be decomposed into three parts :
— In Bayesian nonparametrics, several priors can be seen as random probability measures

that are almost surely discrete. An almost surely discrete random probability measure
can be seen as

∑
n≥1

βiδYi , where both the probability weights (βi)i≥1 and the locations Yi

are random. Since the empirical measure Pn, as well as its various bootstrapped versions
(see, e.g., [92, Chapter 3.6]) belong to that class of objects, I investigated how far some
usual techniques in empirical processes theory could be used in the study of that wider
class of random measures. I found that, beside some non surprising envelope conditions,
condition (Unif. entropy), with the presence of the envelope in the integrals, is robust
enough to obtain Donsker and Glivenko-Cantelli theorems, when the Yi are conditionally
i.i.d. given the weights. Those results are stated in §4.1.

— The empirical likelihood technique, initiated by Thomas and Grunkemeier [89] is an
alternative to Gaussian pivot or bootstrap procedures for the construction of confidence
regions. Roughly speaking, it consists in building confidence regions around an estimator
by slightly unbalancing the empirical weights 1/n in the definition of the estimator. With
J-Y Dauxois and A. Flesch, we worked on using the empirical processes theory to prove
that a general class of empirical likelihood procedures is consistent. Those results are
stated in §4.2.

— The discrete associated kernel estimator is a general class of nonparametric estimators
of the probability mass function of a discrete random variable. Despite the "kernel"
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terminology, such estimators are not related to the local empirical measure, due to
the discrete nature of the data. With C. Kokonendji, we investigated the asymptotic
properties of these estimators under the total variation distance. Those results are stated
in §4.3.

4.1 A Donsker and a Glivenko-Cantelli theorem for a class
of random measures related to the empirical measure

4.1.1 The framework

For p = (pi)i≥1 ∈ RN and r > 0, we shall write the (possibly infinite) value

|| p ||c,r:=
(∑
i≥1

| pi |r
)1/r

.

Assume that (Ω,A,P) is a complete probability space (in the sense that every P-negligible set
belongs to A), and let

S :=
{

p = (pi)i≥1 ∈ [0,∞[N, || p ||c,1<∞
}
,

be the cone of positive summable sequences, which will be endowed with the product Borel σ-
algebra (denoted by Bor). Consider a sequence of S-indexed collections of probability measures(
Pn,p

)
n≥1,p∈S on a measurable space

(
X,X

)
. Note that those Pn,p are not random. For

fixed n, consider a random variable βn = (βi,n)i≥1 from (Ω,A,P) to (S, Bor) and a sequence
Yn =

(
Yi,n
)
i≥1

of random variables from (Ω,A,P) to
(
X,X

)
, for which the conditional law

given βn = p is P⊗Nn,p (we also make the assumption that those conditional laws properly define
a Markov kernel). We then define the random element

Prn :=
∑
i≥1

βi,nδYi,n ,

as a map from Ω to M (recall that the latter is the set of all probability measures on
(
X,X

)
).

Obtaining asymptotic results (as n → ∞) for Prn is of interest for at least two reasons. The
first of them is that Prn generalizes the usual empirical measure, and also related objects
from bootstrap theory, such that the empirical bootstrap, or more generally, the exchangeable
bootstrap empirical measure (see [92, Section 3.6.2]). Our main motivation to consider such
a generalization comes from the second reason : these kind of random measures play a role
in the representation of posterior distributions in Bayesian nonparametrics. The simplest
can be described as follows : endow M with the Borel σ-algebra M spanned by the weak
topology. Given a probability measure α on

(
X,X

)
and a concentration parameter M > 0, the

Dirichlet process distribution DP (M,α) on
(
M,M

)
admits the following representation, due

84



4.1. A DONSKER AND A GLIVENKO-CANTELLI THEOREM FOR A CLASS OF RANDOM
MEASURES RELATED TO THE EMPIRICAL MEASURE

to Sethuraman [82] :
DP (M,α) =d

∑
i≥1

βiδYi .

Here, the Yi are i.i.d with common distribution α and βi := Ui
i−1∏
j=1

(1 − Uj), with (Ui)i≥1 being

an i.i.d. sample, independent of (Yi)i≥1, and having the Beta(1,M) distribution. It is also well
known [44, Section 3, Theorem 1] that, if a random probability measure Pr has distribution
DP (M,α) and if (X1, . . . , Xn) has law P⊗n given Pr = P (for Pr almost all P), then a version
of the posterior distribution of Pr given (X1, . . . , Xn) is the map

(x1, . . . , xn)→ DP
(
M + n, θnα + (1− θn)α(x1,...,xn)

)
,

where θn := M/(M + n) and α(x1,...,xn) := n−1
∑

i≤n δxi . A more general class of random mea-
sures admitting such a representation is the class of normalized homogenous completely random
measures with no fixed atoms (see, e.g., [49, p. 84-85]).

4.1.2 A Glivenko-Cantelli theorem

We will consider a class of functions F which satisfies (Pointw. sep.). We will write F
for its minimal measurable envelope. For r > 0, we define the space EF ,r as follows : a map
Ψ : Ω→ RF belongs to EF ,r if and only if Ψ(f) defines a Borel random variable on (Ω,A,P) for
each f ∈ F , and if ||| Ψ |||rF ,r:= E

(
|| Ψ ||rF

)
<∞. Under the assumption that E

(
F (Y1,n)

)
<∞

for all n, it is possible to define the process

GYn,βn(·) : f →
∑
i≥1

βi,n

(
f(Yi,n)− E

(
f(Yi,n) | βn

))
as the limit, as k →∞, of the truncated sequence

Gk
Yn,βn

(·) : f →
k∑
i=1

βi,n

(
f(Yi,n)− E

(
f(Yi,n) | βn

))
in the Banach space

(
EF ,1, ||| · |||F

)
. Note that this limit also holds in EF ,r for each r ≥ 1 such

that E
(
F (Y1,n)r

)
<∞. My first contribution is a Glivenko-Cantelli theorem.

Theorem 15 (Varron, 2014, [105]) Assume that || βn ||c,1= 1 almost surely for all n, and
|| βn ||c,2→ 0 in probability. Suppose that

lim
M→∞

lim
n→∞

E
(
F (Y1,n)1{F (Y1,n)≥M}

)
= 0. (4.1)
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Also assume that, for each ε > 0 and M > 0, we have, as n→∞ :

log
(
N
(
ε,FM , || · ||P (βn,Yn),1

))
= oP

(
|| βn ||−2

c,2

)
,

where, FM :=
{
f1{F≤M}, f ∈ F

}
and

P (p,y) :=
∑
i≥1

piδyi , for p ∈ S, y ∈ XN.

Then
E
(
|| GYn,βn ||F

)
→ 0. (4.2)

Proof : The proof of 15 is an adaptation of the usual symmetrization and conditioning
arguments for Glivenko-Cantelli theorems (see, e.g., [92, p. 123]). No consequent technical
difficulty does show up along these steps.
Note that, choosing βi,n := n−1 when i ≤ n and 0 otherwise leads to the usual Glivenko-
Cantelli theorem under random entropy conditions (see, e.g., [92, p.123]), except for the almost
sure counterpart of (4.2). Indeed, that almost sure convergence deeply relies on a reverse
submartingale structure, which is not guaranteed under the general conditions of Theorem 15.

4.1.3 A Donsker theorem

My second result is a Donsker Theorem. Since, for fixed n, the Yi,n are only conditionally
independent, such a result will not involve the Gaussian analogues of the GYn,βn , but mixtures
WYn,βn of the Pn,p-Brownian bridges by βn. Such mixtures of Gaussian processes can fail to be
measurable with respect to the Borel σ-algebra of

(
`∞(F), || · ||F

)
. This lack of measurability

will be tackled by introducing outer expectations (see, e.g. [92, Chapter 1.2]). In the next
theorem, the E∗ symbol, when applied to GYn,βn , denotes the outer expectation taking (Ω,A,P)
as underlying space. When applied to WYn,βn , that symbol should be understood as taking
the canonical probability space RF , endowed with the product Borel σ-algebra, and endowed
with the probability measure exhibited by Kolmogorov’s extension theorem. For more details,
see [105].

Theorem 16 (Varron, 2014, [105]) Assume that, for each n ≥ 1, || βn ||2c,2= 1 with proba-
bility one, and that || βn ||c,4→ 0 in probability. Also assume that E

(
F 2(Y1,n)

)
< ∞ for all n,

and that :

lim
M→∞

lim
n→∞

E
(
F 2(Y1,n)1{F (Y1,n)≥M}

)
= 0,∫ ∞

0

√
log
(

sup
Q probab.

N
(
ε || F ||Q,2,F , || · ||Q,2

))
dε <∞.

Then, for all n ≥ 1, WYn,βn is almost surely bounded, and || WYn,βn ||F is Borel measurable.
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Also assume that, for a semimetric ρ0 that make F totally bounded we have :

lim
δ→0

lim
n→∞

P∗
sup

(f1,f2)∈F2,ρ0(f1,f2)≤δ
|| f1 − f2 ||Pn,βn ,2= 0, (4.3)

where the symbol lim
P∗
n→∞ stands for the lim sup in outer probability. Then

dBL

(
GYn,βn ,WYn,βn

)
:= sup

φ∈BL1

∣∣∣E∗(φ(GYn,βn

))
− E∗

(
φ
(
WYn,βn

))∣∣∣→ 0,

where BL1 is the set of all 1-Lipschitz functions on
(
`∞(F), || · ||F

)
that are bounded by 1.

Remark : When (Yi,n)i≥1 ⊥⊥ βn, condition (4.3) is implied by condition (ii) in Sheehy and
Wellner [83, Theorem 3.1], namely, for some probability measure P0 :

sup
(f,g)∈F2

max
{
| P(n)

0

(
(f − g)2

)
−P0

(
(f − g)2

)
|, | P(n)

0 −P0(f) |

| P(n)
0 (f 2)−P0(f 2) |

}
→ 0, (4.4)

where P
(n)
0 stands for the law of Y1,n. In this particular case, Theorem 16 turns out to be

a partial generalization of Sheehy and Wellner [83, Theorem 3.1], where the authors proved,
among other results, a Donsker theorem for sequences of F -indexed empirical processes, for
which the law of the sample varies with n. The main advantage of our result is that it extends
to random (possibly infinite) convex combinations of the δYi,n .
As a consequence of Theorem 16, I could obtain an alternate proof of the Bernstein-Von Mises
theorem under || · ||F -topologies, for the Dirichlet process prior. Such a result was already
obtained by James [51], under the slightly more stringent assumption that F is VC subgraph.

4.1.4 Sketch of the proof and comments

The measurability of || WYn,βn(·) ||F uses the fact that F is pointwise separable in combina-
tion with the dominated convergence theorem, which implies (under assumptions of integrability
of the envelope) that there exists a countable F0 ⊂ F which, for almost each ω ∈ Ω′, is dense
in
(
F , || · ||Pn,βn(ω),2

)
. The gaussian structure conditionally to βn does the rest.

The proof of Theorem 16 is then decomposed into two parts :

Step 1: convergence of the marginals

Write dLP for the Levy-Prokhorov distance between (Borel) probability measure on Rp,
generated by || · ||p, namely, for two probability measures P and Q :

dLP (P,Q) := inf
{
λ > 0, π(P,Q, λ) ≤ λ

}
, where we remind that
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π(P,Q, λ) := sup
A Borel

max
{
P (A)−Q(Aλ), Q(A)− P (Aλ)

}
, for λ > 0,

The first step consists in controlling the distance of the marginals of GYn,βn and those ofWYn,βn .
Recall that Πf (ψ) =

(
ψ(f1), . . . , ψ(fp)

)
, as defined in (2.2).

Proposition 4.1.1 For each p ≥ 1 and f ∈ Rp, we have

dLP
(
Πf (GYn,βn),Πf (WYn,βn)

)
→ 0.

The main argument of the proof of Proposition 4.1.1 is a generalization, to infinite convolutions,
of the approximation results of Zaitsev [111] (a weaker form of Zaitsev’s result can be found in
the present manuscript, in Fact 2.1.1). Such a generalization is simple since Zaitsev’s bounds
do not depend on the sample size.

Step 2 : asymptotic equicontinuity

The second step consists in showing that (WYn,βn)n≥1 and (GYn,βn)
n≥1

are asymptotically
equicontinuous. First, from assumption (4.3), the the equicontinuity arguments boil down to
showing that

∀ε > 0, lim
δ→0

lim
n→∞

P
sup

(f1,f2)∈F2,

||f1−f2||Pn,βn,2<δ

∣∣∣GYn,βn(f1)−GYn,βn(f2)
∣∣∣ = 0, (4.5)

∀ε > 0, lim
δ→0

lim
n→∞

P
sup

(f1,f2)∈F2,

||f1−f2||Pn,βn,2<δ

∣∣∣WYn,βn(f1)−WYn,βn(f2)
∣∣∣ = 0. (4.6)

The fact that those two suprema are measurable can be showed by density of F0 simultaneously
for the pointwise convergence and for the norms || · ||Pn,βn (ω),2, for almost all ω.
Assertion (4.6) is a consequence of the fact that WYn,βn is, conditionally to βn, Gaussian with
intrinsic semi metric || · ||Pn,βn ,2. Assertion (4.5) is a consequence, through symmetrization, of
the fact that, conditionally to βn and Yn, the process∑

i≥1

εiβi,nδYi,n(·)

is subgaussian with intrinsic semimetric P (βn,Yn) (recall (4.2)). Then condition (Unif. entropy)
plays its role.
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4.1.5 Perspectives

A commonly used class of nonparametric discrete priors is the class of normalized completely
random measures. A normalized homogenous completely random measure admits the repre-
sentation (4.1), with the Yi,n being conditionally i.i.d given the weights. In [52], James, Lijoi
and Prünster did prove a very general result, by giving the general formula for (a version of)
the posterior distribution (given a sample (X1, . . . , Xn)) of a normalized completely random
measure.
Such a formula does not directly imply objects such as (4.1) but mixtures of such random
measures with respect to latent variables U(X1, . . . , Xn).
A very appealing and apparently tough challenge would be to investigate the posterior con-
sistency and rate of convergence, under || · ||F of normalized homogenous completely random
measures. James [51] already showed that it is not always the case by proving general consis-
tency/unconsistency results when considering the Poisson-Dirichlet process as a prior. When
the underlying law of the sample is continuous, the Dirichlet process prior is the only member
of that family that benefits of || · ||F -consistency (except for trivial classes).

4.2 Empirical processes theory for empirical likelihood

4.2.1 The empirical likelihood principle

Empirical likelihood was first introduced by Thomas and Grunkemeier [89] in a setup of
survival analysis. Owen ([73, 71, 72]) then generalized their concept and initiated a fruitful
theory in estimation (see [74] for an overview). The underlying idea is simple to explain :
consider an i.i.d. sample (Y1, . . . , Yn) taking values in Rp, and admitting a nondegenerate
variance, and consider the (most) simple problem of building confidence regions for their
expectation θ0. Instead of building ellipsoids centered at the point estimator

θ̂n :=
1

n

n∑
i=1

Yi,

we will construct a region as follows

Rn,u :=
{ n∑

i=1

piYi, (pi)i=1,...,n probab. weights,
n∏
i=1

npi ≥ u
}
,

where u ∈ (0, 1) is a specified threshold. Owen showed that, under those simple assumptions,
there is a way to calibrate uα given a specified asymptotic confidence level 1−α. More precisely,
he showed the following convergence in distribution.
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Fact 4.2.1 (Owen, 1988) Assume that Y1 admits a variance that is nondegenerate. Then

ELn := max
{ n∏
i=1

npi, (pi)i=1,...,n probab. weights,

n∑
i=1

piYi = θ0

}
→L exp

(
− χ2

p

)
. (4.7)

Note that
θ0 ∈ Rn,u ⇔ ELn ≥ u.

One of the advantages of this empirical likelihood method is that one doesn’t need to estimate
the variance in order to build the confidence region. Moreover, the shape of those regions
strongly depends on the geometry of the data whereas the classical central limit theorem gives
ellipse-shaped confidence regions. Finally, the confidence band always lies inside of the convex
hull defined by the data.
Since Owen’s grounding result, several researchers did contribute to the extension of this method
toward the estimation of parameters that are not expectations of finite dimensional data.

4.2.2 Estimations of linear, trajectory-valued functionals

With J.Y Dauxois and A. Flesch [15], we investigated the case where the parameter of
interest is a multivariate trajectory from a set T to Rp. We will write that parameter θ0(·).
The setup is then the space

(
`∞(T)

)p, endowed with the supremum norm :

|| g ||T,p:= sup
t∈T
|| g(t) ||p, g ∈

(
`∞(T)

)p
.

The norm || · ||T,p is natural when one aims toward establishing confidence regions that are
uniform in t ∈ T. Assume that we have a natural estimator θ̂n(·) which can be written

θ̂n(·) =
1

n

n∑
i=1

Ln(Yi, ·), (4.8)

where the t→ Ln(Yi, t) are observed. The simplest example is when θ0(·) = E
(
L0(Y1, ·)

)
for a

specified nonrandom map L0(·, ·), which is not known by the statistician, but which is estimated
by Ln(·, ·).
When T = {t0} is a singleton, Hjort et al. [50] gave very general conditions upon Ln to obtain
a limit distribution for

ẼLn := max
{ n∏
i=1

npi, (pi)i=1,...,n prob. weights,

n∑
i=1

piLn(Yi, t0) = θ0(t0)
}
.
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Following their ideas, we could derive a convergence for processes (in
(
`∞(T)

)p) of the type

ẼLn(·) : t→ max
{ n∏
i=1

npi, (pi)i=1,...,n prob. weights,

n∑
i=1

piLn(Yi, t) = θ0(t),
}

toward a stochastic process which is the square Euclidian norm of an Rp-valued gaussian process
on T. Such a limit law permits to construct asymptotic confidence bands for θ0(·).

Original motivation from lifetime data analysis

The initial motivation of our work came from a particular inference problem in survival
analysis : the inference of the mean number of different competing recurrent events. That
framework was former introduced by Dauxois and Sencey [16], and can be described as follows :
We observe i.i.d. replicates of the following random phenomenon :

— Consider a finite collection of counting processes on a time interval,
(
N?
j (·))j=1,...,k

)
.

Those coutning processes represent k competing, recurrent events (for example, different
type of nosocomial infections that can be contracted by hospitalized patients). Let N?

j (t)
denote the number of total events of type j up to time t.

— Let D be a terminal event and C an independent censorship. We make no assumption
on the dependence structure between the counting processes and D. We suppose that
N?
j is almost surely bounded by B and has no jump after time D.

— We observe the processes N?
j until X = D ∧ C and define δ = I(D ≤ C), where I(·)

denotes the indicator function. δ informs us of the reason why the observation was
stopped.

Let us denote by S the survival function of D, that is S(t) = P(D > t). Write also :

Y (t) = I(X ≥ t),

Nj(t) = N?
j (t ∧ C).

The observed data are i.i.d. replicates (Ni,j(·), Xi, δi)j≤k of (Nj(·), X, δ)j≤k, where the processes
are observed on [0, τ ], and τ is a fixed constant chosen so that P(C > τ)P(X > τ) > 0. In order
to build confidence regions for the mean functions t 7→ µj(t) = E(N?

j (t)), we use the estimators
µ̂j(t) from Dauxois and Sencey [16] :

µ̂j(t) =
1

n

n∑
i=1

∫ t

0

Ŝ(u−)

Ȳ (u)
dNi,j(u),

where Ŝ(·) is the Kaplan-Meier estimator of S(·), the survival function of D (see, for example,
[3] for a definition of Ŝ(·)). Such an estimator can typically be described as (4.8).
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4.2.3 Estimation of nonlinear functionals

Among the possible generalizations of Owen’s results, one particular approach is to consider
parameters of interests that can be written θ0 := T (P0), where P0 is the common law of the
observed sample (Y1, . . . , Yn), and where T is a specified map. In that case, the idea is to build
the following type of confidence region.

Rn,u :=

{
T
( n∑
i=1

piδYi

)
, (pi)i=1,...,n prob. wghts ,

n∏
i=1

npi ≥ u

}
, (4.9)

and determine their asymptotic covering probabilities, under the smallest possible assumptions
upon the functional T .
The first results establishing an ad-hoc convergence in distribution such as (4.7) were already
present in Owen [73], but they were limited to real-valued data, together with T being Frechet
differentiable in

(
D(R), || · ||R

)
, whereD(R) stand for the space of bounded CADLAG functions

on R. Frechet differentiability is a rather strong assumption, which is rarely satisfied in practice.
The next major step in that direction was taken by Bertail [7], where he showed that, if a class of
functions F satisfies (Unif. entropy) and admits a square integrable envelope then a limit result
such as (4.7) holds for functional T that are Hadamard differentiable with respect to || · ||F ,
tangentially to C(F , || · ||P0,2), the latter being the space of || · ||P0,2 continuous functions on
F .
Following an initial work in A. Flesch’s PhD thesis, I worked on extending Bertail’s theorem
under three directions :

— I considered the more general case where θ0 is a trajectory (as in the preceding subsec-
tion).

— In practice, computing Rn,u is computationally too intensive (an exponential n com-
plexity). Following the original idea of A. Flesch, I investigated the consistency of other
confidence regions RLP

n,u, which involve a local linearization procedure of T around Pn,
and which makes the computation times reasonable.

— I considered the case where the estimator is built on several (say k) mutually independent
samples. More precisely, θ0 = T (P0,1, . . . ,P0,k) is estimated by T (Pn1,1, . . . ,Pnk,k), using
the corresponding empirical measures. Note that some steps were already taken in the
multisample direction, for estimating differences of means or proportions ([53, Theorem
1], [78, statement following (2.6)], and also [62, Theorem 1] in the multivariate case),
but the corresponding proofs were never entirely written.

4.2.4 The underlying probabilistic result

The two preceding paragraphs are voluntarily evasive, because introducing all the ad-hoc
notations and assumptions would take a lot of space for an already quite long manuscript.
It is however possible to point out the key probabilistic result which is behind those two
contributions, without much notations. We will write n := (n1, . . . , nk) ∈ N∗k, and we will
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write the simplex-type sets :

Sn,u :=
{

p = (pi,j)j≤k,i≤nj , ∀j ≤ k,

nj∑
i=1

pi,j = 1,

∀i ≤ nj, pi,j ∈ [0, 1],
k∏
j=1

nj∏
i=1

njpi,j ≥ u
}
, u ∈ [0, 1].

Theorem 17 (From Dauxois, Flesch and Varron, 2014 [15, 107]) On a probability space
(Ω,A,P), let

(
Wi,j,n(·)

)
n∈N∗k, j≤k, i≤nj

be a triangular array taking values in
(
`∞(T)

)p. For t ∈ T

and n ∈ N∗k, write

ELn(t) := max

{ k∏
j=1

nj∏
i=1

njpi,j p ∈ Sn,0,
k∑
j=1

nj∑
i=1

pi,jWi,j,n(t) = 0

}
.

Let Vj(·), j ≤ k be deterministic functions on T, whose values are symmetric matrices, and for
which

0 < inf
t∈T, λ∈S(Rp)

max
j≤k

λ • Vj(t)λ ≤ sup
t∈T, λ∈S(Rp)

max
j≤k

λ • Vj(t)λ <∞.

Let (U1(·), . . . , Uk(·)) be Rp-valued stochastic processes. Assume that, for some positive array
(an)n∈N∗k being bounded away from 0, we have, when min{n1, . . . , nk} → ∞ :

(A0*) inf
t∈T, λ∈S(Rk)

max
j≤k, i≤nj

1{
λ•Wi,j,n(t)>0

} →P 1,

(A1*)
( nj∑
i=1

Wi,j,n(·)
)
j≤k
→L

(
Uj(·)

)
j≤k,

(A2*) max
j≤k

∣∣∣∣∣∣an nj∑
i=1

Wi,j,n(·)⊗2 − Vj(·)
∣∣∣∣∣∣
T,p2
→P 0,

(A3*) max
j≤k, i≤nj

∣∣∣∣∣∣Wi,j,n(·)
∣∣∣∣∣∣
T,p

= oP(a−1
n ).

Then, when min{n1, . . . , nk} → ∞ together with

( k∑
j=1

nj

)−1

n→ (α1, . . . , αk) ∈ (0, 1]k,

we have
−2a−1

n log ELn(·)→L U(·) • V −1(·)U(·),

where U(·) :=
k∑
j=1

α−1
j Uj(·) and V (·) =

k∑
j=1

α−2
j Vj(·).
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4.2.5 Sketch of the proof and comments

In this paragraph, I will try to emphasize the aspects of the proof that make it non trivial
in regard of the existing literature.
Let us go back to the basic ingredients of Owen’s results. Consider the setup of Fact 4.2.1,
and the expression ELn as defined in (4.7). To simplify the notations, we will consider that
µ0 = E

(
Y1

)
= 0. As soon as µ0 = 0 lies in the convex-hull of the sample (which is asymptotically

guaranteed since Y1 has a nondegenerate covariance matrix). It is possible to express ELn
through a Lagrange multiplier λ∗ = λ∗(Y1, . . . , Yn). More precisely, ELn can be expressed as
n∏
i=1

np∗i , where :

p∗i :=
1

n

1

1 + λ∗ • Yi
,

and λ∗ satisfies
n∑
i=1

1

1 + λ∗ • Yi
Yi = 0.

Then λ∗ is controlled by making use of the fact that the Yi satisfy the central limit theorem.
Now, if we try to use the same representation for t → ELn(t), we obtain ELn(t) =
k∏
j=1

nj∏
i=1

njp
∗
i,j(t), with

p∗i,j,n(t)γ∗j (t) +Np∗i,j,n(t)λ∗n(t) •Wi,j,n(t) = 1, j ≤ k, i ≤ nj, (4.10)
k∑
j=1

nj∑
i=1

p∗i,j,n(t)Wi,j,n(t) = 0,(
p∗i,j,n(t)

)
j≤k, i≤nj

∈ Sn,0, and (γ∗j )j=1,...,k ∈ Rk.

Summing (4.10) in i for fixed j entails

γ∗j (t) +Nλ∗n(t) • W̃j,n(t) = nj, with W̃j,n(t) :=

nj∑
i=1

p∗i,j,n(t)Wi,j,n(t).

This leads to the expression

p∗i,j,n(t) :=
1

nj +Nλ∗n(t) • (Wi,j,n(t)− W̃j,n(t))

=
1

nj

1

1 + α−1
j,nλ

∗
n(t) • (Wi,j,n(t)− W̃j,n(t))

, (4.11)
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with αj,n := nj/N .

— The first technical difficulty brought by a multisample setting is the annoying presence
of the extra term W̃j,n(t), itself depending on (p∗i,j,n)i≤nj , in equality (4.11).

— The second technical difficulty is to adapt the arguments of Owen to trajectories. Basi-
cally :
— Condition (A0∗) allows the exhibition of the lagrange multipliers λ∗ (convex hull

condition).
— The central limit theorem for the Yi is replaced by condition (A1∗), which is now a

convergence of stochastic processes.
— The fact that the variance of Y1 is nondegenerate is replaced by (A2∗).
— The fact that Y1 is square integrable is replaced by (A3∗).

4.2.6 Perspectives

Instead of considering explicit plug-in estimators T (Pn1,1, . . . ,Pnk,k), the next natural step
is to investigate M estimators of the general form

θ̂n(·) : t→ argminθ∈ΘL
(
Pn1,1, . . . ,Pnk,k, θ, t

)
,

where L is typically a loss function, and to determine under which regularity conditions upon
L it is possible to use the general empirical likelihood principle by unbalancing the empirical
weights in the Pnj ,j.
Another interesting perspective would be to investigate the asymptotic properties of the "most
unbalanced empirical measure", namely

P n :=
n∑
i=1

p∗i,nδYi ,

where the p∗i,n are the maximizing weights of
n∏
i=1

npi under a constraint of the form

n∑
i=1

pifj(Yi) = P(fj), j = 1, . . . , p

For example, given a class of functions F , and given (f1, . . . , fk) ∈ Fk, is it possible to obtain
a limit distribution for the processes

Gn := vn

(
P n(·)−Pn(·)

)
,

in `∞(F), for some normalizing sequence vn?
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4.3 Performances of the discrete associated kernel estima-
tors for the total variation distance

4.3.1 The setup

Let
(
T,B, c

)
be a measured space, where T is countable, B is the σ-algebra of all subsets

of T, and c is the counting measure on T. Given an i.i.d. sample (X1, . . . , Xn) taking values in
T, we are interested in estimating the probability mass function [p.m.f.] f : x → P

(
X = x

)
where X stands for a generic random variable having the common distribution of the Xi. The
natural estimator of f is the empirical mass function, namely :

fn : x→ Pn({x}). (4.12)

Recently, Kokonendji et al. [57] and Kokonendji and Abdous [1] introduced the discrete
associated kernels density estimator, which can be described as follows : let K :=

{
Kx,h, x ∈

T, h ≥ 0
}
be a collection of p.m.f on T. For a bandwidth h ≥ 0, we define :

gn,h(x) :=
fn,h(x)∫

T fn,h(u)dc(u)
, where

fn,h(x) :=
1

n

n∑
i=1

Kx,h(Xi), x ∈ T.

Several simulation studies [57] showed promising results, comparing some of those estimators
with the traditional "bar plot" fn.
In [1], a first study on the asymptotic properties of such methods showed that their pointwise
consistency holds as soon as each Kx,h converges, when h→ 0, towards the Dirac distribution
δx in the following sense :

∀k = 1, 2, ∀x ∈ T, lim
h→0

∫
ukKx,h(u)dc(u) = xk, (4.13)

and
∀x ∈ T, lim sup

h→0
E
((

Kx,h(X)
)3
)
<∞.

Beside the pointwise strong consistency, the authors also established the pointwise asymptotic
normality of gn,h(x) (see [1, Theorem 2.4 and 2.5]). With C. Kokonendji, we established
asymptotic results for the total variation distance between gn,h and f , namely, the random
variable

TV
(
gn,h, f

)
:= sup

A⊂T

∣∣∣ ∫
A

gn,hdc−
∫
A

fdc
∣∣∣ =

1

2
|| gn,h − f ||c,1 . (4.14)
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4.3.2 The concentration of the normalizing constant

In a first time, we focused on the problem of the normalizing constant

Cn,h :=
1

n

n∑
i=1

Yi,h, where

Yi,h :=

∫
T
Kx,h(Xi)dc(x).

Note that, without any further assumptions, it is not even guaranteed that Cn,h is a.s. finite.
From a statistical point of view, several questions immediately arise :

— For given h ≥ 0, does Y1,h admit a first/second moment?
— Do we have E

(
Y1,h

)
→ 1 as h→ 0?

— Do we have, for any sequence hn → 0, a convergence of Cn,hn to 1, in probability or
almost surely? Can we get concentration inequalities?

To answer these questions, we proposed the following sets of assumptions for ` > 0 :

(HK0) For each x ∈ T, we have Kx,h(x)→ 1 as h→ 0.
(HK1(`)) There exist a collection of p.m.f

{
gy(·), y ∈ T

}
and a positive function h such that

E
(
h`(X)

)
<∞ and, for each h ∈ [0, 1], (x, y) ∈ T2, we have Kx,h(y) ≤ h(y)gy(x);

(HK2) The function y 7→ suph∈[0,1]

∫
x∈TKx,h(y)dc(x) is bounded on T by a constant C.

When T = Zd, several associated kernels can be represented as

Kx,h(y) := Kh(x− y), h ≥ 0, (x, y) ∈ Zd × Zd, (4.15)

where
{
Kh, h ≥ 0

}
is a family of p.m.f on Zd. Our first result is stated as follows.

Theorem 18 (Kokonendji and Varron, 2014, [56]) Let K =
{
Kx,h, h ≥ 0 x ∈ T

}
be a

family of associated kernels admitting representation (4.15). Then Y1,h ≡ Cn,h ≡ 1 for all h ≥ 0
and n ≥ 1, and (HK2) is satisfied with C = 1.
Under (HK0) and (HK1(`)), for ` ∈ N∗, we have E

(
Y `

1,h

)
< ∞ for all h ∈ [0, 1], and hence

E
(
C`
n,h

)
<∞ for all n ≥ 1 and h ∈ [0, 1]. Moreover, we have

lim
h→0

E
(
Y `

1,h

)
= 1.

As a consequence, we have, under (HK0) and (HK1(2)) :

lim
h→0

Var(Y1,h) = 0, and hence

lim
h→0

sup
n≥1

E
((
Cn,h − 1

)2
)

= 0.
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Under (HK2), we have, for all t > 0 and h ∈ [0, 1] :

P
(
Cn,h − E(Y1,h) ≥ t

)
≤ exp

[
− n∆2(h)

C2
h
( C

∆2(h)

)]
P
(
Cn,h − E(Y1,h) ≤ −t

)
≤ exp

[
− n∆2(h)

C2
h
( C

∆2(h)

)]
,

where C is mentioned in (HK2), ∆2(h) := Var(Y1,h), and h(x) = (x+ 1) ln(x+ 1)− x, x > 0.

Remark : I has to be noticed that, while condition (HK0) is less stringent than (4.13), this
is not the case for conditions (HK1(`)) and (HK2). Those conditions may be considered as
strong at first glance. However, each associated kernel introduced up to far in the literature
does satisfy (HK1(2)), sometimes at the price of making light moment assumptions on X.

4.3.3 Results for the total variation distance

Our second result is focused on || gn,h− f ||c,1, note, that, in light of the preceding theorem,
and by the inequality

|| gn,h − f ||c,1≤ C−1
n,h || fn,h − f ||c,1 + | C−1

n,h − 1 |,

the main object to concentrate our attention on is || fn,h−f ||c,1. We first proved the convergence
to 0 of its expectation.

Theorem 19 (Kokonendji and Varron, 2014, [56]) Under (HK1(1)) we have :

lim
h→0

∫
T

∣∣∣E(Kx,h(X)
)
− f(x) | dc(x) = 0,

lim
n→∞

sup
h∈[0,1]

∫
T
E
(∣∣∣fn,h(x)− E

(
Kx,h(X)

)
|
)
dc(x) = 0.

Moreover, if (HK1(2)) satisfied and if∫
T
h(y)

√
f(y)dc(y) <∞, then

sup
h∈[0,1]

∫
T
E
(
| fn,h(x)− E

(
Kx,h(X)

)
|
)
dc(x) = O(n−1/2).

We pursue this subsection with a concentration inequality for || fn,h − f ||c,1. The first one is
based on the almost sure boundedness of Y1,h, while the second is based on the finiteness of a
φα norm, which is closely related to the tail probabilities of Y1,h. Recall that the φα norm of a
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random variable Z is defined as

|| Z ||φα := inf

{
B > 0, E

(
exp

( | Z |α
Bα

))
≤ 2

}
, α > 0,

with the implicit convention inf ∅ =∞.

Theorem 20 (Kokonendji and Varron, 2014, [56]) Under (HK2) we have, for each t ≥ 0
and h ∈ [0, 1].

P
(
|| fn,h − f ||c,1≥ t+ E

(
|| fn,h − f ||c,1

))
≤ exp

(
− nt2

2C2

)
,

P
(
|| fn,h − f ||c,1≤ −t+ E

(
|| fn,h − f ||c,1

))
≤ exp

(
− nt2

2C2

)
.

Now assume that, for some value of α > 0, we have || Ỹ1,h ||φα<∞ for all h ∈ [0, 1], where

Ỹi,h :=

∫
x∈T

∣∣∣Kx,h(Xi)− E
(
Kx,h(Xi)

)∣∣∣dc(x), i ≥ 1, h ∈ [0, 1].

Then, for any η ∈ [0, 1] and δ > 0, there exists K = K(α, η, δ) such that, for all n ≥ 1, t ≥ 0
and h ∈ [0, 1], we have

P
(∫

T

∣∣∣fn,h(x)− E
(
fn,h(x)

)∣∣∣dc(x) ≥ t+ (1 + η)E
(∫

T

∣∣∣fn,h(x)− E
(
fn,h(x)

)∣∣∣dc(x)
))

≤ exp
(
− nt2

8(1 + δ)σ2(h)

)
+ 3 exp

(
− nαtα

K || Ỹ1,h ||φα log(n)1/α

)
, and

P
(∫

T

∣∣∣fn,h(x)− E
(
fn,h(x)

)∣∣∣dc(x) ≤ −t+ (1− η)E
(∫

T

∣∣∣fn,h(x)− E
(
fn,h(x)

)∣∣∣dc(x)
))

≤ exp
(
− nt2

8(1 + δ)σ2(h)

)
+ 3 exp

(
− nαtα

K || Ỹ1,h ||φα log(n)1/α

)
, where

σ2(h) := sup
A⊂T

Var

(∫
A

Kx,h(X)dc(x)

)
.

As a consequence, for any sequence hn → 0, we have || fn,hn − f ||c,1→ 0 almost completely.
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