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Résumé

1 Trois cas de figure pour l’inconditionnalité

Toutes nos recherches sont liées à la notion d’inconditionnalité, motivée par la question suivante :
Question 1.1. Lorsqu’un élément x d’un espace normé admet une représentation comme combi-
naison linéaire

∑
cqeq d’éléments eq, de quelle manière la norme de x dépend-elle du signe des

coefficients cq ?
Les réponses que nous obtiendrons seront en termes du support de x, c’est-à-dire de l’ensemble I

d’indices q pour lesquels cq 6= 0.
Selon la situation, un changement du signe des coefficients cq
– fait varier la norme de x de manière bornée et on dira que (eq)q∈I est une suite basique

inconditionnelle ;
– multiplie au plus la norme de x par un facteur D explicite et D sera la constante d’incondi-

tionnalité de la suite (eq)q∈I ;
– ne change pas la norme de x et on parlera de suite basique (eq)q∈I 1-inconditionnelle ;
Lorsque nous chercherons à déterminer une constante d’inconditionnalié exacte, nous devrons

préciser de quelle manière nous nous permettons de changer le signe des coefficients :
– de manière réelle en multipliant certains coefficients par −1, ou
– de manière complexe en les faisant tourner d’un angle tq.

Voici trois cas de figure dans lesquels cette question se pose.

(a) Si x est une fonction sur un groupe abélien compact et les eq sont les caractères de ce groupe,
cette représentation est la série de Fourier de x et un changement du signe des coefficients de
Fourier est une convolution ou multiplication de Fourier unimodulaire.

(b) Si x est un opérateur et les eq sont les matrices élémentaires, cette représentation est la
matrice de x et un changement du signe des coefficients matriciels est une multiplication de
Schur unimodulaire.

(c) Si x est un élément de l’algèbre d’un groupe discret G et les eq sont les fonctions indicatrices
des éléments de G, alors un changement du signe des coefficients est une multiplication de
Herz-Schur unimodulaire.

2 Définition des suites basiques inconditionnelles

Voici une définition formelle qui reprend la discussion ci-dessus.

Définition 2.1. Soit X un espace vectoriel quasi-normé muni d’une suite distinguée (eq) dans X .
Soit (eq)q∈I une sous-suite. Soit S = T = {z ∈ C : |z| = 1} (vs. S = {−1, 1}.)

(a) I est inconditionnelle dans X s’il y a une constante D telle que
∥∥∥
∑

q∈I

ǫqaqeq
∥∥∥ 6 D

∥∥∥
∑

q∈I

aqeq
∥∥∥ (1)

pour tout choix de signes ǫq ∈ S et toute suite de coefficients complexes aq de support fini. Sa
constante d’inconditionnalité complexe (vs. réelle) est le minimum de telles constantes D.

(b) I est 1-inconditionnelle complexe (vs. réelle) dans X si sa constante d’inconditionnalité com-
plexe (vs. réelle) vaut 1. Cela veut dire que l’inégalité (1) devient l’égalité

∥∥∥
∑

q∈I

ǫqaqeq
∥∥∥ =

∥∥∥
∑

q∈I

aqeq
∥∥∥.
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3 Matrices et multiplicateurs de Schur pour les classes de

Schatten-von-Neumann

Cette thématique de recherche correspond au cas de figure (b) ci-dessus : (eq) est la suite des matrices
élémentaires.

Notons C l’ensemble des indices colonne et R l’ensemble des indices ligne de matrices, en général
deux copies de N, et soit I une partie de R × C. La propriété d’inconditionnalité de I peut aussi
se formuler ainsi : une suite I est inconditionnelle de constante D si et seulement si, pour toute
matrice ϕ à coefficients complexes (vs. réels) et pour tout x dont les coefficients de matrice sont nuls
hors de I (dont l’espace sera noté XI) on a

‖ϕ ∗ x‖ 6 D sup |ϕrc| ‖x‖,

où ϕ ∗ x est le produit de Schur (ou de Hadamard) défini par

(ϕ ∗ x)rc = ϕrcxrc.

L’opérateur de multiplication par ϕ est un multiplicateur de Schur relatif. On peut aussi décrire
les multiplicateurs de Schur relatifs comme les opérateurs diagonaux sur la suite (eq)q∈I .

Notre étude se concentrera sur les classes de Schatten-von-Neumann X = Sp dont la quasi-norme

est donnée par ‖x‖ = (tr (x∗x)p/2)
1/p

: il s’agit de la contrepartie non commutative des espaces ℓp.
Lorsque p > 1, l’espace de Banach Sp admet une structure d’espace d’opérateurs canonique qui rend
la définition suivante naturelle.

Définition 3.1. I est complètement inconditionnelle dans Sp s’il y a une constante D telle que (1)
vaut pour tout choix de signes ǫq ∈ S et toute suite de coefficients opérateurs aq ∈ Sp à support fini. Sa
constante d’inconditionnalité complète complexe (vs. réelle) est le minimum de telles constantes D.

De la même manière, on parle de la norme complète de multiplicateurs de Schur relatifs. On
ne sait pas si on définit vraiment ainsi une classe nouvelle ; ce serait répondre à la conjecture de
Gilles Pisier qu’il existe des multiplicateurs de Schur bornés sur Sp (p 6= 1, 2,∞) qui ne sont pas
complètement bornés.

Une suite inconditionnelle de matrices élémentaires dans S∞ est en fait un ensemble V-Sidon,

classe que Varopoulos a introduite dans l’étude des algèbres tensorielles c0(C)
∧
⊗ c0(R) sur des espaces

discrets (voir le théorème B.5.1 page 37 qui rassemble les résultats connus : I doit être réunion finie
d’ensembles qui soit contiennent au plus un élément par ligne, soit contiennent au plus un élément
par colonne.) Notre étude généralise ainsi les résultats de Varopoulos à toutes les classes de Schatten-
von-Neumann.

4 Suites de matrices élémentaires et graphes bipartis

Les suites inconditionnelles de matrices élémentaires forment la contrepartie matricielle des en-
sembles Λ(p) de Walter Rudin étudiés en analyse de Fourier (le cas de figure (a) de la section 1.)
Alors que l’étude des ensembles Λ(p) voit surgir naturellement leurs propriétés arithmétiques (de
théorie additive des nombres,) l’inconditionnalité de I se traduit avantageusement en termes de
théorie des graphes.

Nous allons donc considérer I comme un graphe biparti dont les deux classes (« couleurs »)
de sommets sont C et R, dont les éléments seront appelés respectivement « sommets colonne » et
« sommets ligne. » Ses arêtes (non dirigées) relient seulement des sommets ligne r ∈ R avec des
sommets colonne c ∈ C, et cela exactement lorsque (r, c) ∈ I. La matrice (χI(r, c))(r,c)∈R×C fonction
caractéristique de I est la matrice d’incidence de ce graphe biparti.

Voici deux exemples importants.

Exemple 4.1. Soit s un entier. Considérons l’ensemble

I =
{

(r, c) ∈ Z/sZ × Z/sZ : r − c ∈ {0, 1}
}
.

Le graphe biparti associé est le cycle (ligne 0, colonne 0, ligne 1, colonne 1, . . . , ligne s−1, colonne s−
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1) de longueur 2s. La matrice d’incidence de ce graphe est




0 1 ··· s−2 s−1

0 1 0
. . . 0 1

1 1 1
. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

s−2 0 0
. . . 1 0

s−1 0 0
. . . 1 1




.

Exemple 4.2. Considérons l’ensemble

I =
{

(r, c) ∈ Z/7Z × Z/7Z : r + c ∈ {0, 1, 3}
}
.

Le graphe biparti associé est le graphe de Heawood.

6

0
3

4

6

1

2

1

5 5

2

4

3
0

La matrice d’incidence de ce graphe est




0 1 2 3 4 5 6

0 1 1 0 1 0 0 0
1 1 0 1 0 0 0 1
2 0 1 0 0 0 1 1
3 1 0 0 0 1 1 0
4 0 0 0 1 1 0 1
5 0 0 1 1 0 1 0
6 0 1 1 0 1 0 0




.

5 Matrices lacunaires et inconditionnalité

Dans l’article Lacunary matrices, nous montrons que ces sous-suites doivent satisfaire la condition
de densité suivante, qui est l’analogue de la condition de maille de Walter Rudin [87, Theorem 3.5]
pour les ensembles Λ(p).

Théorème 5.1 (page 24). Si I est inconditionnelle de constante D dans Sp, alors la taille #I ′ de
tout sous-graphe I ′ induit par m sommets colonne et n sommets ligne, c’est-à-dire le cardinal de
toute partie I ′ = I ∩R′ × C′ avec #C′ = m et #R′ = n, satisfait

#I ′
6 D2

(
m1/pn1/2 +m1/2n1/p

)2
(2)

6 4D2 min(m,n)2/p max(m,n).

Les exposants de cette inégalité sont optimaux dans les trois cas suivants :

(a) si m ou n est fixé (trivial ;)

(b) si p = 4 (voir le graphe aléatoire ci-dessous ;)

(c) si p est un entier pair et m = n (voir [37, Theorem 4.8].)

Si m 6= n, nous construisons des graphes aléatoires qui testent l’inégalité (2) sans en montrer
toujours l’optimalité.
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Théorème 5.2 (page 26). Pour tout ε > 0 et tout entier pair p > 4, il existe un graphe I de taille

#I ∼
{

max(m,n)1−ε min(m,n)1/2 si p = 4
max(m,n)1/2−ε min(m,n)1/2+2/p si p > 6.

et de constante d’inconditionnalité indépendante de m et n lorsque mn → ∞.

Si p est un entier pair, nous donnons aussi une condition suffisante en termes de sentiers sur un
graphe biparti : un sentier de longueur s dans I est une suite (v0, v1, . . . , vs) de sommets alternati-
vement dans R et C telle que les arêtes reliant v0 à v1, v1 à v2, etc. correspondent à des élements
deux à deux distincts de I (alors qu’un chemin est requis d’avoir même tous ses sommets distincts et
que les sommets d’une promenade sont admis à se répéter.) Le théorème suivant est aussi l’analogue
d’un théorème de Walter Rudin.

Théorème 5.3 (page 22). Soit p un entier pair. Si le nombre de sentiers dans I de longueur p/2
entre deux sommets donnés admet une borne uniforme, alors I est inconditionnelle dans Sp.

Le calcul suivant montre le lien étroit entre la norme Sp avec p = 2s un entier pair et les
promenades fermées de longueur p dans ce graphe.

tr
∣∣∣
∑

q∈I

aqeq
∣∣∣
p

= tr
( ∑

(r,c),(r′,c′)∈I

(arcerc)∗(ar′c′ er′c′)
)s

= tr
∑

(r1,c1),(r′
1,c

′
1),...,

(rs,cs),(r′
s,c

′
s)∈I

s∏

i=1

(arici eciri)(ar′
i
c′
i
er′
i
c′
i
)

=
∑

(r1,c1),(r1,c2),...,
(rs,cs),(rs,cs+1)∈I

s∏

i=1

ariciarici+1 (où cs+1 = c1.)

Cette dernière somme est indexée par les promenades fermées (c1, r1, c2, . . . , cs, rs) de longueur p
dans le graphe associé à I !

La conjonction des théorèmes 5.1 et 5.3 donne une nouvelle preuve du théorème de Paul Erdős
selon lequel un graphe sur v sommets sans circuit de longueur paire p est de taille bornée par v1+2/p,
à une constante près (un circuit est un sentier fermé.) La généralisation de ce théorème des circuits
aux cycles (chemins fermés) par Bondy et Simonovits [12] échappe à notre méthode. L’existence de
graphes qui montreraient l’optimalité de cette estimation est une question ouverte posée par Erdős
en 1963.

6 Matrices lacunaires et 1-inconditionnalité

L’article Cycles and 1-unconditional matrices aboutit à une caractérisation des suites basiques 1-in-
conditionnelles dans Sp.

Un des ingrédients est l’étude des multiplicateurs de Schur unimodulaires sur un cycle. Nous
obtenons en particulier la proposition suivante.

Proposition 6.1 (page 41). Si p n’est pas un entier pair, alors ǫ est un multiplicateur de Schur
unimodulaire isométrique sur un cycle I pour Sp si et seulement si ǫ peut être interpolée par une
matrice de rang 1 : ǫrc = ζcηr pour (r, c) ∈ I, où ζ ∈ TC et η ∈ TR.

Esquisse de démonstration. La condition est bien suffisante : on a alors

ǫ ∗ x =




. . .

ηr
. . .


 (xrc)




. . .

ζc
. . .


 .

Étudions la nécessité. On peut supposer que le cycle I soit donné comme dans l’exemple 4.1. Soit ǫ ∈
TI une matrice de nombres unimodulaires partiellement spécifiée. Il est possible de multiplier les
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lignes et les colonnes de ǫ par des nombres complexes de module 1 de sorte que ǫ devienne la matrice
circulante

ǫ̃ =




0 1 ··· s−2 s−1

0 1 0
. . . 0 ϑ

1 ϑ 1
. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

s−2 0 0
. . . 1 0

s−1 0 0
. . . ϑ 1




(3)

avec ϑ racine sième de ǫ00ǫ10 . . . ǫs−1,s−1ǫ0,s−1. Un argument de transfert montre que la norme
du multiplicateur de Schur par ǫ̃ sur I borne le multiplicateur de Fourier relatif µ : a + bz 7→
a + ϑbz dans le groupe G des racines sièmes de l’unité, où on norme a + bz par la norme Lp :
‖a+bz‖ =

(
s−1

∑
zs=1 |a+ bz|p

)1/p
: voir la proposition 13.2 (a). Si µ est une isométrie, le théorème

d’équimesurabilité de Plotkin-Rudin montre que z et ϑz ont même distribution et donc ϑs = 1.

On peut calculer la norme exacte du multiplicateur de Schur relatif ǫ̃ sur S1
I et sur S∞

I : elle égale
la norme de µ sur L1

Λ(G) et sur L∞
Λ (G) avec Λ = {1, z} et cette norme est

maxzs=−1 |ϑ+ z|
|1 + e iπ/s|

(proposition B.7.1(d) page 41.)
Cette proposition est une des étapes dans la démonstration du théorème suivant.

Théorème 6.2 (page 42). Soit p un nombre réel strictement positif qui ne soit pas un entier pair.
Les propriétés suivantes sont équivalentes.

– I est complètement 1-inconditionnelle complexe dans Sp.

– I est 1-inconditionnelle réelle dans Sp.

– I est une réunion disjointe d’arbres, c’est-à-dire que I ne contient aucun cycle.

– Toute suite de signes complexes ǫ ∈ TI peut être interpolée par une matrice de rang 1.

– I est un ensemble de Varopoulos de V-interpolation de constante 1 : toute suite ϕ ∈ ℓ∞
I peut

être interpolée par un tenseur u ∈ ℓ∞
C

∧
⊗ ℓ∞

R avec ‖u‖ = ‖ϕ‖.

– I est un ensemble d’interpolation isométrique pour les multiplicateurs de Schur : toute suite ϕ ∈
ℓ∞
I est la restriction d’un multiplicateur de Schur sur S∞ de norme ‖ϕ‖.

Dans le cas où p est un entier pair, la combinatoire devient plus compliquée : cela se reflète dans
la proposition suivante.

Proposition 6.3 (page 41). Si p est un entier pair, alors ǫ est un multiplicateur de Schur unimo-
dulaire isométrique sur un cycle I de longueur 2s pour Sp si et seulement si p/2 ∈ {1, 2, . . . , s− 1}
ou si ǫ peut être interpolée par une matrice de rang 1.

Cette proposition est une des étapes dans la démonstration de la caractérisation suivante.

Théorème 6.4 (page 44). Soit p un entier pair. Les propriétés suivantes sont équivalentes.

– I est complètement 1-inconditionnelle complexe dans Sp.

– I est 1-inconditionnelle réelle dans Sp.

– I ne contient aucun cycle de longueur paire inférieure ou égale à p.

Illustrons ce théorème sur l’exemple 4.2. Le graphe de Heawood ne contient aucun cycle de
longueur 4 : donc la norme S4 de sa matrice d’incidence ne varie pas si on change le signe de ses
coefficients.

La propriété de ne pas contenir de cycle de longueur paire donnée a été très étudiée en théorie
des graphes. Quelle conséquence a-t-elle pour la taille du graphe ? La section suivante en propose
un résumé, à comparer aux résultats du théorème 5.1.
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7 Graphes bipartis sans cycle de longueur donnée

Proposition 7.1 (page 50). Soient 2 6 n 6 m, I ⊆ R× C avec #C = n et #R = m, et e = # I.

(a) Si I est 1-inconditionnelle dans S4 — I ne contient pas de cycle de longueur 4 — alors

n > 1 +
( e
m

− 1
)

+
( e
m

− 1
)( e

n
− 1
)
,

c’est-à-dire e2 −me−mn(n−1) 6 0. On a égalité si et seulement si I est le graphe d’incidence
d’un système de Steiner S(2, e/m;n) sur n points et m blocs (voir [9, Def. I.3.1] pour la
définition des systèmes de Steiner.)

(b) Si I est 1-inconditionnelle dans S6 — I ne contient pas de cycle de longueur 4 ni 6 — alors

n > 1 +
( e
m

− 1
)

+
( e
m

− 1
)( e

n
− 1
)

+
( e
m

− 1
)2( e

n
− 1
)
,

c’est-à-dire e3 − (m+n)e2 + 2mne−m2n2 6 0. On a égalité si et seulement si I est le graphe
d’incidence du quadrangle (le cycle de longueur 8) ou d’un quadrangle généralisé avec n points
et m lignes (voir [56, Def. 1.3.1] pour la définition des polygones généralisés ; l’exemple 4.2
décrit le plus petit quadrangle généralisé.)

(c) Si I est 1-inconditionnelle dans Sp avec p = 2k un entier pair — I ne contient pas de cycle
de longueur inférieure ou égale à p — alors

n >

k∑

i=0

( e
m

− 1
)⌈ i2 ⌉( e

n
− 1
)⌊ i2 ⌋

. (4)

On a égalité si et seulement si I est le graphe d’incidence du (k+ 1)gone (le cycle de longueur
2k + 2) ou d’un (k + 1)gone généralisé avec n points et m lignes.

Les résultats (a) et (b) ci-dessus ont été obtenus dans la note The size of bipartite graphs with
girth eight (voir pages 61 et 62), alors que le cas général résulte de travaux de Noga Alon, Shlomo
Hoory et Nathan Linial (voir [44]).

L’inégalité (4) montre que si I est 1-inconditionnelle dans S2k, alors # I 6 n1+1/k + (s− 1)n/s.
Si k /∈ {2, 3, 5, 7}, il n’existe pas de (k + 1)gones généralisés de taille arbitrairement grande et
l’existence de graphes arbitrairement grands sans cycle de longueur 2k de taille minorée par n1+1/k

à une constante près est une question importante en théorie des graphes extrémaux.
La recherche pratique de graphes extrémaux nous a amenés à écrire un algorithme implémenté en

langage C qui énumère tous les graphes bipartis d’un nombre de sommets donnés et teste l’existence
de cycles. La proposition suivante, démontrée indépendamment par Adolf Mader et Otto Mutzbauer
[55], réduit le nombre de matrices d’incidence de graphes bipartis à tester.

Proposition 7.2 (page 67). Toute matrice à coefficients 0 ou 1 peut être simultanément ordonnée
selon les ordres lexicographiques des lignes et des colonnes (c’est-à-dire l’ordre des lignes et des
colonnes lues comme des nombres binaires) par une permutation des lignes et des colonnes.

En effet, une permutation des lignes et des colonnes de la matrice d’incidence d’un graphe biparti
consiste juste à réindexer les sommets de ce graphe.

8 Matrices lacunaires et ensembles lacunaires d’un groupe

abélien discret

Voici la traduction naturelle entre inconditionnalités de Fourier et matricielle (les cas (a) et (b) de
la section 1.)

Proposition 8.1 (page 49). Soit I ⊆ R×C. Soit p ∈ [1,∞] : les propriétés suivantes sont équiva-
lentes.

– I est complètement inconditionnelle dans Sp.

– La suite de produits de Walsh de longueur deux {ǫcǫ′
r : (r, c) ∈ I} est complètement incondi-

tionnelle dans Lp({−1, 1}C × {−1, 1}R).
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– La suite de produits de deux fonctions de Steinhaus {zcz′
r : (r, c) ∈ I} est complètement incon-

ditionnelle dans Lp(TC × TR).

Soit p ∈ (0,∞] : les propriétés suivantes sont équivalentes.

– I est 1-inconditionnelle dans Sp.

– La suite {ǫcǫ′
r : (r, c) ∈ I} est 1-inconditionnelle dans Lp({−1, 1}C × {−1, 1}R).

– La suite {zcz′
r : (r, c) ∈ I} est 1-inconditionnelle dans Lp(TC × TR).

La proposition B.11.1 (page 49) décrit dans quelle mesure cette proposition reste vraie pour
d’autres groupes discrets.

9 Sous-espaces SpI 1-complémentés

En route pour ces résultats, nous obtenons aussi la caractérisation suivante.

Proposition 9.1 (page 35). Le sous-espace SpI de Sp formé des opérateurs à support dans I est
1-complémenté si et seulement si I est la réunion disjointe de graphes bipartis complets Rj × Cj :
sa matrice d’incidence est, à une permutation des colonnes et des lignes près, bloc-diagonale :




C1 C2 C3 ···

R1 (1) (0) (0) · · ·
R2 (0) (1) (0)

. . .

R3 (0) (0) (1)
. . .

...
...

. . .
. . .

. . .




.

10 Matrices de rang 1 partiellement spécifiées

Si ϕ est une matrice de rang 1, ϕ = x⊗ y, alors l’opérateur de multiplication de Schur par ϕ est de
norme sup|xr | sup|yc|. Or les exemples de calcul exact de normes de tels opérateurs sont très rares
et nous avons voulu savoir comment cette norme change lorsque ϕ agit sur un sous-espace SpI .

Théorème 10.1 (page 86). Soit I ⊂ R×C et considérons (xr)r∈R et (yc)c∈C. Alors le multiplicateur
de Schur relatif SpI donné par (xryc)(r,c)∈I est de norme sup(r,c)∈I |xryc|.

11 Propriété d’approximation métriquement inconditionnelle

dans SpI
Même si I n’est pas 1-inconditionnelle dans l’espace Sp, l’espace SpI pourrait néanmoins admettre
une autre base 1-inconditionnelle. Pour approcher de telles questions, Peter G. Casazza et Nigel
J. Kalton ont introduit la propriété (c) ci-dessous.

Définition 11.1. Soit X un espace de Banach séparable et S = T (vs. S = {−1, 1}.)

(a) Une suite (Tk) d’opérateurs sur X est une suite approximante si chaque Tk est de rang fini et
Tkx → x pour chaque x ∈ X .

(b) ([72].) Posons ∆Tk = Tk − Tk−1. L’espace X a la propriété d’approximation inconditionnelle
s’il existe une suite approximante (Tk) telle que pour une certaine constante D

∥∥∥∥
n∑

k=1

ǫk∆Tk

∥∥∥∥ 6 D pour tout n et tous ǫk ∈ S.

La constante d’inconditionnalité complexe (vs. réelle) de (Tk) est la plus petite des con-
stantes D.

(c) ([22, § 3], [32, § 8].) L’espace X a la propriété d’approximation métriquement inconditionnelle
complexe (vs. réelle) si, pour tout δ > 0, X admet une suite approximante de constante
d’inconditionnalité complexe (vs. réelle) 1 + δ.
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Voici notre description des sous-espaces SpI métriquement inconditionnels :

Theorem 11.2. On a deux cas.

– Si p ∈ [1,∞] \ {2, 4, 6, . . .} et SpI a la propriété d’approximation métriquement inconditionnelle
réelle, alors la distance d’un sommet colonne à un sommet colonne est asymptotiquement
infinie dans I : leur distance devient arbitrairement grande en effaçant un nombre fini d’arêtes
de I.

– Si p ∈ {2, 4, 6, . . .}, l’espace SpI a la propriété d’approximation métriquement inconditionnelle
complexe, ou réelle, si et seulement si deux sommets à distance 2j + 1 6 p/2 sont à distance
asymptotiquement supérieure ou égale à p− 2j + 1.

12 Inégalités matricielles

L’article Matrix inequalities with applications to the theory of iterated kernels montre l’inégalité
matricielle suivante.

Théorème 12.1 (page 52). Soit A une matrice de taille n × m à coefficients positifs et notons
somme(A) la somme de tous ses coefficients. On a

somme
( k termes︷ ︸︸ ︷
AA∗A . . . A(∗)

)
>

somme(A)k

n⌊k−1
2 ⌋m⌊ k2 ⌋

où A(∗) est A∗ ou A selon la parité de k.

Cette inégalité est la version discrète d’un théorème sur les itérés d’un noyau (voir la re-
marque C.1.4 page 53.) Si on applique cette inégalité à la matrice d’incidence d’un graphe biparti I,
on obtient une minoration optimale du nombre de promenades de longueur k en termes de la taille
de I. Dans le cas k = 3, une généralisation de cette inégalité (le théorème D.4.4 page 63) donne une
minoration optimale du nombre de chemins (voir le corollaire D.4.6 page 64.)

13 Transfert entre multiplicateurs de Schur et de Fourier

Le théorème suivant est bien connu.

Proposition 13.1. Soit Γ un groupe discret et R,C ⊆ Γ. À Λ ⊂ Γ associons I = { (r, c) ∈ R×C :
rc ∈ Λ }. À ̺ ∈ CΛ associons ϕ ∈ CI défini par ϕ(r, c) = ̺(rc) pour tout (r, c) ∈ I.

– Soit p > 0. La norme complète du multiplicateur de Schur relatif ϕ sur SpI est bornée par la
norme complète du multiplicateur de Fourier relatif ̺ sur LpΛ(τ).

– La norme du multiplicateur de Schur relatif ϕ sur S∞
I est bornée par la norme du multiplicateur

de Fourier relatif ̺ sur L∞
Λ (τ).

Une forme de réciproque peut être déduite du théorème limite de Szegő matriciel (voir le théo-
rème F.2.1 page 75.)

Proposition 13.2. Soit Γ un groupe discret moyennable et soit I ⊆ Γ × Γ un ensemble toeplitzien
au sens que I = {(r, c) ∈ Γ × Γ : rc−1 ∈ Λ} pour une partie Λ de Γ. Soit ϕ ∈ CI une matrice
toeplitzienne au le sens qu’il existe ̺ ∈ CΛ tel que ϕ(r, c) = ̺(rc−1) pour tout (r, c) ∈ I.

(a) Soit p > 0. La norme du multiplicateur de Fourier relatif ̺ sur LpΛ(τ) est le supremum de
la norme du multiplicateur de Schur relatif ϕ sur des sous-espaces de matrices de Toeplitz
tronquées dans SpI .

(b) De plus, la norme complète du multiplicateur de Fourier relatif ̺ sur LpΛ(τ) et la norme
complète du multiplicateur de Schur relatif ϕ sur SpI sont égales.

(c) La norme du multiplicateur de Fourier relatif ̺ sur L∞
Λ (τ) et la norme du multiplicateur de

Schur relatif ϕ sur S∞
I sont égales.
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14 Ensembles lacunaires somme de deux ensembles infinis

Il est bien connu que les ensembles de Sidon ne peuvent contenir la somme de deux ensembles
infinis ; Daniel Li a obtenu la même conclusion pour les ensembles Λ tels que CΛ admet une suite
approximante métriquement inconditionnelle. Nous rassemblons ces deux résultats dans le théorème
suivant.

Théorème 14.1. Soit Γ un groupe abélien discret de caractères sur un groupe abélien compact G.
Soit Λ ⊂ Γ. Si Γ contient la somme R+ C de deux ensembles infinis R et C, alors l’espace CΛ(G)
n’admet pas de suite approximante inconditionnelle.

Esquisse de preuve. On utilise l’hypothèse pour montrer qu’il existe des parties infinies R′ et C′ sur
lesquelles une somme à blocs sautés

∑
(Tkj+1 −Tkj) agit comme la projection sur la « partie triangu-

laire supérieure » de R′ +C′. Or ce multiplicateur de Fourier relatif se transfère en le multiplicateur
de Schur qu’est la projection de Riesz sur les matrices triangulaires supérieures, qui est notoirement
non bornée.

Nous obtenons ainsi une preuve élémentaire que l’algèbre du disque CN(T) n’a pas la propriété
d’approximation inconditionnelle, ni l’espace engendré par les fonctions de Walsh de longueur deux
(les produits {rirj} de deux fonctions de Rademacher) dans C({−1, 1}∞), ni l’espace engendré par
les produits {sisj} de deux fonctions de Steinhaus dans C(T∞).

Nous montrons aussi qu’un ensemble « complètement Λ(p) » ne peut contenir la somme de deux
ensembles infinis (théorème F.4.8 de la page 81.)

La preuve ci-dessus montre aussi que la constante d’inconditionnalité réelle pour les espaces
LpΛ(G) est minorée par la norme complète de la projection de Riesz sur Sp. Cela nous a motivés
pour calculer cette norme et, à défaut, la norme complète de la transformation de Hilbert matricielle.

Théorème 14.2. La norme complète de la projection de Riesz et de la transformation de Hilbert
matricielle sur Sp coïncident avec leur norme.

– Si p est un entier pair, la norme de la transformation de Hilbert matricielle est cot(π/2p)
(voir page 83).

– La norme de la projection de Riesz sur S4 est
√

2 (voir page 84).

15 Problèmes extrémaux pour les polynômes trigonométriques

Cette thématique de recherche correspond au cas de figure (a) de la question 1.1, avec R/Z comme
groupe abélien et le module maximum comme norme.

Soit Λ = {λ1, λ2, . . . , λn} un ensemble de n entiers. Pour n nombres réels positifs r1, r2, . . . , rn
et n nombres réels t1, t2, . . . , tn, considérons le polynôme trigonométrique

f(x) = r1e i(t1+λ1x) + r2 e i(t2+λ2x) + · · · + rne i(tn+λnx). (5)

La question de l’inconditionnalité dans l’espace C des fonctions continues est alors celle de la dépen-
dance du module maximum du polynôme trigonométrique f par rapport aux arguments (phases)
t1, t2, . . . , tn.

Voici quatre problèmes qui éclairent divers aspects de l’inconditionnalité.

Problème extrémal 15.1 (problème de Mandel′shtam complexe — voir [26, page 2 et le sup-
plément]). Trouver le minimum du module maximum du polynôme trigonometrique f pour des
modules de coefficients de Fourier r1, r2, . . . , rn donnés :

min
t1,t2,...,tn

max
x

|r1e i(t1+λ1x) + r2 e i(t2+λ2x) + · · · + rne i(tn+λnx)|.

Problème extrémal 15.2. Trouver le minimum du module maximum du polynôme trigonome-
trique f pour un spectre Λ, des arguments t1, t2, . . . , tn et la somme des modules r1 + r2 + · · · + rn
des coefficients de Fourier donnés :

min
r1,r2,...,rn

max
x

|r1 e i(t1+λ1x) + r2e i(t2+λ2x) + · · · + rne i(tn+λnx)|
r1 + r2 + · · · + rn

.
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Problème 15.3. Trouver le maximum de la variation du module maximum du polynôme trigono-
metrique f pour un spectre Λ et une variation des arguments ∆t1,∆t2, . . . ,∆tn donnée. En d’autres
termes, trouver la norme du multiplicateur de Fourier relatif unimodulaire par les signes e i∆t1 , e i∆t2 ,
. . . , e i∆tn :

min
r1,r2,...,rn
t1,t2,...,tn

maxx|r1e i(t1+λ1x) + r2 e i(t2+λ2x) + · · · + rne i(tn+λnx)|
maxx|r1e i(t1+∆t1+λ1x) + r2e i(t2+∆t2+λ2x) + · · · + rne i(tn+∆tn+λnx)| .

Problème extrémal 15.4 (constante de Sidon). Trouver le minimum du module maximum du
polynôme trigonometrique f pour un spectre Λ et la somme des modules r1 + r2 + · · · + rn des
coefficients de Fourier donnés :

min
r1,r2,...,rn
t1,t2,...,tn

max
x

|r1 e i(t1+λ1x) + r2e i(t2+λ2x) + · · · + rne i(tn+λnx))|
r1 + r2 + · · · + rn

.

L’inverse de ce minimum est la constante d’inconditionnalité de Λ dans l’espace des fonctions conti-
nues : c’est la constante de Sidon de Λ.

Littlewood [52] et Salem [90] se sont intéressés à ces problèmes. Ils sont aussi apparus dans
la théorie du circuit électrique, comme le raconte N. G. Chebotarëv : « L. I. Mandel′shtam m’a
communiqué un problème sur le choix des phases de courants électriques de fréquences différentes
de sorte que la capacité du courant résultant de faire sauter les fusibles soit minimal » [24, p. 396].
Ce problème est une de ses motivations pour proposer une formule pour la valeur des dérivées
directionnelles d’une fonction maximum en fonction des dérivées des fonctions dont on prend le
maximum, qui a été un peu oubliée malgré son caractère naturel.

Formule de N. G. Chebotarëv ([26, Theorem VI.3.2, (3.6)]). Soit I un ouvert de Rn et soit K

un espace compact. Soit F (t, x) une fonction réelle sur I ×K qui soit continue, ainsi que
∂F

∂t
(t, x).

Soit
F ∗(t) = max

x∈K
F (t, x).

Alors F ∗(t) admet le développement limité suivant en tout t ∈ I :

F ∗(t+ h) = F ∗(t) + max
F (t,x)=F∗(t)

〈
h,
∂F

∂t
(t, x)

〉
+ o(h). (6)

Chebotarëv utilise en particulier cette formule pour résoudre le problème d’approximation po-
lynomiale de Chebyshev et le problème du minimum d’une forme quadratique sur les entiers de
Korkin et Zolotarev.

16 Problèmes extrémaux pour les trinômes trigonométriques

Ces problèmes sont déjà intéressants dans le cas n = 3. Dans l’article The Sidon constant of sets
with three elements, nous avons résolu les problèmes extrémaux 15.1 et 15.4 pour ce cas. Nous allons
supposer, en toute généralité, que Λ est un ensemble de trois entiers λ1 < λ2 < λ3 tels que λ2 − λ1

et λ3 − λ2 sont premiers entre eux.
Il s’avère que les arguments t1, t2, t3 d’un trinôme trigonométrique

f(x) = r1e i(t1+λ1x) + r2e i(t2+λ2x) + r3e i(t3+λ3x) (7)

donnent lieu à un paramètre unique, que nous appellerons l’argument du trinôme f : la détermination
principale τ ∈ ]−π, π] de

(λ3 − λ2)t1 + (λ1 − λ3)t2 + (λ2 − λ1)t3 mod 2πZ. (8)

Nous avons ainsi établi que les arguments minimaux du problème extrémal 15.1 correspondent
à des multiples de π :

Théorème 16.1 (page 91). Soit Λ un ensemble de trois entiers. Soient r1, r2 et r3 trois réels
strictement positifs. Les arguments t1, t2, t3 résolvent le problème extrémal 15.1 si et seulement si
l’argument τ du trinôme égale π. En particulier, t1, t2 et t3 peuvent être choisis parmi 0 et π.
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Ce théorème permet de déterminer les coefficients de Fourier minimaux pour le problème extré-
mal 15.4 :

Proposition 16.2 (page 92). Le polynôme suivant résout le problème extrémal 15.4 :

f(x) = ǫ1(λ3 − λ2)e iλ1x + ǫ2(λ3 − λ1)e iλ2x + ǫ3(λ2 − λ1)e iλ3x

où ǫ1, ǫ2, ǫ3 ∈ {−1, 1} sont trois signes réels tels que

– ǫ1ǫ2 = −1 si λ2 − λ1 est pair ;

– ǫ1ǫ3 = −1 si λ3 − λ1 est pair ;

– ǫ2ǫ3 = −1 si λ3 − λ2 est pair.

La constante de Sidon de Λ égale donc cos(π/2(λ3 − λ1))−1 et les constantes d’inconditionnalité
complexes et réelles de Λ dans l’espace des fonctions continues coïncident donc pour les ensembles
Λ à trois éléments.

Nous avions entamé cette direction de recherche pour vérifier que les constantes d’incondition-
nalité complexes et réelles d’un ensemble Λ étaient bien différentes ; les ensembles à trois éléments
ne fourniront pas de contre-exemple et la question demeure ouverte.

En fait, les problèmes extrémaux 15.2 et 15.4 admettent une solution élémentaire : on ramène le
trinôme trigonométrique à la forme « normale »

r1 e−ikx + r2e iτ/(k+l) + r3e ilx (9)

avec k et l positifs et premiers entre eux et τ ∈ ]−π, π]. Alors

maxx
∣∣r1e−ikx + r2e iτ/(k+l) + r3e ilx

∣∣
r1 + r2 + r3

>

∣∣r1 + r2e iτ/(k+l) + r3

∣∣
r1 + r2 + r3

=

√
1 − 4(r1 + r3)r2

(r1 + r2 + r3)2 sin2 τ

2(k + l)

>

√
1 − sin2 τ

2(k + l)
= cos

τ

2(k + l)
,

et si r1 : r2 : r3 = l : k + l : k, le trinôme trigonométrique (9) atteint son module maximum en 0 et
satisfait r1 + r3 = r2.

17 Points extrémaux et points exposés de la boule unité de

l’espace CΛ

Si on cherche à résoudre les problèmes extrémaux 15.1, 15.2 et 15.4 par une application de la formule
de Chebotarëv (6), il est utile d’obtenir des informations sur les points x tels que « F (t, x) = F ∗(t), »
c’est-à-dire les points maximum de F (t, ·) = |f |. Par exemple, on peut déduire de cette formule qu’il
y en a plus d’un car sinon (t, x) serait un point critique de F ; or un petit calcul (lemme G.3.1
page 90) montre que ce n’est pas possible.

Voici un argument d’analyse fonctionnelle qui démontre la même chose. Comme les problèmes
ci-dessus sont linéaires, on peut limiter la recherche de polynômes trigonométriques extrémaux aux
points exposés de la boule unité K de l’espace CΛ (rappelons qu’un point P de K est exposé par un
hyperplan H si H ne coupe K qu’en P .) Pourquoi un point exposé P de K atteint-il son module
maximum en au moins deux points ? parce que la forme linéaire qui définit l’hyperplan H s’étend
en une mesure µ qui atteint sa norme sur P et on sait que P doit être de module maximum sur le
support de µ ; la mesure µ n’est pas une masse de Dirac puisqu’elle atteint sa norme uniquement en
P , de sorte que le support de µ a au moins deux points.

Dans l’article The maximum modulus of a trigonometric trinomial, nous obtenons une description
très complète des points de module maximum d’un trinôme trigonométrique (voir le théorème H.7.1
page 102) dont voici le point saillant.

Théorème 17.1. Soit Λ un ensemble de trois entiers λ1 < λ2 < λ3 tels que λ2 −λ1 et λ3 −λ2 soient
premiers entre eux. Soient r1, r2, r3 trois réels strictement positifs. Le trinôme trigonométrique

f(x) = r1e i(t1+λ1x) + r2 e i(t2+λ2x) + r3e i(t3+λ3x)
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atteint son module maximum en un point unique modulo 2π, de multiplicité 2, sauf si son argument
τ égale π : Si f atteint son module maximum en deux points modulo 2π, c’est parce que son graphe
admet un axe de symétrie.

Esquisse de démonstration. On ramène le trinôme trigonométrique f à la forme normale (9) avec de
plus τ ∈ [0, π] et on montre alors que f doit atteindre son module maximum sur le petit intervalle
[−τ/k(k + l), τ/l(k + l)] en trouvant, pour tout y hors de cet intervalle, un point x qui y soit pour
lequel |f(x)| > |f(y)|. De plus, on peut rendre cette inégalité stricte sauf si τ = π. Il reste alors à
étudier les variations de |f | sur [−τ/k(k + l), τ/l(k + l)].

La formule de Chebotarëv donne alors une nouvelle solution pour le problème extrémal 15.1.

Proposition 17.2. Le module maximum de r1 e−ikx + r2e iτ/(k+l) + r3e ilx est une fonction stricte-
ment décroissante de τ sur [0, π].

Démonstration. Restons dans le contexte de l’esquisse de démonstration ci-dessus et soit τ ∈ ]0, π[.
Soit x∗ l’unique point de module maximum pour f : on a vu que x∗ ∈ [−τ/k(k+ l), τ/l(k+ l)]. Mais
alors

|f(x)|2 = r2
1 + r2

2 + r2
3 + 2r1r3 cos

(
(k+ l)x

)
+ 2r2

(
r1 cos(τ/(k+ l) + kx) + r3 cos(τ/(k+ l) − lx)

)

et
k + l

2r2

∂|f |2
∂τ

(x∗) = −r1 sin(τ/(k + l) + kx∗) − r3 sin(τ/(k + l) − lx∗) < 0

car τ/(k + l) + kx∗ ∈ [0, τ/l] et τ/(k + l) − lx∗ ∈ [0, τ/k] ne s’annulent pas simultanémanent.

Illustrons notre propos : le module maximum de f(x) = 4e−i2x + e it + e ix est la distance
maximum de points de l’hypotrochoïde d’équation z = 4e−i2x + e ix à un point donné −e it du
plan complexe. Nous avons donc montré que si deux points de H sont simultanément à distance
maximum de −e it, alors −e it est sur un axe de symétrie de H , c’est-à-dire t ≡ π/3 mod 2π/3.

−1

−e iπ/3

Notre étude aboutit au théorème suivant, dont on peut espérer une généralisation à des ensembles
Λ plus grands.

Théorème 17.3 (page 94). Soit Λ un ensemble à trois éléments. Soit K la boule unité de l’espace
CΛ et soit P ∈ K.

– Le point P est un point exposé de K si et seulement si P est un monôme trigonométrique
e iαe iλx avec α ∈ R et λ ∈ Λ ou un trinôme trigonométrique qui atteint son module maximum,
1, en deux points modulo 2π/d. Toute forme linéaire sur CΛ atteint sa norme en un point
exposé de K.

– Le point P est un point extrémal de K si et seulement si P est un monôme trigonométrique
e iαe iλx avec α ∈ R et λ ∈ Λ ou un trinôme trigonométrique tel que 1 − |P |2 a quatre zéros
modulo 2π, comptés avec leur multiplicité.
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18 La variation du module maximum en fonction de l’argu-

ment

Nous utilisons aussi la formule de Chebotarëv pour montrer que le module maximum d’un
trinôme trigonométrique est une fonction décroissante de la valeur absolue |τ | de son argument
(voir (8)) et pour borner cette décroissance. Nous obtenons les inégalités suivantes.

Théorème 18.1 (pages 95, 95 et 96). Soit f un trinôme trigonométrique comme en (7) et varions
ses arguments de ∆t1,∆t2,∆t3. Notons f̃ le trinôme qui en résulte, τ̃ l’argument du trinôme f̃ , et
∆τ la variation de l’argument :

∆τ ≡ (λ3 − λ2)∆t1 + (λ1 − λ3)∆t2 + (λ2 − λ1)∆t3 mod 2πZ.

Si |τ̃ | > |τ |, alors

max
x

|f̃(x)| < max
x

|f(x)|

6
|r1 + r2e iτ/|λ3−λ1| + r3|
|r1 + r2e iτ |λ3−λ1| + r3| max

x
|f̃(x)| (10)

6
cos(τ/2(λ3 − λ1))
cos(τ̃ /2(λ3 − λ1))

max
x

|f̃(x)| (11)

6
cos((π − |∆τ |)/2(λ3 − λ1))

cos(π/2(λ3 − λ1))
max
x

|f̃(x)|; (12)

l’inégalité (10) est une égalité si et seulement si r1 : r3 = λ3 − λ2 : λ2 − λ1, l’inégalité (11) si et
seulement si r1 : r2 : r3 = λ3−λ2 : λ3−λ1 : λ2−λ1 et l’inégalité (12) si et seulement si de plus τ = π.
La norme du multiplicateur de Fourier relatif unimodulaire par les signes e i∆t1 , e i∆t2 , . . . , e i∆tn est
donc le facteur dans l’inégalité (12).

En particulier, le module maximum de f comme fonction de τ admet les deux minorants |r1 +
r2e iτ/|λ3−λ1| + r3| et (r1 + r2 + r3) cos(τ/2(λ3 −λ1)) sur l’intervalle [−π, π]. Illustrons-le dans le cas
particulier f(x) = 4e−i2x + e iτ/3 + e ix :

0

m

5 τ
π

m = max
x

|4e −i2x + e iτ/3 + e ix|

m = |4 + e iτ/3 + 1|

m = (4 + 1 + 1) cos(τ/6)

19 Problèmes extrémaux pour les quadrinômes trigonomé-

triques

Dans le cas Λ = {0, 1, 2, 3}, le problème extrémal 15.4 est un problème ouvert posé par Harold
S. Shapiro en 1951. Par des moyens heuristiques, nous avons conjecturé que les polynômes extrémaux
sont de la forme

i2
√

2 cosu− 1 − 3 sinu
15

+
3 + sinu

10
e ix +

3 − sinu
10

e i2x +
i2

√
2 cosu− 1 + 3 sinu

15
e i3x

où u parcourt [0, 2π[. Ces polynômes sont étudiés dans la note On the Sidon constant of {0, 1, 2, 3},
section I.4. On en déduirait que la constante de Sidon de Λ vaut 5/3, qui est sa constante d’in-
conditionnalité réelle (voir la proposition I.5.4 page 115.) Il s’agit de le démontrer et d’étudier plus
généralement les polynômes trigonométriques à quatre termes dont le module atteint son maximum
en trois points.
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Chapter A

Lacunary matrices

with Asma Harcharras and Krzysztof Oleszkiewicz.

We study unconditional subsequences of the canonical basis (erc) of elementary matrices
in the Schatten class Sp. They form the matrix counterpart to Rudin’s Λ(p) sets of
integers in Fourier analysis. In the case of p an even integer, we find a sufficient condition
in terms of trails on a bipartite graph. We also establish an optimal density condition
and present a random construction of bipartite graphs. As a byproduct, we get a new
proof for a theorem of Erdős on circuits in graphs.

1 Introduction

We study the following question on the Schatten class Sp.

(†) How many matrix coefficients of an operator x ∈ Sp must vanish so that the norm of x has a
bounded variation if we change the sign of the remaining nonzero matrix coefficients?

Let C be the set of columns and R be the set of rows for coordinates in the matrix, in general
two copies of N. Let I ⊆ R × C be the set of matrix coordinates of the remaining nonzero matrix
coefficients of x. Property (†) means that the subsequence (erc)(r,c)∈I of the canonical basis of
elementary matrices is an unconditional basic sequence in Sp: I forms a σ(p) set in the terminology
of [37, §4].

It is natural to wonder about the operator valued case, where the matrix coefficients are them-
selves operators in Sp. As the proof of our main result carries over to that case, we shall state it in
the more general terms of complete σ(p) sets.

We show that for our purpose, a set of matrix entries I ⊆ R×C is best understood as a bipartite
graph. Its two vertex classes are C and R, whose elements will respectively be termed “column
vertices” and “row vertices”. Its edges join only row vertices r ∈ R with column vertices c ∈ C, this
occurring exactly if (r, c) ∈ I.

We obtain a generic condition for σ(p) sets in the case of even p (Theorem 3.2) that generalises
[37, Prop. 6.5]. These sets reveal in fact as a matrix counterpart to Rudin’s Λ(p) sets and we are
able to transfer Rudin’s proof of [87, Theorem 4.5(b)] to a non-commutative context: his number
rs(E, n) is replaced by the numbers of Def. 2.4(b) and we count trails between given vertices instead
of representations of an integer.

We also establish an upper bound for the intersection of a σ(p) set with a finite product set
R′ × C′ (Theorem 4.2): this is a matrix counterpart to Rudin’s [87, Theorem 3.5]. In terms of
bipartite graphs, this intersection is the subgraph induced by the vertex subclasses C′ ⊆ C and
R′ ⊆ R.

The bound of Theorem 4.2 provides together with Theorem 3.2 a generalisation of a theorem by
Erdős [29, p. 33] on graphs without circuits of a given even length. In the last part of this article,
we present a random construction of maximal σ(p) sets for even integers p.

Terminology. C is the set of columns and R is the set of rows, in general both indexed by N. The
set V of all vertices is their disjoint union R ∐ C. An edge on V is a pair {v, w} ⊆ V . A graph
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on V is given by its set of edges E. A bipartite graph on V with vertex classes C and R has only
edges {r, c} such that c ∈ C and r ∈ R and may therefore be described alternatively by the set
I = { (r, c) ∈ R × C : {r, c} ∈ E }. A trail of length s in a graph is a sequence (v0, . . . , vs) of s+ 1
vertices such that {v0, v1}, . . . , {vs−1, vs} are pairwise distinct edges of the graph. A trail is a path
if its vertices are pairwise distinct. A circuit of length p in a graph is a sequence (v1, . . . , vp) of p
vertices such that {v1, v2}, . . . , {vp−1, vp}, {vp, v1} are pairwise distinct edges of the graph. A circuit
is a cycle if its vertices are pairwise distinct.

Notation. T = { z ∈ C : |z| = 1 }. Let q = (r, c) ∈ R × C. The transpose of q is q∗ = (c, r).
The entry (elementary matrix) eq = erc is the operator on ℓ2 that maps the cth basis vector on
the rth basis vector and all other basis vectors on 0. The matrix coefficient at coordinate q of
an operator x on ℓ2 is xq = tr e∗

qx and its matrix representation is (xq)q∈R×C =
∑
q∈R×C xqeq.

The Schatten class Sp, 1 6 p < ∞, is the space of those compact operators x on ℓ2 such that
‖x‖pp = tr |x|p = tr(x∗x)p/2 < ∞. For I ⊆ R × C, the entry space SpI is the space of those x ∈ Sp

whose matrix representation is supported by I: xq = 0 if q /∈ I. SpI is also the closed subspace of
Sp spanned by (eq)q∈I . The Sp-valued Schatten class Sp(Sp) is the space of those operators x from
ℓ2 to Sp such that ‖x‖pp = tr(tr |x|p) < ∞, where the inner trace is the Sp-valued analogue of the
usual trace. The Sp-valued entry space SpI (Sp) is the closed subspace spanned by the xq eq with
xq ∈ Sp and q ∈ I: xq = tr e∗

qx is the operator coefficient of x at matrix coordinate q. Thus, for
even integers p and x = (xq)q∈I =

∑
q∈I xq eq with xq ∈ Sp and I finite,

‖x‖pp =
∑

q1,...qp∈I

trx∗
q1
xq2 . . . x

∗
qp−1

xqp tr e∗
q1

eq2 . . . e
∗
qp−1

eqp .

A Schur multiplier T on SpI associated to (µq)q∈I ∈ CI is a bounded operator on SpI such that
T eq = µqeq for q ∈ I. T is furthermore completely bounded (c.b. for short) if T is bounded as the
operator on SpI (Sp) defined by T (xqeq) = µqxqeq for xq ∈ Sp and q ∈ I.

We shall stick to this harmonic analysis type notation; let us nevertheless show how these objects
are termed with tensor products: Sp(Sp) is also Sp(ℓ2 ⊗2 ℓ2) endowed with ‖x‖pp = tr ⊗ tr |x|p; one
should write xq ⊗ eq instead of xq eq; here xq = IdSp ⊗ tr((Idℓ2 ⊗ e∗

q)x); T is c.b. if IdSp ⊗ T is
bounded on Sp(ℓ2 ⊗2 ℓ2).

Acknowledgement. The first-named and last-named authors undertook this research at the Équipe
d’Analyse de l’Université Paris 6. It is their pleasure to acknowledge its kind hospitality.

2 Definitions

We use the notion of unconditionality in order to define the matrix analogue of Rudin’s “commuta-
tive” Λ(p) sets.

Definition 2.1. Let X be a Banach space. The sequence (yn) ⊆ X is an unconditional basic
sequence in X if there is a constant D such that

∥∥∥
∑

ϑncnyn

∥∥∥
X

6 D
∥∥∥
∑

cnyn

∥∥∥
X

for every real (vs. complex) choice of signs ϑn ∈ {−1, 1} (vs. ϑn ∈ T) and every finitely supported
sequence of scalar coefficients (cn). The optimalD is the real (vs. complex) unconditionality constant
of (yn) in X .

Real and complex unconditionality are isomorphically equivalent: the complex unconditionality
constant is at most π/2 times the real one. The notions of unconditionality and multipliers are
intimately connected: we have

Proposition 2.2. Let (yn) ⊆ X be an unconditional basic sequence in X and let Y be the closed
subspace of X spanned by (yn). The real (vs. complex) unconditionality constant of (yn) in X is
exactly the least upper bound for the norms ‖T ‖L (Y ), where T is the multiplication operator defined
by Tyn = µnyn, and the µn range over all real (vs. complex) numbers with |µn| 6 1.

Let us encompass the notions proposed in Question (†).

Definition 2.3. Let I ⊆ R× C and p > 2.
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(a) [37, Def. 4.1] I is a σ(p) set if (eq)q∈I is an unconditional basic sequence in Sp. This amounts
to the uniform boundedness of the family of all relative Schur multipliers by signs

Tϑ : SpI → SpI , x = (xq)q∈I 7→ Tϑx = (ϑqxq)q∈I with ϑq ∈ {−1, 1}. (A.1)

By [37, Lemma 0.5], this means that there is a constantD such that for every finitely supported
operator x = (xq)q∈I =

∑
q∈I xq eq with xq ∈ C

D−1‖x‖p 6 |||x|||p 6 ‖x‖p, (A.2)

where the second inequality is a convexity inequality that is always satisfied (see [95, Theo-
rem 8.9]) and

|||x|||pp =
∑

c

(∑

r

|xrc|2
)p/2

∨
∑

r

(∑

c

|xrc|2
)p/2

. (A.3)

(b) [37, Def. 4.4] I is a complete σ(p) set if the family of all relative Schur multipliers by signs (A.1)
is uniformly c.b. By [37, Lemma 0.5], I is completely σ(p) if and only if there is a constant
D such that for every finitely supported operator valued operator x = (xq)q∈I =

∑
q∈I xq eq

with xq ∈ Sp

D−1‖x‖p 6 |||x|||p 6 ‖x‖p, (A.4)

where the second inequality is a convexity inequality that is always satisfied and

|||x|||pp =
∑

c

∥∥∥
(∑

r

x∗
rcxrc

)1/2∥∥∥
p

p
∨
∑

r

∥∥∥
(∑

c

xrcx
∗
rc

)1/2∥∥∥
p

p
.

The notion of a complete σ(p) set is stronger than that of a σ(p) set: Inequality (A.2) amounts to
Inequality (A.4) tested on operators of the type x =

∑
q∈I xq eq with each xq acting on the same one-

dimensional subspace of ℓ2. It is an important open problem to decide whether the notions differ.
An affirmative answer would solve Pisier’s conjecture about completely bounded Schur multipliers
[78, p. 113].

Notorious examples of 1-unconditional basic sequences in all Schatten classes Sp are single co-
lumns, single rows, single diagonals and single anti-diagonals — and more generally “column sets”
(vs. “row sets”) I such that for each (r, c) ∈ I, no other element of I is in the column c (vs. row r).
These sets are called sections in [99, Def. 4.3]

We shall try to express these notions in terms of trails on bipartite graphs. We proceed as
announced in the Introduction: then each example above is a union of disjoint star graphs in which
one vertex of one class is connected to some vertices of the other class: trails in a star graph have
at most length 2.

Definition 2.4. Let I ⊆ R×C and s > 1 an integer. We consider I as a bipartite graph: its vertex
set is V = R ∐ C and its edge set is E =

{
{r, c} ⊆ V : (r, c) ∈ I

}
.

(a) The sets of trails of length s on the graph I from the column (vs. row) vertex v0 to the vertex
vs are respectively

C s(I; v0, vs) = { (v0, . . . , vs) ∈ V s+1 : v0 ∈ C & all {vi, vi+1} ∈ E are distinct },

Rs(I; v0, vs) = { (v0, . . . , vs) ∈ V s+1 : v0 ∈ R & all {vi, vi+1} ∈ E are distinct }.
(b) We define the Rudin numbers of trails starting respectively with a column vertex and a row

vertex by cs(I; v0, vs) = #C s(I; v0, vs) and rs(I; v0, vs) = #Rs(I; v0, vs).

Remark 2.5. In other words, for an integer l > 1,

c2l−1(I; v0, v2l−1) = #
[
(r1, c1), (r1, c2), (r2, c2), (r2, c3), . . . , (rl, cl)
pairwise distinct in I : c1 = v0, rl = v2l−1

]

c2l(I; v0, v2l) = #
[
(r1, c1), (r1, c2), . . . , (rl, cl), (rl, cl+1)
pairwise distinct in I : c1 = v0, cl+1 = v2l

]

and similarly for rs(I; v0, vs). If s is odd, then cs(I; v0, vs) = rs(I; vs, v0) for all (v0, vs) ∈ C × R.
But if s is even, one Rudin number may be bounded while the other is infinite: see [37, Rem. 6.4(ii)].
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3 σ(p) sets as matrix Λ(p) sets

We claim the following result.

Theorem 3.1. Let I ⊆ R × C and p = 2s be an even integer. If I is a union of sets I1, . . . , Il
such that one of the Rudin numbers cs(Ij ; v0, vs) or rs(Ij ; v0, vs) is a bounded function of (v0, vs),
for each j, then I is a complete σ(p) set.

This follows from Theorem 3.2 below: the union of two complete σ(p) sets is a complete σ(p)
set by [37, Rem. after Def. 4.4]; furthermore the transposed set I∗ = { q∗ : q ∈ I } ⊆ C × R is a
complete σ(p) set provided I is. Note that the case of σ(∞) sets (see [37, Rem. 4.6(iii)]) provides
evidence that Theorem 3.1 might be a characterisation of complete σ(p) sets for even p.

Theorem 3.2. Let I ⊆ R × C and p = 2s be an even integer. If the Rudin number cs(I; v0, vs) is
a bounded function of (v0, vs), then I is a complete σ(p) set.

This is proved for p = 4 in [37, Prop. 6.5]. We wish to emphasise that the proof below follows
the scheme of the proof of [37, Theorem 1.13]. In particular, we make crucial use of Pisier’s idea to
express repetitions by dependent Rademacher variables ([37, Prop. 1.14]).

Proof. Let x =
∑

q∈I xq eq with xq ∈ Sp. We have the following expression for ‖x‖p.

‖x‖pp = tr ⊗ tr(x∗x)s = ‖y‖2
2 with y =

s terms︷ ︸︸ ︷
x∗xx∗ · · ·x(∗),

i.e., y is the product of s terms which are alternatively x∗ and x, and we set x(∗) = x for even s,
x(∗) = x∗ for odd s. Set C(∗) = C for even s and C(∗) = R for odd s. Let (v0, vs) ∈ C × C(∗) and
yv0vs = tr e∗

v0vsy be the matrix coefficient of y at coordinate (v0, vs). Then we obtain by the rule of
matrix multiplication

y =
∑

q1,...,qs∈I

(x∗
q1

e∗
q1

)(xq2 eq2 ) . . . (x(∗)

qs e(∗)

qs)

yv0vs =
∑

(v1,v0), (v1,v2),...∈I

x∗
v1v0

xv1v2x
∗
v3v2

. . . x(∗)

(vs−1,vs)(∗) . (A.5)

Let E be the set of equivalence relations on {1, . . . , s}. Then

y =
∑

∼∈E

∑

i∼j⇔qi=qj

(x∗
q1

e∗
q1

)(xq2 eq2) . . . (x(∗)

qs e(∗)

qs). (A.6)

We shall bound the sum above in two steps.
(a) Let ∼ be equality and consider the corresponding term in the sum (A.6). The number of terms

in the sum (A.5) such that {vi−1, vi} 6= {vj−1, vj} if i 6= j is cs(I; v0, vs). If c is an upper bound for
cs(I; v0, vs), we have by the expression of the Hilbert–Schmidt norm and the Arithmetic-Quadratic
Mean Inequality

∥∥∥
∑

q1,...,qs
pairwise distinct

(x∗
q1

e∗
q1

)(xq2 eq2 ) . . . (x(∗)

qs e(∗)

qs)
∥∥∥

2

2

=
∑

(v0,vs)∈C×C(∗)

∥∥∥
∑

v∈C
s(I;v0,vs)

x∗
v1v0

xv1v2x
∗
v3v2

. . . x(∗)

(vs−1,vs)(∗)

∥∥∥
2

2

6 c
∑

(v0,vs)∈C×C(∗)

∑

v∈C
s(I;v0,vs)

∥∥∥x∗
v1v0

xv1v2x
∗
v3v2

. . . x(∗)

(vs−1,vs)(∗)

∥∥∥
2

2

= c
∑

q1,...,qs
pairwise distinct

∥∥(x∗
q1

e∗
q1

)(xq2 eq2) . . . (x(∗)

qs e(∗)

qs)
∥∥2

2

6 c
∑

q1,...,qs

∥∥(x∗
q1

e∗
q1

)(xq2 eq2) . . . (x(∗)

qs e(∗)

qs)
∥∥2

2

= c
∥∥∥
∑

q1,...,qs

|(x∗
q1

e∗
q1

)(xq2 eq2 ) . . . (x(∗)

qs e(∗)

qs)|2
∥∥∥

1
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Now this last expression may be bounded accordingly to [37, Cor. 0.9] by

c
(∥∥∥
∑

(x∗
q e∗
q)(xq eq)

∥∥∥
s

∨
∥∥∥
∑

(xq eq)(x∗
q e∗
q)
∥∥∥
s

)s
= c|||x|||pp : (A.7)

see [37, Lemma 0.5] for the last equality.
(b) Let ∼ be distinct from equality. The corresponding term in the sum (A.6) cannot be bounded

directly. Consider instead

Ψ(∼) =
∥∥∥

∑

i∼j⇒qi=qj

(x∗
q1

e∗
q1

)(xq2 eq2) . . . (x(∗)

qs e(∗)

qs)
∥∥∥

2
=
∥∥∥

∑

i∼j⇒qi=qj

s∏

i=1

fi(qi)
∥∥∥

2

with fi(q) = xq eq for even i and fi(q) = x∗
q e∗
q for odd i. We may now apply Pisier’s Lemma [37,

Prop. 1.14]: let 0 6 r 6 s− 2 be the number of one element equivalence classes modulo ∼; then

Ψ(∼) 6 ‖x‖rp(B|||x|||p)s−r, (A.8)

where B is the constant arising in Lust-Piquard’s non-commutative Khinchin inequality. In order
to finish the proof, one does an induction on the number of atoms of the partition induced by ∼,
along the lines of step 2 of the proof of [37, Theorem 1.13].

The Moebius inversion formula for partitions enabled Pisier [77] to obtain the following explicit
bounds in the computation above:

‖y‖2 6 c1/2|||x|||sp +
∑

06r6s−2

(
s

r

)
(s− r)!‖x‖rp

(
(3π/4)|||x|||p

)s−r

‖x‖p 6
(
(4c)1/p ∨ 9πp/8

)
|||x|||p. (A.9)

Let us also record the following consequence of his study of p-orthogonal sums. The family (xq eq)q∈I

is p-orthogonal in the sense of [77] if and only if the graph associated to I does not contain any
circuit of length p, so that we have by [77, Theorem 3.1]:

Theorem 3.3. Let p > 4 be an even integer. If I does not contain any circuit of length p, then I
is a complete σ(p) set with constant at most 3πp/2.

Remark 3.4. Pisier proposed to us the following argument to deduce a weaker version of Theorem 3.2
from [37, Theorem 1.13]. Let Γ = TV and zv denote the vth coordinate function on Γ. Associate to
I the set Λ = { zrzc : (r, c) ∈ I }. Let still p = 2s be an even integer. Then I is a complete σ(p) set
if Λ is a complete Λ(p) set as defined in [37, Def. 1.5], which in turn holds if Λ has property Z(s) as
given in [37, Def. 1.11]. It turns out that this condition implies the uniform boundedness of

ct(I; v0, vt) ∨ rt(I; v0, vt) for t 6 s, v0, vt ∈ V .

For p > 8, this implication is strict: in fact, the countable union of disjoint cycles of length 4
(“quadrilaterals”)

I =
⋃

i>0

{
(2i, 2i), (2i, 2i+ 1), (2i+ 1, 2i+ 1), (2i+ 1, 2i)

}

satisfies ct(I; v0, vt) ∨ rt(I; v0, vt) 6 2 whereas Λ does not satisfy Z(s) for any s > 4.

Remark 3.5. Theorem 3.1 is especially useful to construct c.b. Schur multipliers: by [37, Rem. 4.6(ii)],
if I is a complete σ(p) set, there is a constant D (the constant D in (A.4)) such that for every se-
quence (µq) ∈ CR×C supported by I and every operator Tµ : (xq) 7→ (µqxq) we have

‖Tµ‖L (Sp(Sp)) 6 D sup
q∈I

|µq|.
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4 The intersection of a σ(p) set with a finite product set

Let I ⊆ R×C considered as a bipartite graph as in the Introduction and let I ′ ⊆ I be the subgraph
induced by the vertex set C′ ∐ R′, with C′ ⊆ C a set of m column vertices and R′ ⊆ R a set of n
row vertices. In other words, I ′ = I ∩R′ × C′. Let d(v) be the degree of the vertex v ∈ C′ ∐R′ in
I ′: in other words,

∀c ∈ C′ d(c) = #[I ′ ∩R′ × {c}],

∀r ∈ R′ d(r) = #[I ′ ∩ {r} × C′].

Let us recall that the dual norm of (A.3) is

|||x|||p′ = inf
α,β∈Sp

′

α+β=x

(∑

c

(∑

r

|αrc|2
)p′/2

)1/p′

+
(∑

r

(∑

c

|βrc|2
)p′/2

)1/p′

,

where p > 2 and 1/p+ 1/p′ = 1 (see [37, Rem. after Lemma 0.5]).

Lemma 4.1. Let 1 6 p′ 6 2 and x =
∑

q∈I′ xq. Then

|||x|||p
′

p′ >
∑∑

(r,c)∈I′

(
max

(
d(c), d(r)

)1/2−1/p′

|xrc|
)p′

.

Proof. By the p′-Quadratic Mean Inequality and by Minkowski’s Inequality,

(∑

c∈C′

( ∑

(r,c)∈I′

|αrc|2
)p′/2

)1/p′

+
(∑

r∈R′

( ∑

(r,c)∈I′

|βrc|2
)p′/2

)1/p′

>

(∑

c∈C′

d(c)p
′/2−1

∑

(r,c)∈I′

|αrc|p
′
)1/p′

+
(∑

r∈R′

d(r)p
′/2−1

∑

(r,c)∈I′

|βrc|p
′
)1/p′

>

(∑∑

(r,c)∈I′

(
d(c)1/2−1/p′ |αrc| + d(r)1/2−1/p′ |βrc|

)p′)1/p′

The lemma follows by taking the infimum over all α, β with αq + βq = xq for q ∈ I ′ as one can
suppose that αq = βq = 0 if q /∈ I; note further that 1/2 − 1/p′ 6 0.

Theorem 4.2. If I is a σ(p) set with constant D as in (A.2), then the size #I ′ of any subgraph
I ′ induced by m column vertices and n row vertices, in other words the cardinal of any subset
I ′ = I ∩R′ × C′ with #C′ = m and #R′ = n, satisfies

#I ′
6 D2

(
m1/pn1/2 +m1/2n1/p

)2
(A.10)

6 4D2 min(m,n)2/p max(m,n).

The exponents in this inequality are optimal even for a complete σ(p) set I in the following cases:
(a) if m or n is fixed;
(b) if p is an even integer and m = n.

Bound (A.10) holds a fortiori if I is a complete σ(p) set. Density conditions thus do not so far
permit to distinguish σ(p) sets and complete σ(p) sets. One may conjecture that Inequality (A.10) is
also optimal for p not an even integer and m = n: this would be a matrix counterpart to Bourgain’s
theorem [14] on maximal Λ(p) sets.

Proof. If (A.2) holds, then ‖x|I′‖p 6 D|||x|||p for all x ∈ Sp by Remark 3.5 applied to (µq) the
indicator function of I ′, and by duality |||x|I′ |||p′ 6 D‖x‖p′ for all x ∈ Sp

′

(compare with [37,
Rem. 4.6(iv)]). Let

y =
∑∑

(r,c)∈I′

d(c)1/p′−1/2erc,

z =
∑∑

(r,c)∈I′

d(r)1/p′−1/2erc,
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Then the n rows of y are all equal, as well as the m columns of z: y and z have rank 1 and a single
singular value. By the norm inequality followed by the (2/p′ − 1)-Arithmetic Mean Inequality,

‖y + z‖p′ 6 ‖y‖p′ + ‖z‖p′

= n1/2
(∑

c∈C′

d(c)2/p′−1
)1/2

+m1/2
(∑

r∈R′

d(r)2/p′−1
)1/2

6 n1/2m1−1/p′

(#I ′)1/p′−1/2 +m1/2n1−1/p′

(#I ′)1/p′−1/2.

We used that
∑
c∈C′ d(c) =

∑
r∈R′ d(r) = #I ′. By Lemma 4.1 applied to x = y + z,

(#I ′)1/p′

6 D(n1/2m1−1/p′

+m1/2n1−1/p′

)(#I ′)1/p′−1/2,

and we get therefore the first part of the theorem.
Let us show optimality in the given cases.
(a) Suppose that n is fixed and C′ = C: I ′ = R′ ×C is a complete σ(p) set for any p as a union

of n rows and #I ′ = n ·m.
(b) is proved in [37, Theorem 4.8].

Remark 4.3. If n ≁ m, the method used in [37, Theorem 4.8] does not provide optimal σ(p) sets
but the following lower bound. Let p = 2s with s > 2 an integer. Consider a prime q and let
k = ss−1qs. By [87, 4.7] and [37, Theorem 2.5], there is a subset F ⊆ {0, . . . , k− 1} with q elements
whose complete Λ(2s) constant is independent of q. Let m > k and 0 6 n 6 m and consider the
Hankel set

I =
{

(r, c) ∈ {0, . . . , n− 1} × {0, . . . ,m− 1} : r + c ∈ F +m− k
}
.

Then the complete σ(p) constant of I is independent of q by [37, Prop. 4.7] and

#I >

{
nq if n 6 m− k + 1
(m− k + 1)q if n > m− k + 1.

If we choose m = (s+ 1)k − 1, this yields

#I >
s1/s

(s+ 1)1+1/s
min(n,m) max(m,n)1/s.

Random construction 6.1 provides bigger sets than this deterministic construction; however, it also
does not provide sets that would show the optimality of Inequality (A.10) unless s = 2.

5 Circuits in graphs

Non-commutative methods yield a new proof to a theorem of Erdős [29, p. 33]. Note that its
generalisation by Bondy and Simonovits [12] is stronger than Theorem 5.1 below as it deals with
cycles instead of circuits. By Theorem 3.3 and (A.10)

Theorem 5.1. Let p > 4 be an even integer. If G is a nonempty graph on v vertices with e edges
without circuit of length p, then

e 6 18π2p2 v1+2/p.

If G is furthermore a bipartite graph whose two vertex classes have respectively m and n elements,
then

e 6 9π2p2 min(m,n)2/p max(m,n). (A.11)

Proof. For the first assertion, recall that a graph G with e edges contains a bipartite subgraph with
more than e/2 edges (see [11, p. xvii]).

Remark 5.2. Łuczak showed to us that (A.11) cannot be optimal if m and n are of very different
order of magnitude. In particular, let p be a multiple of 4. Let e′ be the maximal number of edges
of a graph on n vertices without circuit of length p/2. If m > pe′, he shows that (A.11) may be
replaced by e < 3m.
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We also get the following result, which enables us to conjecture a generalisation of the theorems
of Erdős and Bondy and Simonovits.

Theorem 5.3. Let G be a nonempty graph on v vertices with e edges. Let s > 2 be an integer.
(i) If

e > 8D2 v1+1/s with D > 9πs/4,

then one may choose two vertices v0 and vs such that G contains more than D2s/4 pairwise distinct
trails from v0 to vs, each of length s and with pairwise distinct edges.

(ii) One may draw the same conclusion if G is a bipartite graph whose two vertex classes have
respectively m and n elements and

e > 4D2 min(m,n)1/s max(m,n) with D > 9πs/4.

Proof. (i) According to [11, p. xvii], the graph G contains a bipartite subgraph with more than e/2
edges, so that we may apply (ii).

(ii) Combining inequalities (A.9) and (A.10), if D > 9πs/4, then there are vertices v0 and vs
such that the number c of pairwise distinct trails from v0 to vs, each of length s and with pairwise
distinct edges, satisfies (4c)1/2s > D.

Two paths with equal endvertices are called independent if they have only their endvertices in
common.

Question 5.4. Let G be a graph on v vertices with e edges. Let s, l > 2 be integers. Is it so that
there is a constant D such that if e > Dv1+1/s, then G contains l pairwise independent paths of
length s with equal endvertices?

Remark 5.5. Note that by Theorem 4.2, the exponent 1+1/s is optimal in Theorem 5.3(i), whereas
optimality of the exponent 1 + 2/p in Theorem 5.1 is an important open question in Graph Theory
(see [49]).

One may also formulate Theorem 5.3(ii) in the following way.

Theorem 5.6. If a bipartite graph G2(n,m) with n and m vertices in its two classes avoids any
union of c pairwise distinct trails along s pairwise distinct edges between two given vertices as a
subgraph, where the class of the first vertex is fixed, then the size e of the graph satisfies

e 6 4 max((4c)1/2s, 9πs/4)) min(m,n)1/s max(m,n).

6 A random construction of graphs

Let us precise our construction of a random graph.

Random construction 6.1. Let C,R be two sets such that #C = m and #R = n. Let 0 6 α 6 1.
A random bipartite graph on V = C ∐ R is defined by selecting independently each edge in E ={

{r, c} ⊆ V : (r, c) ∈ R×C
}

with the same probability α. The resulting random edge set is denoted
by E′ ⊆ E and I ′ ⊆ R× C denotes the associated random subset.

Our aim is to construct large sets while keeping down the Rudin number cs.

Theorem 6.2. For each ε > 0 and for each integer s > 2, there is an α such that Random
construction 6.1 yields subsets I ′ ⊆ R × C with size

#I ′ ∼ min(m,n)1/2+1/s max(m,n)1/2−ε

and with σ(2s) constant independent of m and n for mn → ∞.

Proof. Let us suppose without loss of generality that m > n. We want to estimate the Rudin number
of trails in I ′. Set C(∗) = C for even s, C(∗) = R for odd s and let (v0, vs) ∈ C ×C(∗). Let l > 1 be a
fixed integer. Then

P[cs(I ′; v0, vs) > l] = P[∃ l distinct trails (vj0, . . . , v
j
s) in C s(I ′; v0, vs)]

= P[E′ ⊇
{

{vji−1, v
j
i }
}
i,j

: {(vj0, . . . , v
j
s)}lj=1 ⊆ C s(R × C; v0, vs) ]

6

ls∑

k=⌈l1/s⌉

#Ak · αk,
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where Ak is the following set of l-element subsets of trails in C s(R×C; v0, vs) built with k pairwise
distinct edges

Ak =
{

{(vj0, . . . , v
j
s)}lj=1 ⊆ C s(R× C; v0, vs) : #

{
{vji−1, v

j
i }
}
i,j

= k
}

;

the lower limit of summation is ⌈l1/s⌉ because one can build at most ks pairwise distinct trails of
length s with k pairwise distinct edges.

In order to estimate #Ak, we now have to bound the number of pairwise distinct vertices and
the number of pairwise distinct column vertices in each set of l trails {(vj0, . . . , v

j
s)}lj=1 ∈ Ak. We

claim that

#{ vji : 1 6 i 6 s− 1, 1 6 j 6 l } 6 k(s− 1)/s, (A.12)

#{ vj2i : 1 6 i 6 ⌈s/2⌉ − 1, 1 6 j 6 l } 6 k/2. (A.13)

The second estimate is trivial, because each column vertex vj2i accounts for two distinct edges
{vj2i−1, v

j
2i} and {vj2i, vj2i+1}. For the first estimate, note that each maximal sequence of h consecutive

pairwise distinct vertices (vja+1, . . . , v
j
a+h) accounts for h+ 1 pairwise distinct edges

{vja, vja+1}, {vja+1, v
j
a+2}, . . . , {vja+h, v

j
a+h+1};

as h 6 s− 1, h+ 1 > hs/(s− 1). By (A.12) and (A.13),

#Ak 6 mk/2nk/2−k/s(k − k/s)ls−l 6 (ls)lsmk/2nk/2−k/s :

each element of Ak is obtained by a choice of at most k − k/s vertices, of which at most k/2 are
column vertices, and the choice of an arrangement with repetitions of ls− l out of at most k − k/s
vertices.

Put α = m−1/2n−1/2+1/s(#C · #C(∗))−ε. Then

P[ sup
(v0,vs)

cs(I ′; v0, vs) > l] 6 #C · #C(∗) · (ls)ls
ls∑

k=⌈l1/s⌉

(#C · #C(∗))−kε

6 (ls)ls
(#C · #C(∗))1−⌈l1/s⌉ε

1 − (#C · #C(∗))−ε
.

Choose l such that ⌈l1/s⌉ε > 1. Then this probability is little for mn large. On the other hand, #I ′

is of order mnα with probability close to 1.

Remark 6.3. This construction yields much better results for s = 2. Keeping the notation of the
proof above and m > n, we get k = 2l, Ak =

(
n
l

)
and

P[ sup
(v0,v2)∈C×C

c2(I ′; v0, v2) > l] 6 m2

(
n

l

)
α2l.

Let l > 2 and α = m−1/ln−1/2. This yields sets I ′ ⊆ R × C with size

#I ′ ∼ n1/2m1−1/l

and with σ(4) constant independent of m and n. This case has been extensively studied in Graph
theory as the “Zarankiewicz problem:” if c2(I ′; v0, v2) 6 l for all v0, v2 ∈ C, then the graph I ′ does
not contain a complete bipartite subgraph on any two column vertices v0, v2 and l+ 1 row vertices.
Reiman (see [11, Theorem VI.2.6]) showed that then

#I ′
6
(
lnm(m− 1) + n2/4

)1/2
+ n/2 ∼ l1/2n1/2m.

With use of finite projective geometries, he also showed that this bound is optimal for

n = l
qr+1 − 1
q2 − 1

qr − 1
q − 1

, m =
qr+1 − 1
q − 1

with q a prime power and r > 2 an integer, and thus with m 6 n: there seems to be no constructive
example of extremal graphs with c2(I ′; v0, v2) 6 l and m > n besides the trivial case of complete
bipartite graphs with m > n = l − 1.
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Remark 6.4. In the case s = 3, our result cannot be improved just by refining the estimation of #Ak.
If we consider first l distinct paths that have their second vertex in common and then l independent
paths, we get

#A2l+1 >

(
m

l

)
n , #A3l >

(
m

l

)(
n

l

)
.

Therefore any choice of α as a monomial m−tn−u in the proof above must satisfy t > (l+1)/(2l+1),
t+ u > (2l+ 2)/(3l) and this yields sets with

#I ′
4 m1/2−1/2(4l+2)n5/6−(7l+6)/(12l2+6l).
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Chapter B

Cycles and 1-unconditional

matrices

1 Introduction

The starting point for this investigation has been the following isometric question on the Schatten-
von-Neumann class Sp.

Question 1.1. Which matrix coefficients of an operator x ∈ Sp must vanish so that the norm of x
does not depend on the argument, or on the sign, of the remaining nonzero matrix coefficients?

Let C be the set of columns and R be the set of rows for coordinates in the matrix. Let I ⊆ R×C
be the set of matrix coordinates of the nonzero matrix coefficients of x (the pattern.) Question 1.1
describes the notion of a complex, or real, 1-unconditional basic sequence (erc)(r,c)∈I of elementary
matrices in Sp (see Definition 4.1.)

By a convexity argument, Question 1.1 is equivalent to the following question on Schur multi-
plication.

Question 1.2. Which matrix coefficients of an operator x ∈ Sp must vanish so that for all matrices
ϕ of complex, or real, numbers

‖ϕ ∗ x‖ 6 sup |ϕrc| ‖x‖,
where ϕ ∗ x is the Schur (or Hadamard or entrywise) product defined by

(ϕ ∗ x)rc = ϕrcxrc?

In the case p = ∞, Grothendieck’s inequality yields an estimation for the norm of Schur mul-

tiplication by ϕ in terms of the projective tensor product ℓ∞
C

∧
⊗ ℓ∞

R : this norm is equivalent to the

supremum of the norm of those elements of ℓ∞
C

∧
⊗ ℓ∞

R whose coefficient matrices are finite submatrices
of ϕ. In the framework of tensor algebras over discrete spaces, Question 1.2 turns out to describe as
well the isometric counterpart to Varopoulos’ V-Sidon sets as well as to his sets of V-interpolation.
The following isometric question has however a different answer.

Question 1.3. Which coefficients of a tensor u ∈ ℓ∞
C

∧
⊗ ℓ∞

R must vanish so that the norm of u is the
maximal modulus of its coefficients?

In our answer to Question 1.2, Sp and Schur multiplication are treated as a noncommutative
analogue to Lp and convolution. The main step is a careful study of the Schatten-von-Neumann
norm ‖x‖ =

(
tr(x∗x)p/2

)1/p
for p an even integer. The rule of matrix multiplication provides an

expression for this norm as a series in the matrix coefficients of x and their complex conjugate,
indexed by the puples (v1, v2, . . . , vp) satisfying (v2i−1, v2i), (v2i+1, v2i) ∈ I, where vp+1 = v1: see
the computation in Eq. (B.11). These are best understood as closed walks of length p on the bipartite
graph G canonically associated to I: its vertex classes are C and R and its edges are given by the
couples in I. A structure theorem for closed walks and a detailed study of the particular case in
which G is a cycle yield the two following theorems that answer Questions 1.1 and 1.2.

Theorem 1.4. Let p ∈ (0,∞] \ {2, 4, 6, . . .}. If the sequence of elementary matrices (erc)(r,c)∈I is a
real 1-unconditional basic sequence in Sp, then the graph G associated to I contains no cycle. In this
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case, I is even a set of V-interpolation with constant 1: every sequence ϕ ∈ ℓ∞
I may be interpolated

by a tensor u ∈ ℓ∞
C

∧
⊗ ℓ∞

R such that ‖u‖ = ‖ϕ‖.

Theorem 1.5. Let p ∈ {2, 4, 6, . . .}. The sequence (erc)(r,c)∈I is a complex, or real, 1-unconditional
basic sequence in Sp if and only if G contains no cycle of length 4, 6, . . . , p.

These theorems hold also for the complete counterparts to 1-unconditional basic sequences in
the sense of Def. 4.1(c).

In particular, if we denote by Up the property that (erc)(r,c)∈I is a 1-unconditional basic sequence
in Sp, then we obtain the following hierarchy:

Up for a p ∈ (0,∞] \ {2, 4, 6, . . .} ⇒ · · · ⇒ U2n+2 ⇒ U2n ⇒ · · · ⇒ U2 .

If C and R are finite, extremal graphs without cycles of given lengths remain an ongoing area
of research in graph theory. Finite geometries seem to provide all known examples of such graphs
when C and R become large. Proposition 11.6 and Remark 11.7 gather up known facts on this
issue.

One may also avoid the terminology of graph theory and give an answer in terms of polygons
drawn in a matrix by joining matrix coordinates with sides that follow alternately the row (hori-
zontal) and the column (vertical) direction of the matrix:

– Suppose that p is not an even integer. If a pattern I contains the vertices of such a polygon,
then there is an operator x ∈ Sp whose matrix coefficients vanish outside I and whose norm
depends on the sign of its matrix coefficients. This condition is also necessary.

– If matrix coordinates of nonzero matrix coefficients of x are the vertices of such a polygon with
n sides, then the norm of x in Sp depends on the argument of its matrix coefficients for every
even integer p > n; if the matrix coefficients of x are real, then the norm of x even depends
on the sign of its matrix coefficients. These conditions are also necessary.

An elementary example is given by the set

I =
{

(r, c) ∈ Z/7Z × Z/7Z : r + c ∈ {0, 1, 3}
}
. (B.1)

The associated bipartite graph is known as the Heawood graph (Fig. B.1:) it is the incidence graph
of the Fano plane (the finite projective plane PG(2, 2),) which is the smallest generalised triangle,
and corresponds to the Steiner system S(2, 3; 7). It contains no cycle of length 4, but every pair of
vertices is contained in a cycle of length 6.

6

0
3

4

6

1

2

1

5 5

2

4

3
0

Figure B.1: The Heawood graph

Thus the p-trace norm of every matrix with pattern




0 1 2 3 4 5 6

0 ∗ ∗ 0 ∗ 0 0 0
1 ∗ 0 ∗ 0 0 0 ∗
2 0 ∗ 0 0 0 ∗ ∗
3 ∗ 0 0 0 ∗ ∗ 0
4 0 0 0 ∗ ∗ 0 ∗
5 0 0 ∗ ∗ 0 ∗ 0
6 0 ∗ ∗ 0 ∗ 0 0
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does not depend on the sign of its coefficients if and only if p ∈ {2, 4}.
These results give a complete description of the situation in which (erc)(r,c)∈I is a 1-uncondi-

tional basis of the space SpI it spans in Sp. If this is not the case, SpI might still admit some other
1-unconditional basis. This leads to the following more general question.

Question 1.6. For which sets I does SpI admit some kind of almost 1-unconditional finite dimensional
expansion of the identity?

The metric unconditional approximation property (muap) provides a formal definition for the
object of Question 1.6: see Def. 10.1. We obtain the following results.

Theorem 1.7. Let p ∈ [1,∞] \ {2, 4, 6, . . .}. If SpI has real (muap), then the distance of any two
vertices that are not in the same vertex class is asymptotically infinite in G: their distance becomes
arbitrarily large by deleting a finite number of edges from G.

Theorem 1.8. Let p ∈ {2, 4, 6, . . .}. The space SpI has complex, or real, (muap) if and only if any
two vertices at distance 2j + 1 6 p/2 are asymptotically at distance at least p− 2j + 1.

We now turn to a detailed description of this article. In Section 2, we provide tools for the
computation of Schur multiplier norms. Section 3 characterises idempotent Schur multipliers and

0, 1-tensors in ℓ∞
C

∧
⊗ ℓ∞

R of norm 1. In Section 4, we define the complex and real unconditional
constants of basic sequences of elementary matrices and show that they are not equal in general.
Section 5 looks back on Varopoulos’ results about tensor algebras over discrete spaces. Section 6
puts the connection between p-trace norm and closed walks of length p in the concrete form of closed
walk relations. In Section 7, we compute the norm of relative Schur multipliers by signs in the case
that G is a cycle, and estimate the corresponding unconditional constants. Section 8 is dedicated
to a proof of Th. 1.4 and an answer to Question 1.3. Section 9 establishes Th. 1.5. In Section 10,
we study the metric unconditional approximation property for spaces SpI . The final section provides
four kinds of examples: sets obtained by a transfer of n-independent subsets of a discrete abelian
group, Hankel sets, Steiner systems and Tits’ generalised polygons.

Terminology. C is the set of columns and R is the set of rows, both finite or countable and if
necessary indexed by natural numbers. V , the set of vertices, is their disjoint union C ∐R: if there
is a risk of confusion, an element n ∈ V that is a column (vs. a row) will be referred to as “col n”
(vs. “row n”.) An edge on V is a pair {v, w} ⊆ V . A graph on V is given by a set of edges E. A
bipartite graph on V with vertex classes C and R has only edges {r, c} such that c ∈ C and r ∈ R
and may therefore be given alternatively by the set of couples I =

{
(r, c) ∈ R×C : {r, c} ∈ E

}
: this

will be our custom throughout the article. A bipartite graph on V is complete if its set of couples
I is the whole of R × C. Two graphs are disjoint if so are the sets of vertices of their edges. I is a
column section if (r, c), (r′, c) ∈ I ⇒ r = r′, and a row section if (r, c), (r, c′) ∈ I ⇒ c = c′.

A walk of length s > 0 in a graph is a sequence (v0, . . . , vs) of s+ 1 vertices such that {v0, v1},
. . . , {vs−1, vs} are edges of the graph. A walk is a path if its vertices are pairwise distinct. The
distance of two vertices in a graph is the minimal length of a path in the graph that joins the
two vertices; it is infinite if no such path exists. A closed walk of length p > 0 in a graph is a
sequence (v1, . . . , vp) of p vertices such that {v1, v2}, . . . , {vp−1, vp}, {vp, v1} are edges of the graph.
Note that p is necessarily even if the graph is bipartite. A closed walk is a cycle if its vertices are
pairwise distinct. We take the convention that if a closed walk in a bipartite graph on V = C ∐R
is nonempty, then its first vertex is a column vertex: v1 ∈ C. We shall identify a path and a cycle
with its set of edges {r, c} or the corresponding set of couples (r, c).

A bipartite graph on V is a tree if there is exactly one path between any two of its vertices. In
this case, its vertices may be indexed by finite words over its set of vertices in the following way.
Choose any row vertex r as root and index it by ∅. If v is a vertex and (r, c, . . . , v) is the unique
path from r to v, let the word ca · · · av index v. Let W be the set of all words thus formed. Then

– ∅ ∈ W and every beginning of a word in W is also in W : if w ∈ W \ {∅}, then w is the
concatenation w′av of a word w′ ∈ W with a letter v;

– words of even length index row vertices;

– words of odd length index column vertices;

– a pair of vertices is an edge exactly if their indices have the form w and wav, where w is a
word and v is a letter.

A forest is a union of pairwise disjoint trees; equivalently, it is a cycle free graph.

31



Notation. Let T = {z ∈ C : |z| = 1}.
The unit ball of a Banach space X is denoted by BX .
Given an index set I and q ∈ I, eq is the sequence defined on I as the indicator function χ{q} of

the singleton {q}.
Let I = R × C and q = (r, c). Then eq = erc is the elementary matrix identified with the

operator from ℓ2
C to ℓ2

R that maps ec on er and all other basis vectors on 0. The matrix coefficient
at coordinate q of an operator x from ℓ2

C to ℓ2
R is xq = tr e∗

qx and its matrix representation is
(xq)q∈R×C =

∑
q∈R×C xq eq. The support of x is {q ∈ R× C : xq 6= 0}.

The Schatten-von-Neumann class Sp, 0 < p < ∞, is the space of those compact operators x from
ℓ2
C to ℓ2

R such that ‖x‖pp = tr |x|p = tr(x∗x)p/2 < ∞. S∞ is the space of compact operators with the
operator norm. Sp is a quasi-normed space, and a Banach space if p > 1. Let (Rn × Cn)n>0 be a
sequence of finite sets that tends to R×C. Then the sequence of operators Pn : x 7→ ∑

q∈Rn×Cn
xqeq

tends pointwise to the identity on Sp if p > 1.
For I ⊆ R× C, the entry space SpI is the subspace of those x ∈ Sp whose support is a subset of

I. SpI is also the closed subspace of Sp spanned by (eq)q∈I .
The Sp-valued Schatten-von-Neumann class Sp(Sp) is the space of those compact operators x

from ℓ2
C to ℓ2

R(Sp) such that ‖x‖pp = tr(tr |x|p) < ∞, where the inner trace is the Sp-valued analogue
of the usual trace: such operators have an Sp-valued matrix representation and their support is
defined as in the scalar case. An element x ∈ Sp(Sp) can also be considered as a compact operator
from ℓ2

C(ℓ2) = ℓ2 ⊗2 ℓ
2
C to ℓ2

R(ℓ2) = ℓ2 ⊗2 ℓ
2
R such that ‖x‖pp = tr ⊗ tr |x|p < ∞; the matrix coefficient

of x at q is then xq = (IdSp ⊗ tr)
(
(Idℓ2 ⊗ e∗

q)x
)

and its matrix representation is
∑

q∈R×C xq ⊗ eq.
The entry space SpI(S

p) is defined in the same way as SpI .
A relative Schur multiplier on SpI is a sequence ϕ = (ϕq)q∈I ∈ CI such that the associated Schur

multiplication operator Mϕ defined by eq 7→ ϕq eq for q ∈ I is bounded on SpI . The Schur multiplier
ϕ is furthermore completely bounded (c.b. for short) on SpI if IdSp ⊗ Mϕ, the operator defined by
xq eq 7→ ϕqxq eq for xq ∈ Sp and q ∈ I, is bounded on SpI(S

p) (see [76, Lemma 1.7].) The norm of
ϕ is the norm of Mϕ and its complete norm is the norm of IdSp ⊗ Mϕ. This norm is the supremum
of the norm of its restrictions to finite rectangle sets R′ × C′. Note that ϕ is a Schur multiplier on
S∞ if and only if, for every bounded operator x : ℓ2

C → ℓ2
R, (ϕqxq) is the matrix representation of a

bounded operator; also ϕ is automatically c.b. on S∞ [78, Th. 5.1]. We used [76, 78] as a reference.
Let G be a compact abelian group endowed with its normalised Haar measure. Let Γ = Ĝ be the

dual group of characters on G. The spectrum of an integrable function f on G is {γ ∈ Γ : f̂(γ) 6= 0}.
Let Λ ⊆ Γ. If X is a space of integrable functions on G, then XΛ is the translation invariant
subspace of those f ∈ X whose spectrum is a subset of Λ.

Let X be the space of continuous functions C(G) or the Lebesgue space Lp(G) with 0 < p < ∞.
Then XΛ is also the closed subspace of X spanned by Λ. A relative Fourier multiplier on XΛ is a
sequence µ = (µγ)γ∈Λ ∈ CΛ such that the associated convolution operator Cµ defined by γ 7→ µγγ
for γ ∈ Λ is bounded on XΛ. The Fourier multiplier µ is furthermore c.b. if IdSp ⊗ Cµ, the operator
defined by aγγ 7→ µγaγγ for aγ ∈ Sp and γ ∈ Λ, is bounded on the Sp-valued space XΛ(Sp) (where
p = ∞ if X = C(G).) The norm of µ is the norm of Cµ and its complete norm is the norm
of IdSp ⊗ Cµ. Note that µ is a Fourier multiplier on CΛ(G) if and only if, for every f ∈ L∞

Λ (G),∑
µγ f̂(γ)γ is the Fourier series of an element of L∞

Λ (G): µ is a relative Fourier multiplier on L∞(G);
also µ is automatically c.b. on CΛ(G) [78, Cor. 3.18].

Let X,Y be Banach spaces and u ∈ X ⊗ Y . Its projective tensor norm is

‖u‖
X

∧

⊗Y
= inf

{ n∑

j=1

‖xj‖ ‖yj‖ : u =
n∑

j=1

xj ⊗ yj

}

and X
∧
⊗Y is the completion of X ⊗ Y with respect to this norm. Note that ℓn∞

∧
⊗ ℓm∞ ⊂ c0

∧
⊗ c0

because ℓn∞ and ℓm∞ are 1-complemented in c0, and that c0

∧
⊗ c0 ⊂ ℓ∞

∧
⊗ ℓ∞ because ℓ∞ is the bidual

of c0.
Let

∑
xj ⊗ yj be any representation of the tensor u. If ξ ⊗ η ∈ X∗ ⊗ Y ∗, we define 〈ξ ⊗ η, u〉 =∑〈ξ, xj〉〈η, yj〉. The injective tensor norm of u is

‖u‖
X

∨

⊗Y
= sup

(ξ,η)∈BX∗ ×BY ∗

|〈ξ ⊗ η, u〉|

and X
∨
⊗Y is the completion of X ⊗ Y with respect to this norm.
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If X and Y are both finite dimensional, then

(
X

∨
⊗Y

)∗
= X∗

∧
⊗Y ∗ and

(
X

∧
⊗Y

)∗
= X∗

∨
⊗Y ∗.

Further
(
c0

∧
⊗ c0

)∗
= ℓ1

∨
⊗ ℓ1: in fact,

(
c0

∧
⊗ c0

)∗
may be identified with the space of bounded ope-

rators from c0 to ℓ1 and ℓ1

∨
⊗ ℓ1 may be identified with the closure of finite rank operators in that

space, and they are the same because every bounded operator from c0 to ℓ1 is compact and ℓ1 has
the approximation property.

If X is a sequence space on C and Y is a sequence space on R, then the coefficient of the tensor
u at (r, c) is 〈ec ⊗ er, u〉. Its support is the set of coordinates (r, c) of its nonvanishing coefficients.
One may use [89] as a reference.

2 Relative Schur multipliers

The following proposition is a straightforward consequence of [71].

Proposition 2.1. Let I ⊆ R×C and ϕ be a Schur multiplier on S∞
I with norm D. Then ϕ is also

a c.b. Schur multiplier on SpI for every p ∈ (0,∞], with complete norm bounded by D.

Proof. We may assume that D = 1. Let R′ × C′ be any finite subset of R × C. By [71, Th. 3.2],
there exist vectors wc and vr of norm at most 1 in a Hilbert space H such that ϕrc = 〈wc, vr〉 for
every (r, c) ∈ I ∩R′ ×C′. If we define W : ℓ2

C′ → ℓ2
C′(H) and V : ℓ2

R′ → ℓ2
R′(H) by Wζ = (ζcwc)c∈C′

and V η = (ηrvr)r∈R′ , then V and W have norm at most 1, and the proposition follows from the
factorisation

Mϕx = V ∗(x⊗ IdH)W

for every x with support in I ∩R′ × C′.

Remark 2.2. Éric Ricard showed us an elementary proof that a Schur multiplier on S∞
I is auto-

matically c.b., included here by his kind permission. A Schur multiplier ϕ is bounded on S∞
I by a

constant D if and only if

∀ ξ ∈ BS∞
I

∀ η ∈ Bℓ2
R

∀ ζ ∈ Bℓ2
C

∣∣∣∣
∑

(r,c)∈I

ηrϕrcξrcζc

∣∣∣∣ 6 D. (B.2)

It is furthermore completely bounded on S∞
I by D if

∀x ∈ BS∞
I

(S∞) ∀ y ∈ Bℓ2
R

(ℓ2) ∀ z ∈ Bℓ2
C

(ℓ2)

∣∣∣∣
∑

(r,c)∈I

ϕrc〈yr, xrczc〉
∣∣∣∣ 6 D. (B.3)

Suppose that x, y, z are as quantified in Ineq. (B.3). Let

ξrc = 〈yr/‖yr‖, xrczc/‖zc‖〉, ηr = ‖yr‖ℓ2 and ζc = ‖zc‖ℓ2 .

Then ‖η‖ℓ2
R
, ‖ζ‖ℓ2

C
6 1 and

‖ξ‖ = sup
{∣∣∣∣

∑

(r,c)∈I

〈αryr/‖yr‖ℓ2 , xrcβczc/‖zc‖ℓ2〉
∣∣∣∣ : α ∈ Bℓ2

R
, β ∈ Bℓ2

C

}

6 ‖x‖ sup
α∈B

ℓ2
R

∥∥(αryr/‖yr‖ℓ2

)∥∥
ℓ2
R

(ℓ2)
sup

β∈Bℓ2
C

∥∥(βczc/‖zc‖ℓ2

)∥∥
ℓ2
C

(ℓ2)
6 1,

so that Ineq. (B.2) implies Ineq. (B.3).

The fact that the canonical basis of an ℓ2 space is 1-unconditional yields that Schatten-von-
Neumann norms are matrix unconditional in the terminology of [91]:

∀ ζ ∈ TC ∀ η ∈ TR
∥∥∥

∑

(r,c)∈R×C

ζcηrarcerc
∥∥∥
p

=
∥∥∥

∑

(r,c)∈R×C

arcerc
∥∥∥
p

(B.4)

for every finitely supported sequence of complex or Sp-valued coefficients arc. Let ζ ⊗ η denote the
elementary Schur multiplier (ζcηr)(r,c)∈R×C . Equation (B.4) shows that if ζ ∈ TC and η ∈ TR, then
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Mζ⊗η is an isometry on every Sp. This yields that if ζ ∈ ℓ∞
C , η ∈ ℓ∞

R , then the complete norm of
Mζ⊗η is ‖ζ‖ℓ∞

C
‖η‖ℓ∞

R
on every Sp.

Relative Schur multipliers also have a central place among operators on SpI because they appear
as the range of a contractive projection defined by the following averaging scheme.

Definition 2.3. Let T : SpJ → SpI be an operator. Let R′ × C′ be a finite subset of R × C and let
PR′×C′ be the contractive projection onto SpR′×C′ defined by the Schur multiplier χC′ ⊗ χR′ . Then
the average of T with respect to R′ × C′ is given by

[T ]R′×C′(x) =
∫

TR

dη
∫

TC

dζ Mζ∗⊗η∗PR′×C′T (Mζ⊗ηx), (B.5)

where ζ∗ = (ζc)c∈C and η∗ = (ηr)r∈R.

Proposition 2.4. Let T : SpJ → SpI be an operator and R′ × C′ a finite subset of R × C. Then
[T ]R′×C′ is a Schur multiplication operator from SpJ to SpI∩R′×C′ such that ‖[T ]R′×C′‖ 6 ‖T ‖. In
fact, [T ]R′×C′ = MϕR′×C′ with

ϕR
′×C′

rc =

{
tr e∗

rcT (erc) if (r, c) ∈ J ∩R′ × C′

0 if (r, c) ∈ J \R′ × C′.

If T is a projection onto SpI , then ϕR
′×C′

= χI∩R′×C′ , so that [T ]R′×C′ is a projection onto SpI∩R′×C′ .
Let ϕ =

(
tr e∗

qT (eq)
)
q∈J

. Then ‖Mϕ‖ 6 ‖T ‖ and we define the average of T by [T ] = Mϕ.

Proof. Formula (B.5) shows that ‖[T ]R′×C′(x)‖ 6 ‖T ‖ ‖x‖. We have

[T ]R′×C′(erc) =
∫

TR

dη
∫

TC

dζ Mζ∗⊗η∗PR′×C′T (ζcηrerc)

=
∫

TR

dη
∫

TC

dζ ζcηrMζ∗⊗η∗

∑

(r′,c′)∈R′×C′

tr
(
e∗
r′c′T (erc)

)
er′c′

=
∑

(r′,c′)∈R′×C′

∫

TR

dη
∫

TC

dζ ζcηr tr
(
e∗
r′c′T (erc)

)
ζ−1
c′ η

−1
r′ er′c′

= ϕR
′×C′

rc erc.

As the norm of a Schur multiplier is the supremum of the norm of its restrictions to finite rectangle
sets, this shows that ϕ is a Schur multiplier on SpJ and ‖Mϕ‖ 6 ‖T ‖. If T is a projection onto SpI ,
note that tr e∗

rcT (erc) = χI(r, c).

The following proposition relates Fourier multipliers to Herz-Schur multipliers in the fashion of
[78, Th. 6.4] and will be very useful in the exact computation of the norm of certain relative Schur
multipliers.

Proposition 2.5. Let Γ be a countable discrete abelian group and Λ ⊆ Γ. Let R and C be two
copies of Γ and consider I = {(r, c) ∈ R×C : r− c ∈ Λ}. Let ϕ ∈ CI such that there is µ ∈ CΛ with
ϕ(r, c) = µ(r − c) for all (r, c) ∈ I. Let G = Γ̂, so that Γ is the group of characters on the compact
group G. Let p ∈ (0,∞].

(a) The complete norm of the relative Schur multiplier ϕ on SpI is bounded by the complete norm
of the relative Fourier multiplier µ on LpΛ(G).

(b) Suppose that Γ is finite. The norm of the relative Fourier multiplier µ on LpΛ(G) is bounded
by the norm of the relative Schur multiplier ϕ on SpI . The same holds for complete norms.

Remark 2.6. Part (b) is just an abstract counterpart to [74, Chapter 6, Lemma 3.8], where the case
of the finite cyclic group Γ = Z/nZ is treated.

Proof. (a) is [76, Lemma 8.1.4]: for all aq ∈ Sp, of which only a finite number are nonzero, and all
g ∈ G, we have by matrix unconditionality (Eq. (B.4))
∥∥∥
∑

q∈I

aqeq
∥∥∥

Sp
I

(Sp)
=
∥∥∥
∑

(r,c)∈I

r(g)c(g)−1arcerc
∥∥∥

Sp
I

(Sp)

=

∥∥∥∥
∑

γ∈Λ

( ∑

(r,c)∈I
r−c=γ

arcerc

)
γ(g)

∥∥∥∥
Sp
I

(Sp)

=

∥∥∥∥
∑

γ∈Λ

( ∑

(r,c)∈I
r−c=γ

arcerc

)
γ

∥∥∥∥
Lp

Λ
(G,Sp(Sp))

. (B.6)
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This yields an isometric embedding of SpI(S
p) in LpΛ(G, SpI(S

p)). As Sp(Sp) may be identified with
Sp(ℓ2

Γ(ℓ2)),

∥∥∥
∑

q∈I

ϕqaqeq
∥∥∥

Sp
I

(Sp)
=
∥∥∥∥
∑

γ∈Λ

µγ

( ∑

(r,c)∈I
r−c=γ

arcerc

)
γ

∥∥∥∥
Lp

Λ
(G,Sp(Sp))

6 ‖Id ⊗ Cµ‖
∥∥∥
∑

q∈I

aqeq
∥∥∥

Sp
I

(Sp)
. (B.7)

(b). Let us embed LpΛ(G) into SpI by f 7→ cf̂ , where cf̂ : ℓ2
C → ℓ2

R is the convolution operator
defined by

cf̂ ec = f̂ ∗ ec =
∑

γ∈Λ

f̂(γ)eγ ∗ ec =
∑

r−c∈Λ

f̂(r − c)er :

cf̂ has the matrix representation
∑

(r,c)∈I f̂(r − c)erc. The characters g ∈ G form an orthonormal
basis for ℓ2

C such that cf̂g = f(g)g: therefore

‖cf̂‖
p

=
(∑

g∈G

|f(g)|p
)1/p

= (#G)1/p‖f‖Lp(G).

As Mϕcf̂ = c
Ĉµf

, this shows that the norm of µ on LpΛ(G) is the norm of ϕ on the subspace of

circulant matrices in SpI . The same holds for complete norms.

3 Idempotent Schur multipliers of norm 1

A Schur multiplier is idempotent if it is the indicator function χI of some set I ⊆ R × C; if χI is
a Schur multiplier on Sp, then it is a projection of Sp onto SpI . Idempotent Schur multipliers on Sp

and tensors in ℓ∞
C

∧
⊗ ℓ∞

R with 0, 1 coefficients of norm 1 may be characterised by the combinatorics
of I.

Proposition 3.1. Let I ⊆ R× C be nonempty and 0 < p 6= 2 < ∞. The following are equivalent.

(a) For every finite rectangle set R′ × C′ intersecting I
∥∥∥∥

∑

(r,c)∈I∩R′×C′

ec ⊗ er

∥∥∥∥
ℓ∞
C

∧

⊗ ℓ∞
R

= 1.

(b) SpI is completely 1-complemented in Sp.

(c) SpI is 1-complemented in Sp.

(d) I is a union of pairwise disjoint complete bipartite graphs: there are pairwise disjoint sets
Rj ⊆ R and pairwise disjoint sets Cj ⊆ C such that I =

⋃
Rj × Cj.

Property (d) means that the pattern I is, up to a permutation of columns and rows, block-
diagonal:




C1 C2 C3 ···

R1 ∗ 0 0 · · ·
R2 0 ∗ 0

. . .

R3 0 0 ∗ . . .
...

...
. . .

. . .
. . .




.

Proof. (b) ⇒ (c) is trivial.
(a) ⇒ (b). The complete norm of a Schur multiplier ϕ on Sp is the supremum of the complete

norm of its restrictions ϕ′ = (ϕq)q∈R′×C′ to finite rectangle sets R′ ×C′. Furthermore, the complete
norm of an elementary Schur multiplier (ηcζr)(r,c)∈R×C = η ⊗ ζ on Sp equals ‖η‖ℓ∞

C
‖ζ‖ℓ∞

R
.

(c) ⇒ (d). If I is not a union of pairwise disjoint complete bipartite graphs, then there are
r0, r1 ∈ R and c0, c1 ∈ C such that

I ′ = I ∩ {r0, r1} × {c0, c1} = {(r0, c0), (r1, c0), (r0, c1)}.
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By Proposition 2.4, the average of a contractive projection of Sp onto SpI with respect to {r0, r1} ×
{c0, c1} would be the contractive projection associated to the Schur multiplier χI′ . Let x(t), t ∈ R,
be the operator from ℓ2

C to ℓ2
R whose matrix coefficients vanish except for its {r0, r1} × {c0, c1}

submatrix, which is
(

1
√

2√
2 t

)
. Its eigenvalues are

1 + t+
√

9 − 2t+ t2

2
= 2 +

t

3
+ o(t),

1 + t−
√

9 − 2t+ t2

2
= −1 +

2t
3

+ o(t),

so that {
‖x(t)‖∞ = 2 + t/3 + o(t)

‖x(t)‖pp = 2p + 1 + p(2p − 4)t/6 + o(t) for 0 < p < ∞
and therefore ‖χI′ ∗ x(t)‖p = ‖x(0)‖p > ‖x(t)‖p for some t 6= 0 if p 6= 2.

(d) ⇒ (a). Suppose (d) and let R′ ×C′ intersect I. Then there are pairwise disjoint sets R′
j and

pairwise disjoint sets C′
j such that I ∩R′ × C′ = R′

1 × C′
1 ∪ · · · ∪R′

n × C′
n and

∑

(r,c)∈I∩R′×C′

ec ⊗ er =
n∑

j=1

χC′
j

⊗ χR′
j

= average
ǫj=±1

( n∑

j=1

ǫjχC′
j

)
⊗
( n∑

j=1

ǫjχR′
j

)

which is an average of elementary tensors of norm 1, so that its projective tensor norm is bounded
by 1, and actually is equal to 1.

Remark 3.2. Note that the proof of Prop. 3.1 shows that the norm of a projection MχI : S∞ → S∞
I

is either 1 or at least 2/
√

3, as
∥∥∥∥
(

1
√

2√
2 −1

)∥∥∥∥
∞

=
√

3,
∥∥∥∥
(

1
√

2√
2 0

)∥∥∥∥
∞

= 2.

This is a noncommutative analogue to the fact that an idempotent measure on a locally compact
abelian group G has either norm 1 or at least

√
5/2 [88, Th. 3.7.2]. The norm of MχI actually equals

2/
√

3 for I = {(0, 0), (0, 1), (1, 0)}, as shown in [53, Lemma 3]. In fact, the following decomposition
holds:

e0 ⊗ e0 + e0 ⊗ e1 + e1 ⊗ e0 =
(
(e−iπ/12, e iπ/4) ⊗ (e−iπ/12, e iπ/4) + (e iπ/12, e−iπ/4) ⊗ (e iπ/12, e−iπ/4)

)
/
√

3.

Remark 3.3. Results related to the equivalence of (c) with (d) have been obtained independently
by Banks and Harcharras [4].

4 Unconditional basic sequences in Sp

Definition 4.1. Let 0 < p 6 ∞ and I ⊆ R × C. Let S = T (vs. S = {−1, 1}.)

(a) I is an unconditional basic sequence in Sp if there is a constant D such that
∥∥∥
∑

q∈I

ǫqaq eq
∥∥∥
p
6 D

∥∥∥
∑

q∈I

aqeq
∥∥∥
p

(B.8)

for every choice of signs ǫq ∈ S and every finitely supported sequence of complex coefficients
aq. Its complex (vs. real) unconditional constant is the least such constant D.

(b) I is a completely unconditional basic sequence in Sp if there is a constant D such that (B.8)
holds for every choice of signs ǫq ∈ S and every finitely supported sequence of operator co-
efficients aq ∈ Sp. Its complex (vs. real) complete unconditional constant is the least such
constant D.

(c) I is a complex (vs. real, complex completely, real completely) 1-unconditional basic sequence
in Sp if its complex (vs. real, complex complete, real complete) unconditional constant is 1:
Inequality (B.8) turns into the equality

∥∥∥
∑

q∈I

ǫqaq eq
∥∥∥
p

=
∥∥∥
∑

q∈I

aqeq
∥∥∥
p
.
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If Inequality (B.8) holds for every real choice of signs, then it also holds for every complex choice
of signs at the cost of replacing D by Dπ/2 (see [92],) so that there is no need to distinguish between
complex and real unconditional basic sequences.

The notions defined in (a) and (b) are called σ(p) sets and complete σ(p) sets in [37, §4] and [38]
(see also the survey [79, § 9].) The notions defined in (c) are their isometric counterparts.

By [91, proof of Cor. 4], the real unconditional constant of any basis of SpI cannot be lower than
a fourth of the real unconditional constant of I in Sp.

Example 4.2. A single column R× {c}, a single row {r} ×C, the diagonal set {(rown, coln)}n∈N
if

R and C are copies of N, are 1-unconditional basic sequences in all Sp. In fact, every column section
and every row section (this is the terminology of [99, Def. 4.3]) is a 1-unconditional basic sequence;
note that the length of every path in the corresponding graph is at most 2.

Note that the set I is a (completely) 1-unconditional basic sequence in Sp if and only if the
relative Schur multipliers by signs on SpI define (complete) isometries. This yields by Prop. 2.1:

Proposition 4.3. Let I ⊆ R×C and 0 < p 6 ∞. If I is a real (vs. complex) 1-unconditional basic
sequence in S∞, then I is also a real (vs. complex) completely 1-unconditional basic sequence in Sp.

Example 4.4. If R = C = {0, . . . , n−1}, 1 6 p 6 ∞ and I = R×C, then the complex unconditional
constant of the basis of elementary matrices in Sp is n|1/2−1/p| and coincides with its complete
unconditional constant (see [76, Lemma 8.1.5].) This is also the real unconditional constant if

n = 2k is a power of 2 as the norm of Schur multiplication by the kth tensor power
(

1 1
1 −1

)⊗k

(the kth Walsh matrix) on Sp is
(
2|1/2−1/p|

)k
= n|1/2−1/p|. Let us now show that if n = 3, the real

unconditional constant of the basis of elementary matrices in S∞ is 5/3 and differs from its complex
unconditional constant,

√
3. In fact, because the canonical bases of ℓ2

C and ℓ2
R are symmetric, the

norm of a Schur multiplier by real signs turns out to equal the norm of one of the following three
Schur multipliers: 


1 1 1
1 1 1
1 1 1


 ,




1 1 1
1 1 1
1 1 −1


 or




−1 1 1
1 −1 1
1 1 −1


 .

The first one has norm 1: it defines the identity. The second one has the same norm as the Schur

multiplier
(

1 1
1 −1

)
, which is

√
2, because the norm of that multiplier equals the norm of its tensor

product by Idℓ2
2
, which is




1 1 1 1
1 1 1 1
1 1 −1 −1
1 1 −1 −1


. By Prop. 2.5 for Γ = Z/3Z, the third one has the

same norm as the Fourier multiplier ϕ = (−1, 1, 1) on L∞(G), where G = {z ∈ C : z3 = 1}: as this
multiplier acts by convolution with f = −1 + z + z2, its norm is ‖f‖L1(G), that is

(
| − 1 + 1 + 1| + | − 1 + e2iπ/3 + e4iπ/3| + | − 1 + e4iπ/3 + e2iπ/3|

)
/3 = 5/3.

Complex interpolation yields that the real unconditional constant of the basis of elementary matrices
is in fact strictly less than its complex counterpart in all Sp with p 6= 2.

5 Varopoulos’ characterisation of unconditional matrices in

S∞

Our results may be seen as the isometric counterpart to results by Varopoulos [99] on tensor algebras
over discrete spaces and their generalisation to Sp. He characterised unconditional basic sequences

of elementary matrices in S∞ in his study of the projective tensor product c0

∧
⊗ c0. We gather up

his results in the next theorem, as they are difficult to extract from the literature.

Theorem 5.1. Let I ⊆ R× C. The following are equivalent.

(a) I is an unconditional basic sequence in S∞.

(b) I is an interpolation set for Schur multipliers on S∞: every bounded sequence on I is the
restriction of a Schur multiplier on S∞.
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(c) I is a V-Sidon set as defined in [99, Def. 4.1]: every null sequence on I is the restriction of

the sequence of coefficients of a tensor in c0(C)
∧
⊗ c0(R).

(d) The coefficients of every tensor in ℓ1
C

∨
⊗ ℓ1

R with support in I form an absolutely convergent
series.

(e) (zcz′
r)(r,c)∈I is a Sidon set in the dual of TC ×TR, that is, an unconditional basic sequence in

C(TC × TR).

(f) There is a constant λ such that for all R′ ⊆ R and C′ ⊆ C with n elements #[I∩R′ ×C′] 6 λn.

(g) I is a finite union of forests.

(h) I is a finite union of row sections and column sections.

(i) Every bounded sequence supported by I is a Schur multiplier on S∞.

Sketch of proof. (a) ⇒ (b). If (a) holds, every sequence of signs ǫ ∈ {−1, 1}I is a Schur
multiplier on S∞

I . By a convexity argument, this implies that every bounded sequence is a Schur
multiplier on S∞

I , which may be extended to a Schur multiplier on S∞ with the same norm by [71,
Cor. 3.3].

(b) ⇒ (c) holds by Grothendieck’s inequality (see [78, § 5]) and an approximation argument.
(d) is but the formulation dual to (c) (see [98, § 6.2].)
(d) ⇒ (e). A computation yields

∥∥∥∥
∑

(r,c)∈I

arcec ⊗ er

∥∥∥∥
ℓ1
C

∨

⊗ ℓ1
R

= sup
|zc|,|z′

r|=1

∣∣∣∣
∑

(r,c)∈I

arczcz
′
r

∣∣∣∣. (B.9)

(e) ⇒ (f) is [99, Th. 4.2]. (The proof can be found in [98, § 6.3] and in [97, § 5].)
(f) ⇒ (g), (f) ⇒ (h) can be found in [97, Th. 6.1].
(g) ⇒ (h). In fact, a forest is the union of a column section I ′ with a row section I ′′ (a bisection

in the terminology of [99, Def. 4.3].) It suffices to prove this for a tree. Let its vertices be indexed
by words as described in the Terminology. Then the set I ′ of couples of the form (w,wac) with w
a word and c a letter is a column section; the set I ′′ of couples of the form (war, w) with w a word
and r a letter is a row section.

(h) ⇒ (i) is [97, Th. 4.5]. Note that row sections and column sections form 1-unconditional basic
sequences in S∞ and are 1-complemented in S∞ by Prop. 3.1.

(i) ⇒ (a) follows from the open mapping theorem.

6 Closed walk relations

We now introduce and study the combinatorial objects that we need in order to analyse the expansion
of the function defined by

ΦI(ǫ, a) = tr
∣∣∣
∑

q∈I

ǫqaqeq
∣∣∣
p

(B.10)

for I ⊆ R× C, a positive even integer p = 2k, signs ǫq ∈ T and coefficients aq ∈ C, of which only a
finite number are nonzero. In fact,

ΦI(ǫ, a) = tr
( ∑

(r,c),(r′,c′)∈I

(ǫrcarcerc)∗(ǫr′c′ar′c′ er′c′)
)k

= tr
∑

(r1,c1),(r′
1,c

′
1),...,

(rk,ck),(r′
k,c

′
k)∈I

k∏

i=1

(ǫ−1
riciarici eciri)(ǫr′

i
c′
i
ar′
i
c′
i
er′
i
c′
i
)

=
∑

(r1,c1),(r1,c2),...,
(rk,ck),(rk,ck+1)∈I

k∏

i=1

ǫ−1
riciǫrici+1ariciarici+1 (where ck+1 = c1.)

(B.11)

The latter sum runs over all closed walks (c1, r1, c2, . . . , ck, rk) of length p in the graph I. With
multinomial notation, its terms have the form ǫβ−αaαaβ with |α| = |β| = k. The attempt to describe
those couples (α, β) that effectively arise in this expansion yields the following definition.
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Definition 6.1. Let p = 2k > 0 be an even integer and I ⊆ R× C.

(a) Let AI
k = {α ∈ NI :

∑
q∈I αq = k} and set

BIk =
{

(α, β) ∈ AI
k × AI

k : ∀ r ∑c αrc =
∑

c βrc and ∀ c ∑r αrc =
∑
r βrc

}
.

(b) Two couples (α1, β1) ∈ BIk1
, (α2, β2) ∈ BIk2

are disjoint if k1, k2 > 1 and

α1
rc > 1 ⇒ ∀ (r′, c) ∈ I α2

r′c = 0 and ∀ (r, c′) ∈ I α2
rc′ = 0. (B.12)

(c) The set W I
k of closed walk relations of length p in I is the subset of those (α, β) ∈ BIk that

cannot be decomposed into the sum of two disjoint couples.

(d) Let WI
k be the set of closed walks of length p in the graph I. To every closed walk P =

(c1, r1, c2, r2, . . . , ck, rk) of length p we associate the couple (α, β) ∈ AI
k × AI

k defined by

αq = #
[
i ∈ {1, . . . , k} : (ri, ci) = q

]

βq = #
[
i ∈ {1, . . . , k} : (ri, ci+1) = q

]
(where ck+1 = c1.)

We shall write P ∼ (α, β) and call nαβ the number of elements of WI
k mapped onto (α, β).

Note that the conditions in Eq. (B.12) is in fact symmetric and that it may be stated with β1

and β2 instead of α1 and α2.

Example 6.2. Let R = C = {0, 1, 2, 3} and I = R×C. The couple (e00 + e11 + e22 + e33, e01 + e10 +
e23 + e32) is an element of BI4 \ W I

4 : it is the sum of the two disjoint closed walk relations (e00 +
e11, e01 + e10) and (e22 + e33, e23 + e32).

Example 6.3. Let I = R×C = {0, 1} × {0, 1}. Two closed walks are associated with the closed walk
relation (e00 + e11, e01 + e10) ∈ W I

2 : the two cycles (col 0, row 0, col 1, row 1) and (col 1, row 1, col 0,
row 0). Six closed walks are mapped onto the closed walk relation (2e00 + 2e01, 2e00 + 2e01): the

4!
2! 2!

concatenations of a permutation of (col 1, row 0), (col 1, row 0), (col 0, row 0), (col 0, row 0).

The next proposition shows that, for our purpose, closed walk relations describe entirely closed
walks.

Proposition 6.4. Let p = 2k > 0 be an even integer and I ⊆ R×C. The image of the mapping in
Def. 6.1(d) is W I

k :

(a) if P ∈ WI
k and P ∼ (α, β), then (α, β) ∈ W I

k ;

(b) if (α, β) ∈ W I
k , then there is a P ∈ WI

k such that P ∼ (α, β), so that nαβ > 1.

Proof. (a). Let P = (c1, r1, c2, r2, . . . , ck, rk). In fact,
∑

c
αrc = #[i ∈ {1, . . . , k} : ri = r] =

∑
c
βrc

∑
r
αrc = #[i ∈ {1, . . . , k} : ci = c] =

∑
r
βrc

and (α, β) ∈ BIk. If (α, β) = (α1, β1)+(α2, β2) with (αi, βi) ∈ BIki and ki > 1, there is an i such that
α1
rici > 1 and α2

ri+1ci+1
> 1 (where (ri+1, ci+1) = (r1, c1) if i = k.) If β1

rici+1
> 1, then

∑
r α

1
rci+1

> 1,
so that there is an r such that α1

rci+1
> 1. Otherwise β2

rici+1
> 1, so that

∑
c α

2
ric > 1 and there is

a c such that α2
ric > 1. Therefore (α1, β1) and (α2, β2) are not disjoint and (α, β) ∈ W I

k .
(b). We have to find a closed walk of length p that is mapped onto (α, β). If k = 0, the empty

closed walk suits. Suppose that k > 1; Consider a walk (c1, r1, c2, r2, . . . , cj , rj , cj+1) in I such that
α1
q = #[i : (ri, ci) = q] 6 αq and β1

q = #[i : (ri, ci+1) = q] 6 βq for every q ∈ R×C, and furthermore
j is maximal. We claim (A) that cj+1 = c1 and (B) that j = k. Let (α2, β2) = (α, β) − (α1, β1).

(A). If cj+1 6= c1, then
∑

r
α1
rcj+1

= #[i ∈ {1, . . . , j} : ci = cj+1]
∑

r
β1
rcj+1

= #[i ∈ {1, . . . , j + 1} : ci = cj+1] = 1 +
∑

r
α1
rcj+1

,

so that there must be rj+1 with α2
rj+1cj+1

> 1. But then

∑
c
β2
rj+1c =

∑
c
α2
rj+1c > 1
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and there must be cj+2 such that β2
rj+1cj+2

> 1: j is not maximal.

(B). Suppose that j < k. Then (α1, β1) ∈ BIj and (α2, β2) ∈ BIk−j . By hypothesis, they are not
disjoint: there are r, c, c′ such that α1

rcα
2
rc′ > 1 or r, r′, c such that α1

rcα
2
r′c > 1. By interchanging R

and C and by relabelling the vertices if necessary, we may suppose without loss of generality that
for r′

1 = rj there is c′
1 such that α2

r′
1c

′
1
> 1. Then there is c′

2 such that β2
r′

1c
′
2
> 1. By the argument

used in Claim (A), there is a closed walk (c′
1, r

′
1, c

′
2, . . . , c

′
j′ , r′

j′ ) such that #[i : (r′
i, c

′
i) = q] 6 α2

q and
#[i : (r′

i, c
′
i+1) = q] 6 β2

q (where c′
j′+1 = c′

1.) Then the closed walk

(c1, r1, c2, r2, . . . , cj , rj , c
′
2, r

′
2, . . . , c

′
j′ , r′

j′ , c′
1, r

′
1)

shows that j is not maximal.

We are now in position to state the following theorem, a matrix counterpart to the computation
presented in [63, Prop. 2.5(ii)].

Theorem 6.5. Let p = 2k be a positive even integer and I ⊆ R× C.

(a) The function ΦI in Eq. (B.10) has the expansion

ΦI(ǫ, a) =
∑

(α,β)∈W I
k

nαβǫ
β−αaαaβ , (B.13)

where nαβ > 1 for every (α, β) ∈ W I
k .

(b) If ǫ ∈ TI and a ∈ (Sp)I is finitely supported, then the function

ΨI(ǫ, a) = tr
∣∣∣
∑

q∈I

ǫqaqeq
∣∣∣
p

(B.14)

has the expansion

∑

(α,β)∈W I
k

ǫβ−α
∑

(c1,r1,...,ck,rk)∼(α,β)

k∏

i=1

a∗
riciarici+1 (with ck+1 = c1.) (B.15)

Proof. This follows from Def. 6.1 and Prop. 6.4.

Note that the edges of a closed walk P ∼ (α, β) are precisely those {r, c} such that αrc+βrc > 1.
P is a cycle if and only if P does not have length 0 or 2 and

∑
r αrc 6 1 for all c and

∑
c αrc 6 1

for all r. We now show how to decompose closed walks into cycles.

Proposition 6.6. Let P = (c1, r1, c2, r2, . . . , ck, rk) ∼ (α, β) be a closed walk.

(a) If ri = rj (vs. ci = cj) for some i 6= j, then P is the juxtaposition of two nonempty closed walks
P1 ∼ (α1, β1) and P2 ∼ (α2, β2) such that (α, β) = (α1, β1)+(α2, β2) and

∑
c α

1
ric ,

∑
c α

2
ric >

1 (vs.
∑

r α
1
rci ,

∑
r α

2
rci > 1.)

(b) P is the juxtaposition of nonempty closed walks Pj ∼ (αj , βj) such that
∑

r α
j
rc 6 1 for all c,∑

c α
j
rc 6 1 for all r and (α, β) =

∑
(αj , βj).

(c) There are cycles Pj ∼ (αj , βj) and a γ such that (α, β) = (γ, γ) +
∑

(αj , βj).

Proof. (a). If ri = rj for i < j, we may suppose that j = k: consider the closed walks P1 = (c1,
r1, . . . , ci, ri) and P2 = (ci+1, ri+1, . . . , ck, rk). If ci = cj for i < j, we may suppose that i = 1:
consider then P1 = (c1, r1, . . . , cj−1, rj−1) and P2 = (cj , rj , . . . , ck, rk).

(b). Use (a) in a maximality argument.
(c). Note that the closed walks Pj in (b) are either cycles or have length 2; in the latter case

Pj = q ∼ (eq, eq) for some q ∈ I.
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7 Schur multipliers on a cycle

We can realise a cycle of even length 2s, s > 2, in the following convenient way. Let Γ = Z/sZ.
Then the adjacency relation of integers modulo s turns Γ into the cycle (0, 1, . . . , s − 1) of length
s. We double this cycle into the bipartite cycle (col 0, row 0, col 1, row 1, . . . , col s− 1, row s− 1) on
Γ ∐ Γ, corresponding to the set of couples I = {(i, i), (i, i+ 1) : i ∈ Γ} ⊆ Γ × Γ: I is the pattern




0 1 2 ··· s−2 s−1

0 ∗ ∗ 0
. . . 0 0

1 0 ∗ ∗ . . . 0 0

2 0 0 ∗ . . . 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

s−2 0 0 0
. . . ∗ ∗

s−1 ∗ 0 0
. . . 0 ∗




.

Γ is the group dual to G = Γ̂ = {z ∈ C : zs = 1}. We shall consider the space LpΛ(G) spanned by
Λ = {1, z} in Lp(G), where z is the identical function on G: its norm is given by ‖a + bz‖Lp(G) =(
s−1

∑
zs=1 |a+ bz|p

)1/p
.

Proposition 7.1. Let 0 < p 6 ∞, s > 2 and I = {(i, i), (i, i + 1) : i ∈ Z/sZ}. Let ǫ ∈ TI be a
Schur multiplier by signs on SpI .

(a) The Schur multiplier ǫ has the same norm as the Schur multiplier ǫ̂ given by ǫ̂q = 1 for
q 6= (s− 1, 0) and ǫ̂s−1,0 = ǫ00ǫ01 . . . ǫs−1,s−1ǫs−1,0.

(b) The Schur multiplier ǫ has the same norm as ǫ̌ given by ǫ̌ii = 1 and ǫ̌i,i+1 = ϑ with ϑ any sth
root of ǫ̂s−1,0 or its complex conjugate: without loss of generality, ϑ = e iα with α ∈ [0, π/s].

(c) The norm of ǫ on SpI is bounded below by the norm of the relative Fourier multiplier µ : a+bz 7→
a+ ϑbz on LpΛ(G); their complete norms are equal.

(d) The norm of ǫ on S1
I and on S∞

I is equal to the norm of µ on L1
Λ(G) and on L∞

Λ (G): this
norm is

cos(α/2 − π/2s)

cosπ/2s
=

maxzs=−1 |ϑ+ z|
|1 + e iπ/s| .

(e) The Schur multiplication operator Mǫ is an isometry on SpI if and only if p/2 ∈ {1, 2, . . . , s−1}
or ǫ00ǫ01 . . . ǫs−1,s−1ǫs−1,0 = 1.

Proof. (a) and (b) follow from the matrix unconditionality of Schatten-von-Neumann norms (see
Eq. (B.4)) and from the fact that the Schur multipliers ǫ and ǭ = (ǫq)q∈I have the same norm on
SpI .

(c) follows from Prop. 2.5.
(d). Let us compute f(β) = ‖1 + e iβz‖L1(G). As f(β) = f(β + 2π/s) = f(−β), we may suppose

without loss of generality that β ∈ [0, π/s]. Then |β/2 + kπ/s| 6 π/2 if −⌊s/2⌋ 6 k 6 ⌈s/2⌉ − 1, so
that

f(β) =
1

s

⌈s/2⌉−1∑

k=−⌊s/2⌋

∣∣1 + e iβ e2ikπ/s
∣∣

=
2

s

⌈s/2⌉−1∑

k=−⌊s/2⌋

cos(β/2 + kπ/s)

=
2

s
ℜ
(

e iβ/2 e i⌈s/2⌉π/s − e−i⌊s/2⌋/s

e iπ/s − 1

)

=
2

s sin(π/2s)
·
{

cos(β/2 − π/2s) if s is even
cos(β/2) if s is odd.

This shows in both cases that the norm of µ on L1
Λ(G) is bounded below by cos(α/2 − π/2s)/

cos(π/2s). The complete norm of µ on L∞
Λ (G) is equal to its norm and thus to the maximum of
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g(w) = ‖w + ϑz‖L∞(G)/‖w + z‖L∞(G) for w ∈ C. Let w = re iβ with r > 0 and β ∈ R. Note that

‖w + z‖L∞(G) =
∣∣r + e id(β,(2π/s)Z)

∣∣

is a decreasing function of d(β, (2π/s)Z) and that

d(α− β, (2π/s)Z) < d(β, (2π/s)Z) ⇔ β ∈ ]α/2, π/s+ α/2[ mod 2π/s.

As g(w) = g(wz) if zs = 1, we may suppose without loss of generality that β ∈ ]α/2, π/s + α/2[.
Therefore

g(w) =





∣∣∣w + e iα

w + 1

∣∣∣ if β ∈ ]α/2, π/s]
∣∣∣ w + e iα

w + e2iπ/s

∣∣∣ if β ∈ [π/s, π/s+ α/2[.

As g tends to 1 at infinity and g(w) = 1 if β ∈ {α/2, π/s+α/2}, the maximum principle shows that
g attains its maximum with β = π/s. Finally,

g(re iπ/s)
2

=
1 + 2r cos(π/s− α) + r2

1 + 2r cos(π/s) + r2

= 1 +
cos(π/s− α) − cosπ/s

cos(π/s) + (r + 1/r)/2
6 g(e iπ/s)

2
=

(
cos(π/2s− α/2)

cosπ/2s

)2

.

(e). If p is not an even integer and ϑs 6= 1, then µ is not an isometry on LpΛ(G): otherwise
the functions z and ϑz would have the same distribution by the Plotkin-Rudin Equimeasurability
Theorem (see [48, Th. 2]). If p ∈ {2, 4, . . . , 2s − 2}, then I contains no cycle of length 4, 6, . . . , p,
so that by Prop. 6.6(c) every closed walk P ∼ (α, β) satisfies α = β. The function ΦI(ǫ, a) in
Eq. (B.10) is therefore constant in ǫ by Th. 6.5(a). If p ∈ {2s, 2s+ 2, . . .}, the closed walk relation

(α, β) =
(∑

i∈Γ

eii,
∑

i∈Γ

ei,i+1

)
+ (p/2 − s)(e00, e00)

satisfies nαβ > 1 by Prop. 6.4. Then the coefficient of ΦI(ǫ, a) in āαaβ equals

nαβǫ00ǫ01 . . . ǫs−1,s−1ǫs−1,0

and must equal the same quantity with ǫ replaced by 1 if ǫ defines an isometry on SpI .

Remark 7.2. See [50, p. 245] for a similar application of the Plotkin-Rudin Equimeasurability Theo-
rem in (e).

The real unconditional constant of I is therefore the norm of ǫ̌ with α = π/s, and the complex
unconditional constant is the maximum of the norm of ǫ̌ for α ∈ [0, π/s]. This yields

Corollary 7.3. Let 0 < p 6 ∞ and s > 2. Let I be the cycle of length 2s.

(a) I is a real 1-unconditional basic sequence in Sp if and only if p ∈ {2, 4, . . . , 2s− 2}.

(b) The real and complex unconditional constants of I in the spaces S1 and S∞ equal sec π/2s.

8 1-unconditional matrices in Sp, p not an even integer

We now state the announced isometric counterpart to Varopoulos’ characterisation of unconditional
matrices in S∞ (Section 5) and its generalisation to Sp for p not an even integer.

Theorem 8.1. Let I ⊆ R× C be nonempty and p ∈ (0,∞] \ 2N. The following are equivalent.

(a) I is a complex completely 1-unconditional basic sequence in Sp.

(b) I is a complex 1-unconditional basic sequence in Sp.

(c) I is a real 1-unconditional basic sequence in Sp.

(d) I is a forest.

(e) For each ǫ ∈ TI there are ζ ∈ TC and η ∈ TR such that ǫrc = ζ(c)η(r) for all (r, c) ∈ I.
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(f) For each ǫ ∈ {−1, 1}I there are ζ ∈ {−1, 1}C and η ∈ {−1, 1}R such that ǫrc = ζ(c)η(r) for
all (r, c) ∈ I.

(g) I is a set of V-interpolation of constant 1: for all ϕ ∈ ℓ∞
I

inf
{∥∥∥∥

∑

(r,c)∈R×C

ϕ̃rcec ⊗ er

∥∥∥∥
ℓ∞
C

∧

⊗ ℓ∞
R

: ϕ̃|I = ϕ
}

= sup
q∈I

|ϕq |. (B.16)

(h) I is a V-Sidon set of constant 1: for all ϕ ∈ c0(I)

inf
{∥∥∥∥

∑

(r,c)∈R×C

ϕ̃rcec ⊗ er

∥∥∥∥
c0(C)

∧

⊗ c0(R)

: ϕ̃|I = ϕ
}

= sup
q∈I

|ϕq|. (B.17)

(i) For every tensor u =
∑

(r,c)∈I arcec ⊗ er in ℓ1
C

∨
⊗ ℓ1

R with support in I we have ‖u‖
ℓ1
C

∨

⊗ ℓ1
R

=
∑

(r,c)∈I |arc|.
(j) (zcz

′
r)(r,c)∈I is a Sidon set of constant 1 in the dual of TC × TR, that is, a 1-unconditional

basic sequence in C(TC × TR): if (arc) is finitely supported,

sup
(z,z′)∈TC×TR

∣∣∣
∑

(r,c)∈I

arczcz
′
r

∣∣∣ =
∑

(r,c)∈I

|arc| .

(k) For all R′ ⊆ R and C′ ⊆ C with k > 1 elements #[I ∩R′ × C′] 6 2k − 1.

(l) I is an isometric interpolation set for Schur multipliers on S∞: every ϕ ∈ ℓ∞
I is the restriction

of a Schur multiplier on S∞ with norm ‖Mϕ‖ = ‖ϕ‖ℓ∞
I

.

Proof. (a) ⇒ (b) ⇒ (c) is trivial.
(c) ⇒ (d). Suppose that I contains a cycle (c0, r0, . . . , cs−1, rs−1) with s > 2. Cor. 7.3(a) shows

that I is not a real 1-unconditional basic sequence in Sp.
(d) ⇔ (k). A tree on 2k vertices has exactly 2k − 1 edges, so that a forest I satisfies (k).

Conversely, a cycle of length 2s is a graph with s row vertices, s column vertices and 2s edges.
(d) ⇒ (e). Suppose first that I is a tree and index the vertices of its edges by words w ∈ W as

described in the Terminology. Let us define η and ζ inductively. If r is the root of the tree, indexed
by ∅, let η(r) = 1. Suppose that η and ζ have been defined for all vertices indexed by words of
length at most 2n. If c is indexed by a word w of length 2n+ 1, let r be the vertex indexed by the
word of length 2n with which w begins and let ζ(c) = ǫ(r, c)/η(r). If r is indexed by a word w of
length 2n + 2, let c be the vertex indexed by the word of length 2n + 1 with which w begins and
let η(r) = ǫ(r, c)/ζ(c). If I is a union of pairwise disjoint trees, we may define η and ζ on each tree
separately. We may finally extend η to R and ζ to C in an arbitrary manner.

(d) ⇒ (f) may be proved as (d) ⇒ (e).
(f) ⇒ (c). If (f) holds, then every Schur multiplier by signs ǫ ∈ {−1, 1}I is elementary in the

sense that ǫ = ζ ⊗ η. The complete norm of Mǫ on any SpI is therefore ‖ζ‖ℓ∞
C

‖η‖ℓ∞
R

= 1.
(e) ⇒ (g). If (e) holds, every ϕ ∈ TI ⊆ ℓ∞

I may be extended to an elementary tensor ζ ⊗ η of
norm 1. (g) follows because every element of ℓ∞

I with norm 1 is the half sum of two elements of TI :
note that e it cosu =

(
e i(t+u) + e i(t−u)

)
/2.

(g) ⇒ (h). It suffices to check Equality (B.17) for ϕ with support contained in a finite rectangle

set R′ × C′. As ℓ∞
C′

∧
⊗ ℓ∞

R′ is a subspace of ℓ∞
C

∧
⊗ ℓ∞

R , Eq. (B.16) yields Eq. (B.17).
(h) ⇔ (i) because they are dual statements.
(i) ⇔ (j). Use Equality (B.9).
(h) ⇒ (l) may be deduced by the argument of Prop. 3.1(a) ⇒ (b).
(l) ⇒ (a). Taking sign sequences ϕ ∈ TI in (l) shows that all relative Schur multipliers by signs

on S∞
I define isometries. Apply Prop. 4.3.

Remark 8.2. The equivalence of (e) with (j) may also be shown as a consequence of the characteri-
sation of Sidon sets of constant 1 in [21].

Let us now answer Question 1.3.

Corollary 8.3. Let I ⊆ R× C. The following are equivalent.

(a) For all ϕ ∈ c0(I) one has
∥∥∑

(r,c)∈I ϕrcec ⊗ er
∥∥

c0(C)
∧

⊗ c0(R)
= supq∈I |ϕq |.
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(b) There are pairwise disjoint sets Rj ⊆ R and pairwise disjoint sets Cj ⊆ C such that Rj or Cj is
a singleton for each j and I =

⋃
Rj×Cj : I is the union of the column section

⋃
#Rj=1 Rj×Cj

with the disjoint row section
⋃

#Rj>1 Rj × Cj .

(c) I is a union of pairwise disjoint star graphs: every path in I has length at most 2.

Proof. (a) ⇒ (b) follows from Prop. 3.1(a) ⇒ (d) and Th. 8.1(g) ⇒ (d).
(b) ⇔ (c). (b) holds if and only if (r, c), (r′, c), (r, c′) ∈ I ⇒ (r = r′ or c = c′) and therefore if

and only if (c) holds.
(b) ⇒ (a). Suppose (b) and let ϕ ∈ c0(I). Let αj = sup(r,c)∈Rj×Cj |ϕrc|1/2. If αj = 0, let us

define ̺j = 0 and γj = 0. Otherwise, if Rj is a singleton {r}, let us define ̺j = αj er and γj

by γjc = ϕrc/αj if c ∈ Cj and γjc = 0 otherwise. Otherwise, Cj is a singleton {c} and we define
γj = αj ec and ̺j by ̺jr = ϕrc/αj if r ∈ Rj and ̺jr = 0 otherwise. Note that the γj have pairwise
disjoint support and are null sequences, as well as the ̺j . Then

∑

(r,c)∈I

ϕrcec ⊗ er =
∑

j

γj ⊗ ̺j = average
ǫj=±1

(∑

j

ǫjγ
j

)
⊗
(∑

j

ǫj̺
j

)

is an average of elementary tensors in c0(C)
∧
⊗ c0(R) of norm supq∈I |ϕq|, so that this average is also

bounded by this norm, which obviously is a lower bound.

9 1-unconditional matrices in Sp, p an even integer

Let us now prove Theorem 1.5 as a consequence of Theorem 6.5 together with Proposition 6.6(c).

Theorem 9.1. Let I ⊆ R × C and p = 2k a positive even integer. The following assertions are
equivalent.

(a) I is a complex completely 1-unconditional basic sequence in Sp.

(b) I is a complex 1-unconditional basic sequence in Sp.

(c) For every finite subset F ⊆ I there is an operator x ∈ Sp, whose support S contains F , such
that

∥∥∑ ǫqxq eq
∥∥
p

does not depend on the complex choice of signs ǫ ∈ TS.

(d) I is a real 1-unconditional basic sequence in Sp.

(e) For every finite subset F ⊆ I there is an operator x ∈ Sp with real matrix coefficients, whose
support S contains F , such that

∥∥∑ ǫqxq eq
∥∥
p

does not depend on the real choice of signs

ǫ ∈ {−1, 1}S.

(f) Every closed walk P ∼ (α, β) of length 2s 6 2k in I satisfies α = β.

(g) I does not contain any cycle of length 2s 6 2k as a subgraph.

(h) For each v, w ∈ V there is at most one path in I of length l 6 k that joins v to w.

Proof. (a) ⇒ (b) ⇒ (c), (b) ⇒ (d) ⇒ (e) are trivial.
(c) ⇒ (g). Suppose that I contains a cycle P ∼ (γ, δ) of length 2s 6 2k: the corresponding set

of couples is F = {q : γq + δq = 1}. Let x be as in (c) and let (α, β) = (γ, δ) + (k − s)(eq, eq) for
some arbitrary q ∈ F . Then (α, β) ∈ W S

k . Consider f(ǫ) =
∥∥∑ ǫqxqeq

∥∥p
p

as a function on the group

TS . Then the Fourier coefficient f̂(ǫβ−α) of f at the Steinhaus character ǫβ−α is, by Th. 6.5(a),

∑{
nεζx

εxζ : (ε, ζ) ∈ W S
k and ζ − ε = β − α

}

= xγxδ
∑{

nεζx
ε−γxζ−δ : (ε, ζ) ∈ W S

k and ζ − δ = ε− γ
}
.

(Note that β − α = δ − γ.) As this last sum has only positive terms and contains at least the term
corresponding to (α, β), f cannot be constant.

(e) ⇒ (g). Let P ∼ (γ, δ), F = {q : γq + δq = 1} and (α, β) be as in the proof of the implication
(c) ⇒ (h). Let x be as in (e). Consider f(ǫ) =

∥∥∑ ǫqxqeq
∥∥p
p

as a function on the group {−1, 1}S.

Then the Fourier coefficient f̂(ǫβ−α) of f at the Walsh character ǫβ−α is, by Th. 6.5(a),

∑{
nεζx

ε+ζ : (ε, ζ) ∈ W S
k and ζ − ε ≡ β − α (mod 2)

}

= xγ+δ
∑{

nεζx
ε+ζ−γ−δ : (ε, ζ) ∈ W S

k and ζ − ε ≡ δ − γ (mod 2)
}
.
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As this last sum has only positive terms and contains at least the term corresponding to (α, β), f
cannot be constant.

(f) ⇔ (g). Apply Prop. 6.6(c).
(g) ⇔ (h). If I contains a cycle (v0, . . . , v2s−1), then I contains two distinct paths (v0, . . . , vs),

(v0, v2s−1, . . . , vs) of length s from v0 to vs. If I contains two distinct paths (v0, . . . , vl), (v′
0, . . . , v

′
l′)

with v0 = v′
0, vl = v′

l′ and l, l′ 6 k, let a be minimal such that va 6= v′
a, let b > a be minimal such

that vb ∈ {v′
a, . . . , v

′
l′} and let d > a be minimal such that v′

d = vb. Then (va−1, . . . , vb, v
′
d−1, . . . , v

′
a)

is a cycle in I of length 2s 6 2k.
(f) ⇒ (a) holds by Theorem 6.5(b): If each (α, β) ∈ W I

k satisfies α = β, then Eq. (B.15) shows
that ΨI(ǫ, z) as defined in Eq. (B.14) is constant in ǫ.

Remark 9.2. The equivalence (b) ⇔ (g) is a noncommutative analogue to [63, Prop. 2.5(ii)].

Remark 9.3. In [64, Th. 2.7], the condition of Th. 9.1(f) is visualised in another way: a closed walk
P = (c1, r1, . . . , cs, rs) ∼ (α, β) in N × N is considered as the polygonal closed curve γ in C with
sides parallel to the coordinate axes whose successive vertices are r1 + ic1, r1 + ic2, r2 + ic2, . . . ,
rs−1 + ics, rs + ics, rs + ic1 and again r1 + ic1. Then α = β if and only if the index with respect
to γ of every point not on γ is zero, if and only if γ can be shrunk to a point inside of the set of its
points.

Remark 9.4. One cannot drop the assumption that x has real matrix coefficients in Th. 9.1(e).
Consider a 2 × 2 matrix x. Then trx∗x =

∑ |xq|2 and detx∗x = |x00x11 − x01x10|2. This shows

that if ℜ(x00x11x01x10) = 0, e.g. x =

(
1 1
1 i

)
, then the singular values of x do not depend on the

real sign of the matrix coefficients of x, whereas (col 0, row 0, col 1, row 1) is a cycle of length 4.

Remark 9.5. Theorem 9.1(h) ⇒ (a) is the isometric counterpart to [38, Th. 3.1], which shows in
particular that I is an unconditional basic sequence in S2k if the number of walks in I between
two given vertices of length k and with no edge repeated has a uniform bound. The following
combinatorial problem arises naturally: if I satisfies this latter condition, is it so that I is the union
of a finite number of sets Ij such that there is at most one path of length at most k in Ij between
two given vertices? In the simplest case, k = 2, William Banks, Ilijas Farah, Asma Harcharras and
Dominique Lecomte [5] have deduced from [86] that it is not so.

10 Metric unconditional approximation property for SpI
Let R,C be two copies of N. It is well known that, apart from S2, no Sp has an unconditional basis
or just a local unconditional structure (see [79, § 4].) S1 and S∞ cannot even be embedded in a
space with unconditional basis. If 1 < p < ∞, then Sp has the unconditional finite dimensional
decomposition ⊕

n∈N

Sp{(r,c):r6n,c=n} ⊕ Sp{(r,c):r=n+1,c6n}

because the triangular projection associated to the idempotent Schur multiplier (χr6c) is bounded
on Sp.

Definition 10.1. Let X be a separable Banach space and S = T (vs. S = {−1, 1}.)

– A sequence (Tk) of operators on X is an approximating sequence if each Tk has finite rank and
‖Tkx − x‖ → 0 for every x ∈ X . An approximating sequence of commuting projections is a
finite-dimensional decomposition.

– ([72].) The difference sequence (∆Tk) of (Tk) is given by ∆T1 = T1 and ∆Tk = Tk − Tk−1 for
k > 2. X has the unconditional approximation property (uap) if there is an approximating
sequence (Tk) such that for some constant D

∥∥∥∥
n∑

k=1

ǫk∆Tk

∥∥∥∥ 6 D for all n and ǫk ∈ S.

The complex (vs. real) unconditional constant of (Tk) is the least such constant D.
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– ([22, § 3], [32, § 8].) X has the complex (vs. real) metric unconditional approximation property
(muap) if, for every δ > 0, X has an approximating sequence with complex (vs. real) uncon-
ditional constant 1 + δ. By [22, Th. 3.8] and [32, Lemma 8.1], this is the case if and only if
there is an approximating sequence (Tk) such that

sup
ǫ∈S

‖Tk + ǫ(Id − Tk)‖ −→ 1. (B.18)

X has (muap) if and only if, for every given δ > 0, X is isometric to a 1-complemented subspace
of a space with a (1 + δ)-unconditional finite-dimensional decomposition [31, Cor. IV.4]. If X has
(muap), then, for any given δ > 0, X is isometric to a subspace of a space with a (1+δ)-unconditional
basis.

Example 10.2. The simplest example is the subspace in Sp of operators with an upper triangular
matrix. In fact, if I ⊆ R × C is such that all columns I ∩ R × {c} (vs. all rows I ∩ {r} × C)
are finite, then SpI admits a 1-unconditional finite-dimensional decomposition in the corresponding
finitely supported idempotent Schur multipliers χI∩R×{c} (vs. χI∩{r}×C .)

Our results on complete 1-unconditional basic sequences yield the following theorem.

Theorem 10.3. Let 1 6 p 6 ∞. Let Rr ⊆ R, r ∈ N, be pairwise disjoint and finite. Let Cc ⊆ C,
c ∈ N, be pairwise disjoint and finite. Let J ⊆ N×N and I =

⋃
(r,c)∈J Rr×Cc. Then the sequence of

Schur multipliers (χRr×Cc)(r,c)∈J forms a complex 1-unconditional finite-dimensional decomposition
for SpI if and only if J is a forest or p is an even integer and J contains no cycle of length 4, 6, . . . , p.

We may always suppose that approximating sequences on spaces SpI are associated to Schur
multipliers. More precisely, we have

Proposition 10.4. Let 1 6 p 6 ∞ and I ⊆ R × C. Let (Tn) be an approximating sequence on SpI .
Then there is a sequence of Schur multipliers (ϕn) such that (Mϕn) is an approximating sequence
on SpI and such that if (Tn) satisfies (B.18), then so does (Mϕn).

Proof. Let δn > 0 be such that δn → 0. As Tn has finite rank, there is a finite Rn × Cn ⊆ R × C
such that the projection PRn×Cn of Sp onto SpRn×Cn

defined by the Schur multiplier χCn ⊗ χRn
satisfies ‖PRn×CnTn −Tn‖ < δn. Let ϕn be the Schur multiplier associated to [Tn]Rn×Cn . With the
notation of Eq. (B.5),

Mϕn(x) − x =

∫

TR

dη

∫

TC

dζ Mζ∗⊗η∗(PRn×CnTn − Id)(Mζ⊗ηx).

As PRn×CnTn tends to the identity uniformly on compact sets, this shows that Mϕn is an approxi-
mating sequence. As

Mϕn + ǫ(Id − Mϕn) = [PRn×CnTn + ǫ(Id − PRn×CnTn)] ,

the norm of this operator is at most ‖Tn + ǫ(Id − Tn)‖ + 2δn.

This proposition shows together with Prop. 2.1 the following results.

Corollary 10.5. Let 1 6 p 6 ∞ and I ⊆ R× C.

– If SpI has (muap), then some sequence of Schur multipliers realises it.

– Let J ⊆ I. If SpI has (muap), then so does SpJ .

– If S∞
I has (muap), then so does SpI .

Let us define the following asymptotic properties.

Definition 10.6. Let 1 6 p 6 ∞, I ⊆ R× C and S = T (vs. S = {−1, 1}.)

– SpI is asymptotically unconditional if for every x ∈ SpI and for every bounded sequence (yn) in
SpI such that each matrix coefficient of yn tends to 0

max
ǫ∈S

‖x+ ǫyn‖p − min
ǫ∈S

‖x+ ǫyn‖p −→ 0.
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– I enjoys the property (U ) of block unconditionality in Sp if for each δ > 0 and finite F ⊆ I,
there is a finite G ⊆ I such that

∀x ∈ BSp
F

∀ y ∈ BSp
I\G

max
ǫ∈S

‖x+ ǫy‖p − min
ǫ∈S

‖x+ ǫy‖p < δ.

The arguments of [63, § 6.2] show mutatis mutandis

Theorem 10.7. Let 1 6 p 6 ∞, I ⊆ R × C and S = T (vs. S = {−1, 1}.) Consider the following
properties.

(a) SpI is asymptotically unconditional.

(b) I enjoys (U ) in Sp.

(c) SpI has (muap).

Then (c) ⇒ (a) ⇔ (b). If 1 < p < ∞, then (b) ⇔ (c). If p = 1, S1
I has (muap) if and only if S1

I

has (uap) and I enjoys (U ) in S1.

The case p = ∞ is extreme in the sense that the following properties are equivalent for S∞
I : to be

a dual space, to be reflexive, to have a finite cotype, not to contain c0, because they are equivalent
for I not to contain any sequence (rn, cn) with (rn) and (cn) injective, that is for I to be contained
in the union of a finite set of lines and a finite set of columns, so that S∞

I is isomorphic to ℓ2
I .

Let us now introduce the asymptotic property on I that reflects the combinatorics imposed by
(muap).

Definition 10.8. Let I ⊆ R× C and k > 1.

– I enjoys property Jk if for every path P = (c0, r0, . . . , cj , rj) of odd length 2j + 1 6 k in I
there is a finite set R′ × C′ such that P cannot be completed with edges in I \ R′ × C′ to a
cycle of length 2s ∈ {4j + 2, . . . , 2k}.

– The asymptotic distance d∞(r, c) of r ∈ R and c ∈ C in I is the supremum, over all finite
rectangle sets R′ × C′, of the distance from r to c in I \R′ × C′.

The asymptotic distance takes its values in {1, 3, 5, . . . ,∞}. Note that J1 is true and that
Jk ⇒ Jk−1. This implication is strict: let R,C be two copies of N and, given j > 1, consider the
union Ij of all paths (col 0, rownj + 1, colnj + 1, . . . , rownj + j, colnj + j, row 0) of length 2j + 1.
Then Ij contains no cycle of length 2s ∈ {4, . . . , 4j} and therefore enjoys J2j , but fails J2j+1;
Ij ∪ {(row 0, col 0)} contains no cycle of length 2s ∈ {4, . . . , 2j} and thus enjoys Jj , but fails Jj+1.
In particular, the properties Jk, k > 2, are not stable under union with a singleton.

Let us now explicit the relationship between Jk and d∞.

Proposition 10.9. Let I ⊆ R × C and k > 1.

(a) I enjoys Jk if and only if any two vertices r ∈ R and c ∈ C at distance 2j + 1 6 k satisfy
d∞(r, c) > 2k − 2j + 1.

(b) If d∞(r, c) > 2k + 1 for all (r, c) ∈ R× C, then I enjoys Jk.

(c) If d∞(r, c) 6 k for some (r, c) ∈ R× C, then I fails Jk.

(d) I enjoys Jk for every k if and only if d∞(r, c) = ∞ for every (r, c) ∈ R× C.

Proof. (a) is but a reformulation of the definition ofJk and implies (b).
(d) is a consequence of (b) and (c).
(c). If d∞(r, c) 6 k, then there is 0 6 j 6 (k − 1)/2 such that there are infinitely many paths of

length 2j + 1 from c to r: there is a path (c, r1, c1, . . . , rj , cj , r) that can be completed with edges
outside any given finite set to a cycle of length 4j + 2 6 2k.

Theorem 10.10. Let I ⊆ R × C and 1 6 p 6 ∞. If p is an even integer, then SpI has complex or
real (muap) if and only if I enjoys Jp/2. If p = ∞ or if p is not an even integer, then SpI has real
(muap) only if I enjoys Jk for every k.

Proof. Suppose that I enjoys (U ) in Sp and fails Jk. Then, for some s 6 k, I contains a sequence of
cycles (c0, r0, . . . , cj−1, rj−1, c

n
j , r

n
j , . . . , c

n
s−1, r

n
s−1) with the property that ‖x−y‖p 6 (1+1/n)‖x+y‖p

for all x with support in {(r0, c0), (r0, c1), . . . , (rj−2, cj−1), (rj−1, cj−1)} and all y with support in
{(rj−1, c

n
j ), (rnj , c

n
j ), . . . , (rns−1, c

n
s−1), (rns−1, c0)}. With the notation of Section 7, this amounts to

stating that the multiplier on I = {(i, i), (i, i + 1)} ⊆ Z/sZ × Z/sZ given by ǫrc = 1 if r, c ∈
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{0, . . . , j − 1} and ǫrc = −1 otherwise actually is an isometry on SpI . As ǫ00ǫ01 . . . ǫs−1 s−1ǫs−1 0 =
(−1)2s−2j+1 = −1, this implies by Prop. 7.1(e) that p/2 ∈ {1, 2, . . . , s− 1}.

Suppose that I enjoys Jk. We claim that for every finite F ⊆ I there is a finite G ⊆ I such
that every closed walk P ∼ (α, β) of length 2k in I satisfies

∑
q∈I\G βq − αq = 0. This signifies

that given a closed walk (v0, . . . , v2k−1) and 0 = a0 < b0 < · · · < am < bm < am+1 = 2k such that
vai , . . . , vbi−1 ∈ I \G and vbi , . . . , vai+1−1 ∈ F ,

{
i ∈ {0, . . . ,m} : ai, bi even

}
=
{
i ∈ {0, . . . ,m} : ai, bi odd

}
.

Suppose that this is not true: then there is an s 6 k, there are 0 = a0 < b0 < · · · < am < bm < 2s
and there are cycles (vna0

, . . . , vnb0−1, vb0 , . . . , va1−1, . . . , v
n
am , . . . , v

n
bm−1, vbm , . . . , v2s−1) such that the

(vni )n>0 are injective sequences of vertices and bi− ai is even for at least one index i: let us suppose
so for i = 0. If b0 − a0 > s− 1, consider the path P = (vb0 , . . . , va0−1, v

0
a0
, . . . , v0

bm−1, vbm , . . . , v2s−1)
of odd length 2s− 1 − (b0 − a0); if b0 − a0 6 s− 1, consider the path P = (v2s−1, v

0
a0
, . . . , v0

b0−1, vb0 )
of odd length b0 − a0 + 1. Then P can be completed with vertices outside any given finite set to a
cycle of length at most 2s because (v2s−1, v

n
a0
, . . . , vnb0−1, vb0) is a path of length b0 − a0 + 1 in I for

every n. This proves that I fails Js.
The claim shows that I enjoys (U ) in Sp for p = 2k. In fact, if ǫ̃ ∈ TF∪(I\G) is defined by ǫ̃q = 1

for q ∈ F and ǫ̃q = ǫ ∈ T for q ∈ I \G, then, with the notation of Th. 6.5,

ΦF∪(I\G)(ǫ̃, a) =
∑

(α,β)∈W
F∪(I\G)

k

nαβǫ

∑
q∈I\G

βq−αq
aαaβ

does not depend on ǫ, so that ‖x+ ǫy‖2k = ‖x+ y‖2k if x ∈ S2k
F and y ∈ S2k

I\G, and S2k
I has complex

(muap) by Th. 10.7(b) ⇒ (c).

Remark 10.11. This theorem is a noncommutative analogue to [63, Th. 7.5].

11 Examples

One of Varopoulos’ motivations for the study of the projective tensor product ℓ∞

∧
⊗ ℓ∞ are lacunary

sets in a locally compact abelian group.
Let Γ be a discrete abelian group and Λ ⊆ Γ. Let us say that Λ is n-independent if every

element of Γ admits at most one representation as the sum of n terms in Λ, up to a permutation.
For example, the geometric sequence {jk}k>0 with j ∈ {2, 3, . . .} is n-independent in Z if and only
if j > n [63, § 3]. If Λ is n-independent for all n, then Λ is independent. Let

Zn = {ζ ∈ ZΛ :
∑

γ∈Λ

ζγ = 0 and
∑

γ∈Λ

|ζγ | 6 2n]

and Z =
⋃

Zn. Then Λ is n-independent if and only if, for every ζ ∈ Zn,

∑

γ∈Λ

ζγγ = 0 ⇒ ζ = 0

and Λ is independent if and only if this holds for every ζ ∈ Z.
Let us say that Λ is n-independent modulo 2 if in every representation of an element of Γ as

the sum of n terms in Λ, each element of Λ appears the same number of times modulo 2. In other
words, for every ζ ∈ Zn,

∑

γ∈Λ

ζγγ = 0 =⇒ ∀ γ ∈ Λ ζγ = 0 (mod 2) ;

Λ is independent modulo 2 if this holds for every ζ ∈ Z. If Γ contains no element of order 2, then
one may always suppose that at least one coefficient ζγ of a nontrivial relation

∑
ζγγ = 0 is odd,

so that these two latter notions “modulo 2” coincide with the two former ones.
Let G = Γ̂, so that Γ is the group of characters on G. Then the computation presented in [63,

Prop. 2.5(ii)] for the case Γ = Z shows that Λ is a complex (vs. real) 1-unconditional basic sequence
in Lp(G) with p ∈ 2N∗ if and only if Λ is p/2-independent (vs. modulo 2). Furthermore Λ is a
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complex (vs. real) 1-unconditional basic sequence in Lp(G) with p ∈ (0,∞] \ 2N∗ if and only if Λ
is independent (vs. modulo 2). If Γ contains no element of order 2, then a real 1-unconditional
basic sequence in Lp(G) is also complex 1-unconditional. All these results hold also for the complete
counterparts to 1-unconditional basic sequences.

Results on lacunary sets in a discrete abelian group transfer to lacunary matrices in the following
way, as in [97, Th. 4.2].

Proposition 11.1. Let Γ be a discrete abelian group and R, C be countable subsets of Γ. To every
Λ ⊆ R + C associate IΛ = {(r, c) ∈ R× C : r + c ∈ Λ}. Let G = Γ̂.

(a) If Λ is a complex 1-unconditional basic sequence in L4(G), then IΛ is a 1-unconditional basic
sequence in S4.

(b) Suppose that each element of Γ admits at most one representation as the sum of an element of R
with an element of C. Then every I ⊆ R×C has the form I = IΛ with Λ = {r + c : (r, c) ∈ I}.
If Λ is a real 1-unconditional basic sequence in Lp(G), then IΛ is a 1-unconditional basic
sequence in Sp.

(c) Let p = 2k be a positive even integer. Suppose that R ∩ C = ∅ and R ∪ C is k-independent
modulo 2. IΛ is a 1-unconditional basic sequence in Sp if and only if Λ is a real 1-unconditional
basic sequence in Lp(G).

Proof. (a). Let P = (c, r, c′, r′) be a closed walk in IΛ. Then r + c, r′ + c′, r + c′ and r′ + c are in
Λ while (r+ c) + (r′ + c′) = (r+ c′) + (r′ + c): if Λ is 2-independent, then r+ c ∈ {r+ c′, r′ + c}, so
that c = c′ or r = r′ and P is not a cycle.

(b). For each γ ∈ Λ, let qγ = (rγ , cγ) be the unique element of I such that rγ + cγ = γ. If Λ is a
real 1-unconditional basic sequence in Lp(G), then it is also a complete real 1-unconditional basic
sequence in Lp(G). Let ϕ ∈ {−1, 1}IΛ, so that ϕqγ ∈ {−1, 1} for all γ ∈ Λ. Then, as in Eq. (B.6),

∥∥∥
∑

q∈IΛ

aqeq

∥∥∥
Sp
IΛ

(Sp)
=
∥∥∥
∑

(r,c)∈IΛ

r(g)c(g)arcerc

∥∥∥
Sp
IΛ

(Sp)

=

∥∥∥∥
∑

γ∈Λ

aqγ eqγγ(g)

∥∥∥∥
Sp
IΛ

(Sp)

=

∥∥∥∥
∑

γ∈Λ

aqγ eqγγ

∥∥∥∥
Lp

Λ
(G,Sp(Sp))

so that as in Eq. (B.7), by complete real 1-unconditionality of Λ in Lp(G),

∥∥∥
∑

q∈IΛ

ϕqaqeq

∥∥∥
Sp
IΛ

(Sp)
=

∥∥∥∥
∑

γ∈Λ

ϕqγaqγ eqγγ

∥∥∥∥
Lp

Λ
(G,Sp(Sp))

=
∥∥∥
∑

q∈IΛ

aqeq

∥∥∥
Sp
IΛ

(Sp)
.

(c). Each element of Γ admits at most one representation as the sum of an element of R with
an element of C, so that (b) yields sufficiency. Suppose that Λ is not a real 1-unconditional basic
sequence in Lp(G) and let ζ ∈ Zk such that

∑
γ∈Λ ζγγ = 0 and J = {(r, c) ∈ IΛ : ζr+c 6= 0 (mod 2)}

is nonempty; J has at most 2k elements. Let P = (v1, . . . , vj) be a path in J of maximal length.
Then ζvj−1+vj is odd and

∑{ζvj+v : vj + v ∈ Λ} is even because it is the coefficient of vj in the
relation

∑
γ∈Λ ζγγ = 0 and R ∪C is k-independent modulo 2. There is therefore vj+1 distinct from

vj−1 such that ζvj+vj+1 is odd. As j is maximal and R∩C = ∅, vj+1 = vj+1−2i for some 2 6 i 6 k,
so that (vj+1−2i, . . . , vj) is a cycle of length 2i in J : IΛ is not a 1-unconditional basic sequence in
Sp.

Let R and C be any countable sets. Consider G = {−1, 1}C × {−1, 1}R. If we denote by(
(ǫc)c∈C , (ǫ

′
r)r∈R

)
a generic point in G, then the set of Rademacher functions {ǫc}c∈C ∪ {ǫ′

r}r∈R is
a real 1-unconditional basic sequence in C(G), so that it is independent modulo 2 in Ĝ. Similarly,
the set of Steinhaus functions {zc}c∈C ∪{z′

r}r∈R is independent in the dual of TC ×TR. This yields:

Corollary 11.2. Let I ⊆ R× C and p ∈ (0,∞]. The following are equivalent:

– I is a 1-unconditional basic sequence in Sp.

– {ǫcǫ′
r : (r, c) ∈ I} is a real 1-unconditional basic sequence in Lp(G).

– {zcz′
r : (r, c) ∈ I} is a 1-unconditional basic sequence in Lp(TC × TR).
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Remark 11.3. The isomorphic counterpart is also true: I is a completely unconditional basic se-
quence in Sp (i.e., a complete σ(p) set) if and only if {ǫcǫ′

r : (r, c) ∈ I} is a completely unconditional
basic sequence in Lp(G) (a Λ(p)cb set in Ĝ, see [37] and [76, § 8.1],) if and only if {zcz′

r : (r, c) ∈ I}
is a completely unconditional basic sequence in Lp(TC × TR). This follows e.g. from the proof of
Prop. 11.1(b) and the iterated noncommutative Khinchin inequality [76, Eq. (8.4.11)].

Harcharras [37] used Peller’s discovery [73] of the link between Fourier and Hankel Schur multi-
pliers to produce unconditional basic sequences in Sp that are unions of antidiagonals in N×N. We
have in our context the rather disappointing

Proposition 11.4. Let Λ ⊆ N ⊆ Z and I = {(r, c) ∈ N × N : r + c ∈ Λ}.

(a) I is a 1-unconditional basic sequence in S4 if and only if {zλ}λ∈Λ is a 1-unconditional basic
sequence in L4(T).

(b) If Λ contains three elements λ < µ < ν such that λ + µ > ν, then I is not a 1-unconditional
basic sequence in Sp if p ∈ (0,∞] \ {2, 4}.

(c) If Λ = {λk} with λk+1 > 2λk for all k, then I is a 1-unconditional basic sequence in Sp for
every p.

Proof. (a). Sufficiency follows from Prop. 11.1(a) with R = C = N. Conversely, if Λ contains a
solution to λ + µ = λ′ + µ′ with λ < λ′ 6 µ′ < µ, then I contains the cycle (col 0, rowλ, colλ′ −
λ, rowµ′).

(b). Consider the cycle (col 0, rowλ, col ν − λ, rowµ− ν + λ, col ν − µ, rowµ).
(c). In fact, I is a forest. Let P = (c1, r1, . . . , ck, rk) be a closed walk in I. We may suppose

without loss of generality that r1 + c2 is a maximal element of {r1 + c1, r1 + c2, . . . , rk + ck, rk + c1}.
Then r1+c1 6 r1+c2 and r2+c2 6 r1+c2. One of these inequalities must be an equality and P is not
a cycle: for otherwise 2(r1 +c1) < r1 +c2 and 2(r2 +c2) < r1 +c2 because r1 +c1, r1 +c2, r2 +c2 ∈ Λ,
so that 2(r1 + c1 + r2 + c2) < 2(r1 + c2) and c1 + r2 < 0.

Remark 11.5. Further computations yield the following result. If {zλ}λ∈Λ is a 1-unconditional basic
sequence in L6(T) and if {λ < µ < ν} ⊆ Λ ⇒ λ+ µ < ν, then I is a 1-unconditional basic sequence
in S6; the converse does not hold.

Let us now give an overview of the known extremal bipartite graphs without cycle of length
4, 6, . . . , 2k and their size. Look up [9, Def. I.3.1] for the definition of a Steiner system and [56,
Def. 1.3.1] for the definition of a generalised polygon. An elementary example is given in the
introduction with (B.1).

Proposition 11.6. Let 2 6 n 6 m, I ⊆ R× C with #C = n and #R = m, and e = # I.

(a) If I is a 1-unconditional basic sequence in S4, then

n > 1 +
( e
m

− 1
)

+
( e
m

− 1
)( e

n
− 1
)
,

that is e2 − me − mn(n − 1) 6 0. Equality holds if and only if I is the incidence graph of a
Steiner system S(2, e/m;n) on n points and m blocks.

(b) If I is a 1-unconditional basic sequence in S6, then

n > 1 +
( e
m

− 1
)

+
( e
m

− 1
)( e

n
− 1
)

+
( e
m

− 1
)2( e

n
− 1
)
,

that is e3 − (m + n)e2 + 2mne − m2n2 6 0. Equality holds if and only if I is the incidence
graph of the quadrangle (the cycle of length 8) or of a generalised quadrangle with n points
and m lines.

(c) If I is a 1-unconditional basic sequence in S2k with k > 1 an integer, then

n >

k∑

i=0

( e
m

− 1
)⌈ i2 ⌉( e

n
− 1
)⌊ i2 ⌋

. (B.19)

Equality holds if I is the incidence graph of the (k + 1)-gon (the cycle of length 2k + 2) or of
a generalised (k + 1)-gon with n points and m lines.
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Proof. By Theorem 9.1(b) ⇒ (g), I is a 1-unconditional basic sequence in S2k, with k > 1 an integer,
if and only if I is a graph of girth 2k+ 2 in the sense of [44]. Therefore (a) and (b) are shown in [65,
Prop. 4, Th. 8, Rem. 10]. Inequality (B.19) is [44, Eq. (1)] and the sufficient condition for equality
follows from [56, Lemma 1.5.4].

Consult [9, Tables A1.1, A5.1] for examples of Steiner systems and [56, Table 2.1] for examples
of generalised polygons. In both cases, the corresponding incidence graph is biregular: every vertex
in R has same degree s+1 and every vertex in C has same degree t+1. Arbitrarily large generalised
(k + 1)-gons exist only if 2k ∈ {4, 6, 10, 14} [56, Lemma 1.7.1]; for 2k ∈ {6, 10, 14}, it follows from
[56, Lemma 1.5.4] that

n = (s+ 1)
(st)(k+1)/2 − 1

st− 1
, m = (t+ 1)

(st)(k+1)/2 − 1

st− 1
.

Remark 11.7. Let I ⊆ R× C with #C = #R = n. Inequality (B.19) shows that if I is a 1-uncon-
ditional basic sequence in S2k, then # I 6 n1+1/k + (s − 1)n/s. If p /∈ {4, 6, 10}, the existence of
1-unconditional basic sequences in S2k such that # I < n1+1/k is in fact an important open problem
in graph theory: extremal graphs cannot correspond to generalised polygons and necessarily have
less structure.
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Chapter C

Matrix inequalities with

applications to the theory of

iterated kernels

with William Banks, Asma Harcharras and Éric Ricard.

For an m× n matrix A with nonnegative real entries, Atkinson, Moran and Watterson
proved the inequality s(A)3 6 mns(AAtA), where At is the transpose of A, and s(·) is
the sum of the entries. We extend this result to finite products of the form AAtAAt . . . A
or AAtAAt . . . At and give some applications to the theory of iterated kernels.

1 Introduction

For any matrix A, let s(A) denote the sum of its entries. For any integer k ≥ 1, we define

A(2k) = (AAt)k, A(2k+1) = (AAt)kA,

where At denotes the transpose of A. In Section 2, we prove the following sharp inequalities:

Theorem 1.1. Let A be an m × n matrix with nonnegative real entries. Then for every integer
k > 1, the following matrix inequalities hold:

s(A)2k
6 mk−1nks(A(2k)), s(A)2k+1

6 mknks(A(2k+1)).

For the special case of symmetric matrices, this theorem was proved in 1959 by Mulholland and
Smith [59], thus settling an earlier conjecture of Mandel and Hughes [57] that had been based on the
study of certain genetical models. For arbitrary matrices (with nonnegative entries), Theorem 1.1
also generalizes the matrix inequality

s(A)3
6 mns(AAtA),

which was first proved in 1960 by Atkinson, Moran and Watterson [3] using methods of perturbation
theory.

Theorem 1.1 has a graph theoretic interpretation when applied to matrices with entries in {0, 1}.
Let G be a graph with red vertices labeled 1, . . . ,m and blue vertices labeled 1, . . . , n such that every
edge connects only vertices of distinct colours: G is a bipartite graph. Its reduced incidence matrix
is an m × n matrix A such that ai,j = 1 if red vertex i is adjacent to blue vertex j, and ai,j = 0
otherwise. Then s(A) is the size of G, while s(A(ℓ)) is the number of walks on G of length ℓ starting
from a red vertex, i.e., the number of sequences (v0, . . . , vℓ) such that v0 is a red vertex and every
pair {vi, vi+1} is an edge in G. Theorem 1.1 then yields the optimal lower bound of the number of
walks in terms of the size of G. We do not know of a corresponding lower bound for the number of
trails (walks with no edge repeated) or paths (walks with no vertex repeated).

Recall that an m×n matrix A is said to be bistochastic if every row sum of A is equal to s(A)/m,
and every column sum of A is equal to s(A)/n. In Section 3 we prove the following asymptotic form
of Theorem 1.1:
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Theorem 1.2. Let A be an m × n matrix with nonnegative real entries. If A is bistochastic, then
for all k > 1,

s(A)2k = mk−1nks(A(2k)), s(A)2k+1 = mknks(A(2k+1)).

If A is not bistochastic, then there exist constants c > 0 and γ > 1 (depending only on A) such that
for all ℓ > 1,

s(A)ℓ < cγ−ℓ(mn)ℓ/2s(A(ℓ)).

As we show in Sections 2 and 3, both of the above theorems, though stated for arbitrary rectan-
gular matrices with nonnegative entries, follow from the special case of square matrices.

Theorem 1.2 has an immediate application. Atkinson, Moran and Watterson [3] conjectured that
for a nonnegative symmetric kernel function K(x, y) that is integrable (in a suitable sense) over the
square 0 6 x, y 6 a, the inequality

a∫

0

a∫

0

Kℓ(x, y) dxdy >
1

aℓ−1

( a∫

0

a∫

0

K(x, y) dxdy

)ℓ
(C.1)

holds for all ℓ > 1. HereKℓ(x, y) denotes the ℓ-th order iterate of K(x, y), which is defined recursively
by

K1(x, y) = K(x, y), Kℓ(x, y) =

a∫

0

Kℓ−1(x, t)K(t, y) dt.

Beesack [7] showed that the Atkinson-Moran-Watterson conjecture follows from the matrix iden-
tities of Mulholland and Smith described above. Using Beesack’s ideas together with Theorem 1.2,
we prove in Section 4 the following asymptotic form of the Atkinson-Moran-Watterson inequality
(C.1):

Theorem 1.3. Let K(x, y) be a nonnegative symmetric kernel function that is integrable over the

square 0 6 x, y 6 a, and consider the function f(x) =
a∫
0

K(x, y) dy defined on the interval 0 6 x 6 a.

If f(x) is constant almost everywhere, then for all ℓ > 1

a∫

0

a∫

0

Kℓ(x, y) dxdy =
1

aℓ−1

( a∫

0

a∫

0

K(x, y) dxdy

)ℓ
.

If not, there exist constants c > 0 and γ > 1 (depending only on K) such that for all ℓ > 1

a∫

0

a∫

0

Kℓ(x, y) dxdy >
cγℓ

aℓ−1

( a∫

0

a∫

0

K(x, y) dxdy

)ℓ
.

Remark 1.4. Using an approximation argument as in the proof of Theorem 1.3, Theorem 1.1 can be
also applied to establish an analogue to inequalities (C.1) and Theorem 1.3 in the case of nonsym-
metric kernel functions. Let K(x, y) be any nonnegative kernel function that is integrable on the
rectangle 0 6 x 6 a, 0 6 y 6 b and letKℓ be the ℓ-th order iterate ofK defined byK1(x, y) = K(x, y)
and for each integer k ≥ 1,

K2k(x, x
′) =

b∫

0

K2k−1(x, y)K(x′, y) dy,

K2k+1(x, y) =

a∫

0

K2k(x, x′)K(x′, y) dx′.

In this case, inequalities (C.1) become
a∫

0

b∫

0

K2k+1(x, y) dxdy ≥ 1

akbk

( a∫

0

b∫

0

K(x, y) dxdy

)2k+1

a∫

0

a∫

0

K2k(x, x′) dxdx′ ≥ 1

ak−1bk

( a∫

0

b∫

0

K(x, y) dxdy

)2k

.

The analogue of Theorem 1.3 is then obvious.
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2 Matrix inequality

Given a matrix A = (ai,j) and an integer ℓ > 0, we denote by a(ℓ)
i,j the (i, j)-th entry of A(ℓ), so that

A(ℓ) = (a
(ℓ)
i,j ). This notation will be used often in the sequel.

Lemma 2.1. Let B = (bi,j) be a d× d matrix with nonnegative real entries. For any two sequences
{αi} and {βi} of nonnegative real numbers, the following inequality holds:

(I ′
2) :

d∑

i,j=1

αiβibi,j 6 d
1
2

( d∑

i,j=1

α2
i β

2
j b

(2)
i,j

) 1
2

.

Proof. To prove the lemma, we apply the Cauchy-Schwarz inequality twice as follows:

d∑

i,j=1

αiβibi,j =
d∑

i,k=1

αiβibi,k 6 d
1
2

( d∑

k=1

( d∑

i=1

αiβibi,k

)2
) 1

2

. (C.2)

d∑
i,j=1

αiβibi,j ≤ d
1
2

(
d∑

i,j,k=1

αiαjβiβjbi,kbj,k

) 1
2

= d
1
2

(
d∑

i,j=1

αiαjβiβjb
(2)
i,j

) 1
2

= d
1
2

(
d∑

i,j=1

αiβj(b
(2)
i,j )

1
2 · αjβi(b(2)

j,i )
1
2

) 1
2

6 d
1
2

(
d∑

i,j=1

α2
i β

2
j b

(2)
i,j

) 1
2

.

Here we have used the fact that B(2) = BBt is a symmetric matrix.

Theorem 2.2. Let B = (bi,j) be a square d× d matrix with nonnegative real entries, and let {αi}
be any sequence of nonnegative real numbers. Then for each integer ℓ > 1, we have

(Iℓ) :

d∑

i,j=1

αibi,j 6 d
ℓ−1
ℓ

( d∑

i,j=1

αℓib
(ℓ)
i,j

) 1
ℓ

.

Proof of Theorem 2.2. The case ℓ = 1 is trivial while the case ℓ = 2 is a consequence of the
lemma above. We prove the general case by induction. Suppose that p > 2, and the inequali-
ties (I1), (I2), . . . , (Ip) hold for all square matrices with nonnegative real entries. If p = 2k − 1 is
an odd integer, then the inequality (Ip+1) follows immediately from (I2) and (Ik). Indeed, since
B(2k) = B(2)(k), we have

d∑

i,j=1

αibi,j 6 d
1
2

( d∑

i,j=1

α2
i b

(2)
i,j

) 1
2

6 d
1
2

(
d
k−1
k

( d∑

i,j=1

α2k
i b

(2)(k)
i,j

) 1
k

) 1
2

. (C.3)

Thus
d∑

i,j=1

αibi,j 6 d
2k−1

2k

( d∑

i,j=1

α2k
i b

(2k)
i,j

) 1
2k

.

If p = 2k is an even integer, then the inequality (Ip+1) follows from Hölder’s inequality, and the
inequalities (Ik) and (I ′

2). Indeed, by Hölder’s inequality, we have

d∑

i,j=1

αibi,j 6 d
1

2k+1

( d∑

i=1

α
2k+1

2k

i

( d∑

j=1

bi,j

) 2k+1
2k

) 2k
2k+1

. (C.4)

Let I denote the term between parentheses, and set βi =
d∑
j=1

bi,j for each i. Then

I =

d∑

i=1

α
2k+1

2k

i

( d∑

j=1

bi,j

) 2k+1
2k

=

d∑

i,j=1

α
2k+1

2k

i β
1

2k

i bi,j.
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Applying (Ik), it follows that

I 6 d
k−1
k

( d∑

i,j=1

α
2k+1

2
i β

1
2
i b

(k)
i,j

) 1
k

.

Applying the lemma to the sequences {α
2k+1

2

i } and {β
1
2

i }, and using the fact that B(k)(2) = B(2k),
we see that

I 6 d
k−1
k

(
d

1
2

( d∑

i,j=1

α2k+1
i βjb

(k)(2)
i,j

) 1
2

) 1
k

= d
2k−1

2k

( d∑

i,j=1

α2k+1
i βjb

(2k)
i,j

) 1
2k

.

Putting everything together, we have therefore shown that

d∑

i,j=1

αibi,j 6 d
2k

2k+1

( d∑

i,j=1

α2k+1
i βjb

(2k)
i,j

) 1
2k+1

.

Finally, note that
d∑

j=1

βjb
(2k)
i,j =

d∑

ℓ=1

b
(2k)
i,ℓ βℓ =

d∑

j,ℓ=1

b
(2k)
i,ℓ bℓ,j =

d∑

j=1

b
(2k+1)
i,j

since B(2k+1) = B(2k)B. Consequently,

d∑

i,j=1

αibi,j 6 d
2k

2k+1

( d∑

i,j=1

α2k+1
i b

(2k+1)
i,j

) 1
2k+1

(C.5)

and (Ip+1) holds for the case p = 2k. Theorem 2.2 now follows by induction.

Proof of Theorem 1.1. For the case of square matrices, Theorem 1.1 follows immediately from Theo-
rem 2.2. Indeed, taking αi = 1 for each i, the inequality (Iℓ) yields the corresponding inequality in
Theorem 1.1.

Now, let A be an m × n matrix with nonnegative real entries, put d = mn, and let B be the
d× d matrix with nonnegative real entries defined as the tensor product B = A⊗ Jn,m, where Jn,m
is the n×m matrix with every entry equal to 1. For any integers ℓ, k > 0, the relations

B(ℓ) = A(ℓ) ⊗ J (ℓ)
n,m, s

(
B(ℓ)

)
= s
(
A(ℓ)

)
s(J (ℓ)

n,m),

s
(
J (2k)
n,m

)
= mknk+1, s

(
J (2k+1)
n,m

)
= mk+1nk+1.

are easily checked. In particular, s(B) = mns(A). Applying Theorem 1.1 to the matrix B and using
these identities, the inequalities of Theorem 1.1 follow for the matrix A.

3 Asymptotic matrix inequality

As will be shown below, Theorem 1.2 is a consequence of the following more precise theorem for
square matrices:

Theorem 3.1. Let B be a square d× d matrix with nonnegative real entries and s(B) 6= 0. Let λ
be the largest eigenvalue of B(2) = BBt, and put γ = λd2/s(B)2. Then γ > 1, and there exists a
constant c > 0 (depending only on B) such that for all integers ℓ > 0,

s(B)ℓ < cγ− ℓ
2 dℓ−1s(B(ℓ)). (C.6)

Moreover, the following assertions are equivalent:

(a) γ = 1,

(b) s(B)ℓ = dℓ−1s(B(ℓ)) for every integer ℓ > 0,

(c) s(B)ℓ = dℓ−1s(B(ℓ)) for some integer ℓ > 3,

(d) B is bistochastic.
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Proof. We express B(2) = BBt in the form B(2) = U tDU , where U = (ui,j) is an orthogonal
matrix, and D is a diagonal matrix diag(λ1, . . . , λd) with λ1 > . . . > λd > 0. Here λ = λ1. For
each ν = 1, . . . , d, let Eν be the projection matrix whose (ν, ν)-th entry is 1, and all other entries
are equal to 0. Put Aν = U tEνU for each ν. Then for all integers k > 0,

B(2k) =

d∑

ν=1

λkνAν , B(2k+1) =

d∑

ν=1

λkνAνB.

By a straightforward calculation, we see that for each ν

s(Aν) =
( d∑

i=1

uν,i

)2

, s(AνB) =

( d∑

i=1

uν,i

)( d∑

j,k=1

uν,kbk,j

)
. (C.7)

In particular, s(Aν) > 0. By Theorem 2.2, it follows that

s(B)2

d
6 s(B(2)) =

d∑

ν=1

λνs(Aν) 6 λ

d∑

ν=1

s(Aν) = λd. (C.8)

Therefore, γ =
λd2

s(B)2
> 1. Now, from the definition of γ, we have

γ
ℓ
2 s(B)ℓ

dℓ−1s(B(ℓ))
= d

λ
ℓ
2

s(B(ℓ))
·

Then, in order to show inequality (C.6), we will show that the λ
ℓ
2 /s(B(ℓ)) are bounded above by a

constant that is independent of ℓ. Indeed, let Cℓ = B(ℓ)/s(B(ℓ)) for every ℓ > 0. Since each Cℓ has
nonnegative real entries, and s(Cℓ) = 1, the entries of Cℓ all lie in the closed interval [0, 1]. Thus
the entries of the matrices UC2kU

t and UC2k+1B
tU t are bounded by a constant that depends only

on B. Noting that for each nonnegative integer k, we have

UC2kU
t =

Dk

s(B(2k))
, UC2k+1B

tU t =
Dk+1

s(B(2k+1))
,

and on examining the (1, 1)th entry for each of these matrices, we see that λk/s(B(2k)) and λk+1/
s(B(2k+1)) are both bounded above by a constant that is independent of k. Consequently, inequality
(C.6) holds.

(a)⇒(b): If γ = 1, then λd = s(B)2/d, hence from (C.8) we see that s(Aν) = 0 whenever λν 6= λ.
By (C.7), we also have that s(AνB) = 0 whenever λν 6= λ. Thus

s(B(2k)) =
d∑

ν=1

λkνs(Aν) = λk
∑

ν:λν=λ

s(Aν)

= λk
d∑

ν=1

s(Aν) = λkd =
s(B)2k

d2k−1
,

s(B(2k+1)) =
d∑

ν=1

λkνs(AνB) = λk
∑

ν:λν=λ

s(AνB)

= λk
d∑

ν=1

s(AνB) = λks(B) =
s(B)2k+1

d2k
·

(b)⇒(a): If (b) holds, then inequality (C.6) implies 1 < cγ− ℓ
2 for some γ ≥ 1 and all integers

ℓ ≥ 0. This forces γ = 1.
(b)⇒(c): Trivial.
(c)⇒(d): Suppose that ℓ = 2k + 1 > 3 is an odd integer such that s(B)ℓ = dℓ−1s(B(ℓ)). Taking

every αi = 1 in the proof of Theorem 2.2, our hypothesis means that equality holds in (C.5),
hence (C.4) must also hold with equality:

d∑

i,j=1

bi,j = d
1

2k+1

( d∑

i=1

( d∑

j=1

bi,j

) 2k+1
2k

) 2k
2k+1

.
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By Hölder’s inequality, this is only possible if all of the row sums of B are equal. Since ℓ is odd and
s is transpose-invariant, we also have

s(Bt)ℓ = dℓ−1s
(
(B(ℓ))t

)
= dℓ−1s

(
(Bt)(ℓ)

)
.

Thus all of the row sums of Bt are equal as well, and B is bistochastic.
Now suppose that ℓ = 2k > 4 is an even integer such that s(B)ℓ = dℓ−1s(B(ℓ)). By taking every

αi = 1 in (C.3), we see that s(B)2 = ds(B(2)). Then, taking every αi = βi = 1 in the proof of the
lemma, we see that equality holds in (C.2) which is only possible if all of the column sums of B are
equal. Therefore s(BA) = βs(A) for every d × d matrix A, where β = s(B)/d is the sum of each
column of B. In particular,

s(B)ℓ = dℓ−1s
(
B(ℓ)

)
= dℓ−1βs

(
(Bt)(ℓ−1)

)

= dℓ−1βs
(
(B(ℓ−1))t

)
= dℓ−1βs(B(ℓ−1)),

thus s(B)ℓ−1 = dℓ−2s(B(ℓ−1)). Since ℓ− 1 is odd, we can apply the previous result to conclude that
B is bistochastic.

(d)⇒(b): Suppose B is bistochastic, with every row or column sum equal to β = s(B)/d. For any
d×d matrix A, one has s(AB) = βs(A) and s(ABt) = βs(A). In particular, s(B(2k+1)) = βs(B(2k))
and s(B(2k+2)) = βs(B(2k+1)) for all k > 0. Consequently,

s(B(ℓ)) = βℓ−1s(B) =
s(B)ℓ

dℓ−1
, ℓ > 0.

This completes the proof.

Corollary 3.2. Let B be a square d× d matrix with nonnegative real entries and s(B) 6= 0. Let βj
be the j-th column sum of B for each j, and put

δ = 1 +
1

2s(B)2

d∑

i,j=1

(βi − βj)
2.

Then there exists a constant c > 0 (depending only on B) such that for all ℓ > 0, we have

s(B)ℓ < cδ− ℓ
2 dℓ−1s(B(ℓ)).

Proof. Note first that for any d × d matrix B, if βj denotes the j-th column sum of B, then it is
easily seen that

s(B(2)) =
s(B)2

d
+

1

2d

d∑

i,j=1

(βi − βj)
2. (C.9)

Using the notation of Theorem 3.1 and applying the relations (C.8) and (C.9), we have

γ =
λd2

s(B)2
>
ds(B(2))

s(B)2
= 1 +

1

2s(B)2

d∑

i,j=1

(βi − βj)
2 = δ.

The corollary therefore follows from (C.6).

Proof of Theorem 1.2. Given an m × n matrix A with nonnegative real entries, we proceed as in
the proof of Theorem 1.1: put d = mn, and let B = A ⊗ Jn,m. Note that A is bistochastic if and
only if B is bistochastic. Applying the corollary above to B, Theorem 1.2 follows immediately for
the matrix A. The details are left to the reader.

4 Asymptotic kernel inequality

Proof of Theorem 1.3. By changing variables if necessary, we can assume that a = 1. For simplicity,
we will also assume that K(x, y) is continuous. Consider the function f(x) defined by

f(x) =

1∫

0

K(x, y) dy, x ∈ [0, 1].
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If f(x) is a constant function, then since K(x, y) is symmetric, the equality

1∫

0

1∫

0

Kℓ(x, y) dxdy =

( 1∫

0

1∫

0

K(x, y) dxdy

)ℓ

for all ℓ > 1 follows from an easy inductive argument.
Now suppose that f(x) is not constant, and let m and M denote respectively the minimum and

maximum value of f(x) on [0, 1]. Choose ε > 0 such that 4ε < M −m. For every integer d > 1, let
U

[d]
i be the open interval

U
[d]
i =

( i − 1

d
,
i

d

)
, 1 6 i 6 d,

and let U
[d]
i,j be the rectangle U

[d]
i × U

[d]
j for 1 6 i, j 6 d. Let K [d](x, y) be defined on [0, 1] × [0, 1]

as follows: 



min
{
K(s, t) : (s, t) ∈ U

[d]
i,j

}
if (x, y) ∈ U

[d]
i,j for some 1 6 i, j 6 d

K(x, y) otherwise.

Here U
[d]
i,j denotes the closure of U

[d]
i,j . Noting that K [d](x, y) is constant on each rectangle U

[d]
i,j ,

let B[d] be the d × d matrix whose (i, j)-th entry is equal to K [d](U
[d]
i,j ). Let K [d]

ℓ (x, y) denote the
ℓ-th order iterate of K [d](x, y) for each ℓ > 1. Then

K
[d]
ℓ (x, y) =

1∫

0

K
[d]
ℓ−1(x, t)K [d](t, y) dt =

d∑

k=1

∫

U
[d]

k

K
[d]
ℓ−1(x, t)K [d](t, y) dt.

It follows by induction that K [d]
ℓ (x, y) is also constant on each rectangle U

[d]
i,j , and

K
[d]
ℓ (U

[d]
i,j ) =

1

d

d∑

k=1

K
[d]
ℓ−1(U

[d]
i,k )K [d](U

[d]
k,j );

by induction, this is the (i, j)-th entry of the matrix
1

dℓ−1
B

(ℓ)
[d] . In other words,

(
K

[d]
ℓ (U

[d]
i,j )
)

=
1

dℓ−1
B

(ℓ)
[d] , for all ℓ, d > 1. (C.10)

Now since f(x) is continuous, we can choose d sufficiently large such that for some integers 1 6

im, iM 6 d, we have
f(x) < m+ ε, for all x ∈ U

[d]
im
,

f(x) > M − ε, for all x ∈ U
[d]
iM
.

Taking d larger if necessary, we can further assume that

0 6 K(x, y) −K [d](x, y) < ε

for all 0 6 x, y 6 1. Fixing this value of d, we define

γ = 1 +
ε2

2d2
( 1∫

0

1∫
0

K(x, y) dxdy
)2
.

Finally, since γ− 1
4 < 1, we can choose e sufficiently large so that K [de](x, y) > γ− 1

4K(x, y) for all
0 6 x, y 6 1. For this value of e, we therefore have

1∫

0

1∫

0

K [de](x, y) dxdy > γ− 1
4

1∫

0

1∫

0

K(x, y) dxdy.
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By the corollary to Theorem 3.1 applied to the matrix B[de], there exists a constant c > 0, which
is independent of ℓ, such that

s
(
B[de]

)ℓ
< cδ− ℓ

2 (de)ℓ−1s
(
B

(ℓ)
[de]

)

for all integers ℓ > 0, where

δ = 1 +
1

2s
(
B[de]

)2

de∑

i,j=1

(
β[de],i − β[de],j

)2
.

Here β[de],j denotes the j-th column sum of B[de] for each j. We now claim that δ > γ. Granting
this fact for the moment, we apply (C.10) to K [de](x, y) and obtain:

1∫

0

1∫

0

Kℓ(x, y) dxdy >

1∫

0

1∫

0

K
[de]
ℓ (x, y) dxdy =

1

(de)2

de∑

i,j=1

K
[de]
ℓ

(
U

[de]
i,j

)

=
1

(de)ℓ+1
s
(
B

(ℓ)
[de]

)
> c−1δ

ℓ
2 (de)−2ℓs

(
B[de]

)ℓ

= c−1δ
ℓ
2

(
1

(de)2

de∑

i,j=1

K [de]
(
U

[de]
i,j

))ℓ
= c−1δ

ℓ
2

( 1∫

0

1∫

0

K [de](x, y) dxdy

)ℓ

> c−1δ
ℓ
2 γ− ℓ

4

( 1∫

0

1∫

0

K(x, y) dxdy

)ℓ
> c−1γ

ℓ
4

( 1∫

0

1∫

0

K(x, y) dxdy

)ℓ
.

This completes the proof of the theorem modulo our claim that δ > γ. To see this, let V be any
interval of the form U

[de]
i such that V ⊂ U

[d]
im

. Note that there are e such intervals. Since B[de] is a
symmetric matrix, the column sum β[de],V of B[de] corresponding to the interval V is equal to the
“V -th” row sum, which can be bounded as follows:

β[de],V =

de∑

j=1

K [de]
(
V ,U

[de]
j

)
= (de)2

∫

V

1∫

0

K [de](x, y) dy dx

6 (de)2

∫

V

1∫

0

K(x, y) dy dx = (de)2

∫

V

f(x) dx < de(m+ ε).

Similarly, let W be any interval of the form U
[de]
i such that W ⊂ U

[d]
iM

. Again, there are e such
intervals, and by a similar calculation, the column sum β[de],W satisfies the bound

β[de],W =

de∑

j=1

K [de]
(
W ,U

[de]
j

)
> de(M − 2ε).

Thus

de∑

i,j=1

(
β[de],i − β[de],j

)2
>
∑

V ,W

(
β[de],W − β[de],V

)2
> d2e4(M −m− 3ε)2 > d2e4ε2.

On the other hand, we have

s
(
B[de]

)
= (de)2

1∫

0

1∫

0

K [de](x, y) dxdy 6 (de)2

1∫

0

1∫

0

K(x, y) dxdy,

and the claim follows.
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Chapter D

The size of bipartite graphs with

girth eight

Reiman’s inequality for the size of bipartite graphs of girth six is generalised to girth
eight. It is optimal in as far as it admits the algebraic structure of generalised quadrangles
as case of equality. This enables us to obtain the optimal estimate e ∼ v4/3 for balanced
bipartite graphs. We also get an optimal estimate for very unbalanced graphs.

1 Introduction

De Caen and Székely recently proposed a new bound for the size of a bipartite graph of girth eight,
that is a bipartite graph without cycle of length four and six. We adapt their method to obtain the
following cubic inequality.

Theorem 1.1. Let G be a bipartite graph on v + w vertices.

(i) If G contains no cycle of length 4 and 6, then its size e satisfies

e3 − (v + w)e2 + 2vwe− v2w2
6 0.

(ii) If v > ⌊w2/4⌋, then furthermore e 6 v + ⌊w2/4⌋.

Part (i) is the right generalisation of Reiman’s inequality for bipartite graphs of girth 6 (see
Prop. 3.1) to girth 8. It is optimal in the sense that it is an equality for all known extremal graphs
constructed via finite fields. Part (ii) describes the case of very unbalanced bipartite graphs and is
optimal: there is a graph, constructed by hand, for which it is an equality.

Let us give a brief description of this article. Section 2 describes a way to translate uncolou-
red graphs into bipartite graphs and its converse. This permits to get two propositions on very
unbalanced graphs.

Section 3 summarises facts about bipartite graphs of girth six that should be folklore and well
known although I did not see them printed.

Section 4 is the core of the paper. We adapt an inequality of Atkinson et al. to get an optimal
lower bound on the number of paths of length 3 in a bipartite graph (Cor. 4.6). This enables us to
bypass the final step in the proof of [20, Th. 1] and to get our theorem.

2 Uncoloured graphs and bipartite graphs

2.1 Expanding a graph to a bipartite graph

We propose the following construction of a bipartite graph out of an uncoloured graph. Let G′ be
an uncoloured graph with set of vertices V . Then the bipartite graph G is defined as follows:

– the first class of vertices of G is V ;

– the second class W of vertices of G is the set of edges of G′;

– the set of edges of G is
{

{x, y} : y is an edge of G′ with endpoint x
}
.

Thus every vertex of W has degree 2 and the size of G is twice the size of G′.
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2.2 Contracting a bipartite graph to an uncoloured graph

Let us describe an inverse construction. Let G be a bipartite graph with colour classes V and W .
Let G′ be the following graph:

– its set of vertices is V ;

– its set of edges is
{

{x, z} ⊆ V : ∃y {x, y} and {z, y} are edges of G
}
.

The size of G′ is at most half the size of G. If G contains no cycle of length 4, then, given {x, z},
there is at most one y such that {x, y} and {z, y} are edges of G, so that the size of G′ is exactly

∑

y∈W

(
d(y)

2

)
6

(
#V

2

)
. (D.1)

(We recognise here [11, Inequality (2), p. 310] for s = t = 2.) Thus each vertex y ∈ W of degree at
least 2 contributes at least 1 to sum (D.1). This yields

Proposition 2.1. Let G be a bipartite graph on v + w vertices that contains no cycle of length 4.

(i) If w >
(
v
2

)
, then there are at least w −

(
v
2

)
vertices in W of degree 0 or 1.

(ii) If its minimal degree is at least 2, then w 6
(
v
2

)
and v 6

(
w
2

)
.

If G contains no cycle of length 4 nor 6, then G′ contains no triangle and its size is at most
⌊v2/4⌋. This argument proves

Proposition 2.2. Let G be a bipartite graph on v + w vertices that contains no cycle of length 4
or 6.

(i) If w > ⌊v2/4⌋, then there are at least ⌈w − v2/4⌉ vertices in W with degree 0 or 1.

(ii) If its minimal degree is at least 2, then w 6 ⌊v2/4⌋ and v 6 ⌊w2/4⌋.

3 Bipartite graphs of girth six

The following estimate is well known as Reiman’s inequality, but its cases of equality were not
written down explicitly. Reading the proof of [11, Th. VI.2.6], one gets with [9, Def. I.3.1]

Proposition 3.1. Let v 6 w. A graph of girth at least 6 on v + w vertices with e edges satisfies

O(v, w, e) = e2 − we− vw(v − 1) 6 0

e 6
√
vw(v − 1) + w2/4 + w/2.

We have equality if and only if it is the incidence graph of a Steiner system S(2, k; v) on v points
with block degree k given by wk(k − 1) = v(v − 1).

Note that by symmetry, we also get O(w, v, e) 6 0, but this is superfluous by

Lemma 3.2. Let v 6 w. Let e be the positive root of X2 − vX − vw(w − 1). Then O(v, w, e) > 0.

Proof. As (vw)2 − vvw − vw(w − 1) = vw(vw − v − w + 1) > 0, we have e 6 vw. Therefore

e2 − we− vw(v − 1) = e2 − ve− vw(w − 1) + (v − w)e+ vw(w − v)

= (vw − e)(w − v) > 0 .

Remark 3.3. The case of equality in Prop. 3.1 may be described further as follows. By [9, Cor. I.2.11],
every vertex in V has same degree r and every vertex in W has same degree k with

k − 1 | v − 1 and k(k − 1) | v(v − 1), (D.2)

so that v = 1+r(k−1) and k | r(r−1). For given k, this set of conditions is in fact sufficient for the
existence of an extremal graph for large r: this is Wilson’s Theorem [9, Th. XI.3.8]. For example,
we have the following complete sets of parameters (v, w, r, k):

(1 + r(k − 1), r(1 + r(k − 1))/k, r, k) for 1 6 k 6 5 and k | r(r − 1).
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The first set of parameters satisfying (D.2) for which an extremal graph does not exist is (36, 42,
7, 6). Consult [9, Table A1.1] for all known block designs with r 6 17. [9, Table A5.1] provides
the following sets of parameters (v, w, r, k) for block designs: given any prime power q and natural
number n, given t 6 s,

(
qn, qn−1 q

n − 1

q − 1
,
qn − 1

q − 1
, q
)
,
(qn+1 − 1

q − 1
,
qn+1 − 1

q2 − 1

qn − 1

q − 1
,
qn − 1

q − 1
, q + 1

)
,

(
q3 + 1, q2(q2 − q + 1), q2, q + 1

)
,
(
2t+s − 2s + 2t, (2s + 1)(2s − 2s−t + 1), 2s + 1, 2t

)
.

The following proposition provides a simpler but coarser bound.

Proposition 3.4. Let G be a bipartite graph on vertex classes V and W with #V = v and #W = w
without cycles of length 4. Its size satisfies

e 6

{√
2vw(v − 1) if w 6 v(v − 1)/2

v(v − 1)/2 + w otherwise.

We have optimality in the second alternative for the bipartite expansion of a complete graph on V
as described in Section 2.1, on which we add w − v(v − 1)/2 new edges by connecting any vertex of
V to w − v(v − 1)/2 new vertices in colour class W .

Proof. By Proposition 2.1, if w > v(v− 1)/2, then w− v(v− 1)/2 vertices in W have degree 0 or 1.
If we remove them, we remove at most w − v(v − 1)/2 edges and the remaining graph has at most
v(v − 1) edges because O(v, v(v − 1)/2, v(v − 1)) = 0. The first alternative follows from

O(v, w,
√

2vw(v − 1)) = w
√
v(v − 1)(

√
v(v − 1) −

√
2w).

4 Bipartite graphs of girth eight

4.1 Statement of the theorem

Consult [56, Def. 1.3,1] for the definition of generalised polygons.

Theorem 4.1. Let G be a bipartite graph on vertex classes V and W with #V = v and #W = w.
If G contains no cycle of length 4 or 6, then its size e satisfies

P (v, w, e) = e3 − (v + w)e2 + 2vwe− v2w2
6 0. (D.3)

We have equality exactly in two cases:

(i) if G is the complete bipartite graph and v = 1 or w = 1;

(ii) if G is the incidence graph of a generalised quadrangle.

Remark 4.2. Let us first note that this polynomial has exactly one positive root in e for positive
v, w. It suffices to this purpose to show that its discriminant is negative. This is −v2w2D with

D = 27p2 + 4s3 − 36sp− 4s2 + 32p, s = v + w, p = vw.

Let us study this quantity for s > 2, p > s− 1. We have

dD

dp
= 54p− 36s+ 32 > 54p− 36(p+ 1) + 32 = 18p− 4 > 0,

so that its minimum satisfies p = s−1, which implies D = (4s−5)(s−1)2 > 3. Therefore Inequality
(D.3) is equivalent to an inequality of form e 6 e(v, w).

Remark 4.3. The case of equality in Th. 4.1 implies the following: every vertex in V has same degree
s+ 1 and every vertex in W has same degree t+ 1. By [56, Cor. 1.5.5, Th. 1.7.1], s+ t | st(1 + st)
and

v = (t+ 1)(1 + st) , w = (s+ 1)(1 + st) , e = (s+ 1)(t+ 1)(1 + st).

Let us suppose, by symmetry, that s 6 t. If s = 0, we get case (i). If s = 1, we obtain exactly the
examples of extremal graphs produced by de Caen and Székely: W consists of t+ 1 horizontal lines
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and as much vertical lines and V is the set of (t + 1)2 intersection points and G is the point-line
incidence graph of this grid (this is also the bipartite expansion of a complete bipartite graph on
(t + 1) + (t + 1) vertices.) Otherwise s, t > 2 and G is in fact the incidence graph of a generalised
quadrangle, so that by [56, Th. 1.7.2], t 6 s2. Let q be a prime power. Then there are generalised
quadrangles with set of parameters (s, t) any of (q, q), (q, q2), (q2, q3), (q − 1, q+ 1); all known ones
fit in this list. In particular, by [56, Th. 1.7.9], if t > s = 2, then t = 2 or t = 4 and in each case
there is exactly one extremal graph. By [56, Sec. 1.7.11], if t > s = 3, then there is a (unique)
extremal graph exactly if t = 3, 5, 9. There is a unique extremal graph with s = t = 4. It is open
whether there exists a generalised quadrangle with s = 4 and t ∈ {11, 12}.

4.2 A generalisation of an inequality of Atkinson et al.

We first need an optimal lower bound on the number of paths of length 3. Let us prove the following
inequality.

Theorem 4.4. Let (aij)16i6v,16j6w be a matrix of nonnegative coefficients and ρ, γ > 0. Let

ai⋆ =

w∑

j=1

aij , a⋆j =

v∑

i=1

aij , e =

n∑

i=1

v∑

j=1

aij . (D.4)

If ai⋆ > 2ρ and a⋆j > 2γ, then

φ =

v∑

i=1

w∑

j=1

aij(ai⋆ − ρ)(a⋆j − γ) > e(e/v − ρ)(e/w − γ), (D.5)

equality holding exactly if ai⋆ and a⋆j are constant.

This refines the inequality in [3], which states

ψ =

v∑

i=1

w∑

j=1

aijai⋆a⋆j > e3/vw (D.6)

as, by the Arithmetic-Quadratic Mean Inequality,

φ− ψ = −γ
v∑

i=1

a2
i⋆ − ρ

w∑

j=1

a2
⋆j + ργe 6 e(−γe/v − ρe/w + ργ) (D.7)

Remark 4.5. If v = w and a is diagonal, Inequality (D.6) is the Arithmetic-Cubic Mean Inequality
and Inequality (D.5) becomes

1

v

v∑

i=1

aii(aii − ρ)(aii − γ) >
e

v

e− vρ

v

e− vγ

v
,

which is true by Chebyshev’s Inequality [39, Th. 43] if aii > ρ and aii > γ. For our “non commutative
Chebyshev Inequality”, the conditions ai⋆ > 2ρ and a⋆j > 2γ cannot be weakened to ai⋆ > ρ and
a⋆j > γ, as we have the following counterexamples:

(
2 5
4 0

)
,




0 1 1
1 0 0
1 0 0


 .

Proof. If (D.5) is an equality, then so are (D.7) and (D.6) and our case of equality follows from
the identical case of equality in [3], whose proof we now imitate. We shall suppose that ai⋆ > 2ρ
or a⋆j > 2γ, so that the whole inequality follows by continuity. Fix e and suppose that under this
condition the aij are chosen so to minimise φ. We may suppose that the rows and the columns have
been permuted such that the sequences (ai⋆) and (a⋆j) are nondecreasing:

a1⋆ 6 · · · 6 av⋆, a⋆1 6 · · · 6 a⋆w. (D.8)

If one of these sequences is constant, the inequality follows by the Arithmetic-Quadratic inequality
(and the case of equality is easy). Let us suppose that this is not so.
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One can suppose that a1w and av1 are positive. Let us show the argument for a1w. If a1w = 0,
there are k, l such that a1k, alw > 0. Make a perturbation by adding α to a1w and to alk and
subtracting α to a1k and to alw. The row and column sums ai⋆ and a⋆j are unaltered and φ
increases of

∆φ = α
(
(a1⋆ − ρ)(a⋆w − γ) + (al⋆ − ρ)(a⋆k − γ)

−(a1⋆ − ρ)(a⋆k − γ) − (al⋆ − ρ)(a⋆m − γ)
)

= α(a1⋆a⋆w + al⋆a⋆k − a1⋆a⋆k − al⋆a⋆w)

= α(a1⋆ − al⋆)(a⋆w − a⋆k),

so that φ does not increase.
Now make the following perturbation: add 2α to a11 and subtract α to a1w and to av1. Let us

compute the differential of φ: as

dφ

darc
= (ar⋆ − ρ)(a⋆c − γ) +

v∑

i=1

aic(ai⋆ − ρ) +

w∑

j=1

arj(a⋆j − γ),

dφ = dα
(

2
dφ

da11
− dφ

da1w
− dφ

dav1

)

= dα
(

(a1⋆ − ρ)(a⋆1 − a⋆w) + (a1⋆ − av⋆)(a⋆1 − γ) +

v∑

i=1

ai1(ai⋆ − ρ)

+

w∑

j=1

a1j(a⋆j − γ) −
v∑

i=1

aiw(ai⋆ − ρ) −
w∑

j=1

avj(a⋆j − γ)
)

For positive dα, we have by (D.8)

dφ 6 dα
(
(a1⋆ − ρ)(a⋆1 − a⋆w) + (a1⋆ − av⋆)(a⋆1 − γ) + a⋆1(av⋆ − ρ)

+ a1⋆(a⋆w − γ) − a⋆w(a1⋆ − ρ) − av⋆(a⋆1 − γ)
)

= dα
(
(a1⋆ − 2ρ)(a⋆1 − a⋆w) + (a⋆1 − 2γ)(a1⋆ − av⋆)

)

< 0 ,

which contradicts the minimum hypothesis.

Corollary 4.6. Let G be a bipartite graph on v + w vertices and of minimal degree 2. Then the
number of paths of length 3 in G is at least e(e/v − 1)(e/w − 1). This bound is achieved exactly if
the graph is regular for each of its two colours.

Proof. A path of length 3 is a sequence of 4 vertices (x, y, z, t) with no repetition such that

{x, y}, {y, z}, {z, t} ∈ G.

Given two adjacent vertices y and z, the number of paths (x, y, z, t) makes (d(y) − 1)(d(z) − 1),
where d denotes the degree of a vertex. Therefore the number of all paths of length 3 is

∑

{y,z}∈G

(d(y) − 1)(d(z) − 1).

Let (aij)16i6v,16j6w be the reduced incidence matrix of G: aij = 1 if the ith vertex of the first class
is adjacent to the jth vertex of the second class; otherwise aij = 0. Then this sum is

v∑

i=1

w∑

j=1

aij(ai⋆ − 1)(a⋆j − 1), (D.9)

so that it suffices to take ρ = γ = 1 in Th. 4.4.
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4.3 Proof of Theorem 4.1

The case of equality follows from [56, Lemma 1.4.1] because its axiom (i) is exactly what makes
Bound (D.10) an equality.

I now follow the proof of [20, Th. 1]. If G contains no cycle of length 4, there is no path of
length 3 between two adjacent vertices; if G contain no cycle of length 6, there is at most one path
of length 3 between non-adjacent vertices of different colour. Therefore the sum (D.9) is bounded
by

vw − e with e =

n∑

i=1

v∑

j=1

aij . (D.10)

By Corollary 4.6, if all the vertices of G have degree at least two, one has

vw − e > e3/vw − (1/v + 1/w)e2 + e

and therefore (D.3). In order to get rid of this degree condition, we have to do an induction on
the sum s = v + w of the number of columns and the number of rows of the incidence matrix. If
v = 1, then P (v, w, e) = (e − w)(e2 − e + w), so that the inequality states e 6 w, which is trivial;
symmetrically for w = 1. Suppose the result is true for all v×w incidence matrices with v+w = s.
Consider now a v × w incidence matrix with v + w = s + 1 and v, w > 2. If each vertex has
degree at least two, the result is true; otherwise there is a column or a row containing only zeroes
or exactly one “1”. Apply the induction hypothesis on the matrix without this row or column: we
get P (v − 1, w, e− 1) 6 0 or P (v, w − 1, e− 1) 6 0 and we may apply the following growth lemma
to conclude.

Lemma 4.7. Let v, w > 1. If P (v, w, e) 6 0, then P (v + 1, w, e+ 1) 6 0.

Proof. In fact, one has

P (v + 1, w, e+ 1) − P (v, w, e) = 2e2 + (1 − 2v)e+ (w − w2)(2v + 1) − v,

which is negative as long as

0 6 e 6 e0 =
(
2v − 1 +

√
(2v + 1) (2v + 8w2 − 8w + 1)

)
/4 = (2v − 1 + ∆)/4.

Let us use that P (v, w, e) has a unique root in e and compute P (v, w, e0). This makes

(4vw2 + 2w2 + 1)∆/16 + (−16vw3 − 8v2w2 − 8w3 + 8vw2 + 2w2 − 2v + 4w − 1)/16.

Then either the second term in this sum is positive and P (v, w, e0) is positive, or the conjugate
expression of this sum is positive, and the product of the sum with this conjugate expression is

(w − 1)2w2(8v3w2 + 4v2w2 − 2vw2 + 2v2 − w2 − 4vw + 2v − 2w)/8,

which is positive if v, w > 1.

4.4 Further remarks

Remark 4.8. Theorem 4.1 does not always give the right order of magnitude for the maximal size
of a graph of girth 8: as

P (v, w, (vw)2/3) = 2(vw)5/3 − (vw)4/3(v + w)) 6 2(vw)5/3 − 2(vw)4/3+1/2
6 0,

we expect to find maximal graphs of size (vw)2/3: De Caen and Székely [20, Th. 4] find a counte-
rexample to this expectation if v “lies in an interval just slightly below” w2. They conjecture [19]
that this is the case as soon as v ≫ w5/4 and v ≪ w2.

In the case of v = w, let us give the following approximation for the real root of the polynomial.
For

e = v4/3 +
2

3
v − 2

9
v2/3 − 20

81
v1/3,

P (v, v, e) =
40

243
v7/3 +

376

2187
v2 − 80

2187
v5/3 − 800

19683
v4/3 − 8000

531441
v >

129808

531441
,
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P (v, v, e− 16/81) = − 8

531441
(v1/3 − 1)

(
39366v7/3 + 28431v2 + 8262v5/3

− 8748v4/3 − 11880v − 6560v2/3 − 2432v1/3 − 512
)

6 0.

In particular,

Corollary 4.9. Let G be a bipartite graph of size e with v vertices in each vertex class. If the girth
of G is at least 8, then

e < v4/3 +
2

3
v − 2

9
v2/3 − 20

81
v1/3.

Let us now show that we generalise the following estimations for the size of bipartite graphs of
girth 8 in [20, Th. 1]:

(i) if the minimal degree of G is at least 2, then e 6 21/3(vw)2/3;

(ii) if v 4 w2 or w 4 v2, then e 4 (vw)2/3.

In fact,
P (v, w, 21/3(vw)2/3) = (vw)4/3(w2/3 − 22/3v1/3)(v2/3 − 22/3w1/3),

which is nonnegative exactly if v 6 w2/4 and w 6 v2/4 or if (v, w) is among
{

(1, 1), (1, 2), (2, 1),

(2, 2), (3, 3)
}

, and this is the case by Prop. 2.2 if the minimal degree is at least 2.
Furthermore, by Prop. 2.2, if w > ⌊v2/4⌋, then ⌈w − v2/4⌉ vertices in W have degree 0 or 1. If

we remove them, we remove at most ⌈w− v2/4⌉ edges and the remaining graph has at most ⌊v2/2⌋
edges because P (v, ⌊v2/4⌋, ⌊v2/2⌋ + 1) > 0. This yields

Proposition 4.10. Let G be a bipartite graph on vertex classes V and W with #V = v and
#W = w without cycles of length 4 and 6. Its size satisfies

e 6

{
21/3(vw)2/3 if max(v, w) 6 ⌊min(v, w)2/4⌋
⌊min(v, w)2/4⌋ + max(v, w) otherwise.

We have optimality in the second alternative: make a bipartition V = V1 ∪ V2 with V1 = ⌈v/2⌉ and
V2 = ⌊v/2⌋, let G′ be the complete bipartite graph on the colour classes V1 and V2, which has ⌊v2/4⌋
edges. Now consider the bipartite expansion of G′, add ⌈w − v2/4⌉ new vertices to colour class W ,
and connect each of them to some vertex of V .

Note that this estimate yields another proof of [35, Th. 1] by means of [35, Th. 3].

Remark 4.11. Our inequality condenses the following facts about the behaviour of e for fixed w and
large v. If w 6 3, then extremal graphs of girth 8 do not contain any cycle at all, so that their size
is e = v+w− 1; if v > w = 4 and if v = w = 5, then extremal graphs of girth 8 contain exactly one
cycle, so that their size is e = v + w; if v > w = 5, then extremal graphs of girth 8 contain exactly
one “θ-graph”, so that their size is e = v + w + 1.
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Chapter E

Ordering simultaneously the

columns and lines of 0,1 matrices

with Nikolai Kosmatov.

Let M be a 0, 1 matrix with m rows and n columns:

M = (aij) =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn


 with aij ∈ {0, 1}.

There are 2m+n such matrices. We would like to study these matrices up to a permutation of
the rows and a permutation of the columns, and therefore propose an order on the set of rows and
on the set of columns.

Definition 1. Let Li = Li(M) = (ai1, ai2, . . . , ain), 1 6 i 6 m, be the lines of M and let
Cj = Cj(M) = (a1j , a2j , . . . , amj), 1 6 j 6 n, be its columns. The rows (vs. columns) of M are
ordered if they form an increasing sequence with respect to the lexicographic order.

Note that if the rows and columns are considered as digit sequences of binary numbers, the
lexicographic order is just the natural order on N.

Theorem 2. There is a permutation of rows and columns that orders them simultaneously.

Definition 3. The numbers r , s > 1, 0 = i0 < i1 < i2 < · · · < ir = m, 0 = j0 < j1 < j2 < · · · <
js = n define a grid on m× n that divides M in r × s block matrices

Bt,u = Bt,u(M) =



ait−1+1,ju−1+1 . . . ait−1+1,ju

...
...

ait,ju−1+1 . . . ait,ju


 , 1 6 t 6 r, 1 6 u 6 s,
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so that

M =



B1,1 . . . B1,s

...
...

Br,1 . . . Br,s




=




ai0+1,j0+1 . . . ai0+1,j1 . . . ai0+1,js−1+1 . . . ai0+1,js
...

...
...

...
ai1,j0+1 . . . ai1,j1 . . . ai1,js−1+1 . . . ai1,js
ai1+1,j0+1 . . . ai1+1,j1 . . . ai1+1,js−1+1 . . . ai1+1,js

...
...

...
...

ai2,j0+1 . . . ai2,j1 . . . ai2,js−1+1 . . . ai2,js
...

...
...

...
air−1+1,j0+1 . . . air−1+1,j1 . . . air−1+1,js−1+1 . . . air−1+1,js

...
...

...
...

air ,j0+1 . . . air ,j1 . . . air ,js−1+1 . . . air,js




.

A permutation of lines Lp1 and Lp2 is admissible if it−1 < p1 6 it and it−1 < p2 6 it for some
t ∈ {1, 2, . . . , r}; otherwise, it is inadmissible. A permutation of columns Cq1 and Cq2 is admissible
if ju−1 < q1 6 ju and ju−1 < q2 6 ju for some u ∈ {1, 2, . . . , s}; otherwise, it is inadmissible. In
other words, admissible permutations of rows and columns only permute matrix coefficients inside
the block matrices defined by the grid. Matrix M is ordered with respect to the grid if

Li0+1 6 Li0+2 6 · · · 6 Li1 , Li1+1 6 · · · 6 Li2 , . . . , Lir−1+1 6 · · · 6 Lir ;

Cj0+1 6 Cj0+2 6 · · · 6 Cj1 , Cj1+1 6 · · · 6 Cj2 , . . . , Cjs−1+1 6 · · · 6 Cjs ,

where 6 is the lexicographic order.

Theorem 2 is an immediate consequence of Lemma 4: it suffices to consider the trivial grid given
by r = s = 1, 0 = i0 < i1 = m, 0 = j0 < j1 = n.

Lemma 4. The rows and columns of a 0, 1 matrix may be simultaneously ordered with respect to a
given grid by admissible permutations of its rows and columns.

Proof by induction. If m = 1 or n = 1, this is trivial. Let us suppose m,n > 1 and let us construct
the first line and then the first column of the reordered matrix. Let

A =




∑j1

q=j0+1 a1q

∑j2

q=j1+1 a1q . . .
∑js

q=js−1+1 a1q∑j1

q=j0+1 a2q

∑j2

q=j1+1 a2q . . .
∑js

q=js−1+1 a2q

...
...

...∑j1

q=j0+1 ai1q
∑j2

q=j1+1 ai1q . . .
∑js

q=js−1+1 ai1q




be the matrix of numbers of ones in the lines of the block matrices B1,u, 1 6 u 6 s. Let Lv(A) be
the minimal line of A: we permute L1(M) with Lv(M) and still call M the resulting matrix. Then

j1∑

q=j0+1

a1q 6

j1∑

q=j0+1

aiq,

for each i ∈ {1, 2, . . . , i1}, so that either some a1j , 1 6 j 6 j1, vanishes, either B1,1 is a matrix of
ones. Let us permute the columns of M in such a way that that the first lines of all the resulting
block matrices B1,u, 1 6 u 6 s, consist in a block of zeroes followed by a block of ones:

B1,u =




0 0 . . . 0 0 1 1 . . . 1 1
∗ ∗ . . . ∗ ∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
...

...
...

...
∗ ∗ . . . ∗ ∗ ∗ ∗ . . . ∗ ∗


 .
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We still call M the resulting matrix. We now refine the grid on m× n in such a way that the first
lines of the block matrices of M with respect to the new grid either consist only of zeroes or consist
only of ones, as follows:




0 . . . 0 1 . . . 1 . . . 0 . . . 0 1 . . . 1
∗ . . . ∗ ∗ . . . ∗ . . . ∗ . . . ∗ ∗ . . . ∗
...

...
...

...
...

...
...

...
∗ . . . ∗ ∗ . . . ∗ . . . ∗ . . . ∗ ∗ . . . ∗
∗ . . . ∗ ∗ . . . ∗ . . . ∗ . . . ∗ ∗ . . . ∗
...

...
...

...
...

...
...

...




, (E.1)

where the double lines belong to the original grid and the simple ones have been added now.
Let this new grid be defined by the numbers r, s′ > 1, 0 = i0 < i1 < i2 < · · · < ir = m,
0 = j′

0 < j′
1 < j′

2 < · · · < j′
s′ = n, and let B′

t,u, t ∈ {1, 2, . . . , r}, u ∈ {1, 2, . . . , s′}, be the block
matrices with respect to it. The block matrix B′

1,1 has one of the two following forms:



0 0 . . . 0 0
∗ ∗ . . . ∗ ∗
...

...
...

...
∗ ∗ . . . ∗ ∗


 or




1 1 . . . 1 1
1 1 . . . 1 1
...

...
...

...
1 1 . . . 1 1


 .

We now proceed similarly with the first column. Let

B =




∑i1
p=i0+1 ap1

∑i1
p=i0+1 ap2 . . .

∑i1
p=i0+1 apj′

1∑i2
p=i1+1 ap1

∑i2
p=i1+1 ap2 . . .

∑i2
p=i1+1 apj′

1

...
...

...∑ir
p=ir−1+1 ap1

∑ir
p=ir−1+1 ap2 . . .

∑ir
p=ir−1+1 apj′

1




be the matrix of numbers of ones in the columns of the block matrices B′
t,1, 1 6 t 6 r. Let Cv(B)

be the minimal column of B: we permute C1(M) with Cv(M) and still call M the resulting matrix.
Let us permute the rows of M in such a way that the first columns of all the block matrices B′

t,1,
1 6 t 6 r, consist in a block of zeroes followed by a block of ones:

B′
t,1(M) =




0 ∗ . . . ∗
...

...
...

0 ∗ . . . ∗
1 ∗ . . . ∗
...

...
...

1 ∗ . . . ∗




The form of B′
1,1 shows that this can be done without permuting the first row, so we do not. We

still call the resulting matrix M . We now refine the grid on m × n in such a way that the first
columns of the block matrices with respect to the new grid either consist only of zeroes or consist
only of ones, so that also the tranpose of M has a form as in (E.1). Let the new grid be defined by
the numbers r′, s′ > 1, 0 = i′0 < i′1 < i′2 < · · · < i′r′ = m, 0 = j′

0 < j′
1 < j′

2 < · · · < j′
s′ = n.

Let N be the m− 1 × n− 1 submatrix in the lower right corner of M . By induction hypothesis,
N may be ordered by admissible permutations with respect to the grid on m − 1 × n − 1 induced
by the grid just defined. These permutations are also admissible with respect to the latter grid and
do not permute the first line and the first column of M . Let us again call the resulting matrices M
and N .

As the rows and columns of N are ordered, we have for M

Li0+2 6 · · · 6 Li1 , Li1+1 6 · · · 6 Li2 , . . . , Lir−1+1 6 · · · 6 Lir ;

Cj0+2 6 · · · 6 Cj1 , Cj1+1 6 · · · 6 Cj2 , , . . . , Cjs−1+1 6 · · · 6 Cjs ,

and our choice for the first line and the first column of M ensures that

Li0+1 6 Li0+2, Cj0+1 6 Cj0+2.
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Chapter F

Transfer of Fourier multipliers into

Schur multipliers and sumsets in a

discrete group

with Éric Ricard.

We inspect the relationship between relative Fourier multipliers on noncommutative
Lebesgue-Orlicz spaces of a discrete group Γ and relative Toeplitz-Schur multipliers
on Schatten-von-Neumann-Orlicz classes. Four applications are given: lacunary sets;
unconditional Schauder bases for the subspace of a Lebesgue space determined by a
given spectrum Λ ⊆ Γ ; the norm of the Hilbert transform and the Riesz projection on
Schatten-von-Neumann classes with exponent a power of 2; the norm of Toeplitz Schur
multipliers on Schatten-von-Neumann classes with exponent less than 1.

1 Introduction

Let Λ be a subset of Z and let x be a bounded measurable function on the circle T with Fourier
spectrum in Λ: we write x ∈ L∞

Λ , x ∼ ∑
k∈Λ xkz

k. The matrix of the associated operator y 7→ xy
on L2 with respect to its trigonometric basis is the Toeplitz matrix

(xr−c)(r,c)∈Z×Z =




··· 1 0 −1 ···

...
. . .

. . .
. . .

. . .
. . .

1
. . . x0 x1 x2

. . .

0
. . . x−1 x0 x1

. . .

−1
. . . x−2 x−1 x0

. . .

...
. . .

. . .
. . .

. . .
. . .




with support in Λ̋ = {(r, c) : r − c ∈ Λ}.
This is an entry point to the interplay between harmonic analysis and operator theory. In the

general case of a discrete group Γ , the counterpart to a bounded measurable function is defined as
a bounded operator on ℓ2

Γ whose matrix has the form (xrc−1 )(r,c)∈Γ×Γ for some sequence (xγ)γ∈Γ .
This will be the framework of the body of this article, while the introduction sticks to the case
Γ = Z.

We are concerned with two kinds of multipliers. A sequence ϕ = (ϕk)k∈Λ defines

This work is partially supported by ANR 06-BLAN-0015.

2000 Mathematics subject classification: Primary 47B49; Secondary 43A22, 43A46, 46B28.

Key words and phrases: Fourier multiplier, Toeplitz Schur multiplier, lacunary set, unconditional approximation

property, Hilbert transform, Riesz projection.
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– the relative Fourier multiplication operator on trigonometric polynomials with spectrum in Λ
by ∑

k∈Λ

xkz
k 7→

∑

k∈Λ

ϕkxkz
k; (F.1)

– the relative Schur multiplication operator on finite matrices with support in Λ̋ by

(xr,c)(r,c)∈Z×Z 7→ (ϕ̋r,cxr,c)(r,c)∈Z×Z (F.2)

where ϕ̋r,c = ϕr−c.

Marek Bożejko and Gero Fendler proved that these two multipliers have the same norm. The
operator (F.1) is nothing but the restriction of (F.2) to Toeplitz matrices. They noted that it is
automatically completely bounded: it has the same norm when acting on trigonometric series with
operator coefficients xk, and this permits to remove this restriction. Schur multiplication is also
automatically completely bounded.

This observation has been extended by Gilles Pisier to multipliers acting on a translation in-
variant Lebesgue space LpΛ and on the subspace Sp

Λ̋
of elements of a Schatten-von-Neumann class

supported by Λ̋, respectively: it yields that the complete norm of a relative Schur multiplier (F.2)
remains bounded by the complete norm of the relative Fourier multiplier (F.1).

But LpΛ is not a subspace of Sp
Λ̋

, so that a relative Fourier multiplier may not be viewed anymore
as the restriction of a relative Schur multiplier to Toeplitz matrices. We point out that this difficulty
may be overcome by using Szegő’s limit theorem: a bounded measurable real function is the weak∗

limit of the normalised counting measure of eigenvalues of finite truncates of its Toeplitz matrix.
Note that other types of approximation are also available, as the completely positive approximation
property and Reiter sequences combined with complex interpolation: they are compared in Section 3
in terms of local embeddings of Lp into Sp. They are more canonical than Szegő’s limit theorem,
but give no access to general Orlicz norms.

Theorem 1.1. Let ψ : R+ → R+ be a continuous nondecreasing function vanishing only at 0. The
norm of the following operators is equal:

– the relative Fourier multiplication operator (F.1) on the Lebesgue-Orlicz space LψΛ(Sψ) of Sψ-
valued trigonometric series with spectrum in Λ;

– the relative Schur multiplication operator (F.2) on the Schatten-von-Neumann-Orlicz class
Sψ
Λ̋

(Sψ) of Sψ-valued matrices with support in Λ̋.

Look at Theorem 2.5 for the precise statement in the general case of an amenable group Γ , for
which a block matrix variant of Szegő’s limit theorem in the style of Erik Bédos [6], Theorem 2.1,
is available.

An application of this theorem to the class of all unimodular Fourier multipliers yields a transfer
of lacunary subsets into lacunary matrix patterns. Call Λ unconditional in Lp if (zk)k∈Λ is an
unconditional basis of LpΛ, and Λ̋ unconditional in Sp if the sequence (eq)q∈Λ̋ of elementary matrices is
an unconditional basis of Sp

Λ̋
. These properties are also known as Λ(max(2, p)) and σ(p), respectively;

they have natural “complete” counterparts that are also known as Λ(p)cb (K(p)cb if p 6 2) and
σ(p)cb, respectively: see Definitions 4.1 and 4.2.

Corollary 1.2. If Λ̋ is unconditional in Sp, then Λ is unconditional in Lp. Λ̋ is completely
unconditional in Sp if and only if Λ is completely unconditional in Lp.

Look at Proposition 4.3 for the precise statement in the general case of a discrete group Γ .
The two most prominent multipliers are the Riesz projection and the Hilbert transform. The

first consists in letting ϕ be the indicator function of nonnegative integers and transfers into the
upper triangular truncation of matrices. The second corresponds to the sign function and transfers
into the Hilbert matrix transform. We obtain the following partial results.

Theorem 1.3. The norm of the matrix Riesz projection and of the matrix Hilbert transform
on Sψ(Sψ) coincide with their norm on Sψ.

– If p is a power of 2, the norm of the matrix Hilbert transform on Sp is cot(π/2p).

– The norm of the matrix Riesz projection on S4 is
√

2.
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The transfer technique lends itself naturally to the case where Λ contains a sumset R + C: if
subsets R′ and C′ are extracted so that the r+ c with r ∈ R′ and c ∈ C′ are pairwise distinct, they
may play the rôle of rows and columns. Here are consequences of the conditionality of the sequence
of elementary matrices er,c in Sp for p 6= 2 and of the unboundedness of the Riesz transform on S1

and S∞, respectively.

Theorem 1.4. If (zk)k∈Λ is a completely unconditional basis of LpΛ with p 6= 2, then Λ does not
contain sumsets R+ C of arbitrarily large sets.

– If L1
Λ admits some completely unconditional approximating sequence, or

– if the space CΛ of continuous functions with spectrum in Λ admits some unconditional appro-
ximating sequence,

then Λ does not contain the sumset R+ C of two infinite sets.

The proof of the second part of this theorem consists in constructing infinite subsets R′ and C′,
and skipped block sums

∑
(Tkj+1 −Tkj) of a given approximating sequence that act like the projection

on the “upper triangular” part of R′ +C′. Look at Proposition 4.8 and Theorem 7.4 for the precise
statement in the general case of a discrete group Γ .

In the case of quasi-normed Schatten-von-Neumann classes Sp with p < 1, the transfer technique
yields a new proof for the following result of Alexey Alexandrov and Vladimir Peller.

Theorem 1.5. Let 0 < p < 1. The Fourier multiplier ϕ is contractive on Lp or on Lp(Sp) if and
only if the Schur multiplier ϕ̋ is contractive on Sp or on Sp(Sp), if and only if the sequence ϕ is the
Fourier transform of an atomic measure of the form

∑
agδg on T with

∑|ag|p 6 1.

The emphasis put on relative Schur multipliers motivates the natural question of how the norm
of an elementary Schur multiplier, that is a rank 1 matrix (̺r,c) = (xryc), gets affected when the
action of ̺ is restricted to matrices with a given support. The surprising answer is the following.

Theorem 1.6. Let I ⊆ R × C and consider (xr)r∈R and (yc)c∈C. The relative Schur multiplier
on S∞

I given by (xryc)(r,c)∈I has norm sup(r,c)∈I |xryc|.

Let us finally describe the content of this article. Section 2 is devoted to transfer techniques
for Fourier and Schur multipliers provided by a block matrix Szegő limit theorem. This theorem
provides local embeddings of Lψ into Sψ; Section 3 shows how interpolation may be used to define
such embeddings for the scale of Lp spaces. Section 4 is devoted to the transfer of lacunary sets into
lacunary matrix patterns; the unconditional constant of a set Λ is related to the size of the sumsets
it contains. Section 5 deals with Toeplitz Schur multipliers for p < 1 and comments on the case
p > 1. The Riesz projection and the Hilbert transform are studied in Section 6. In Section 7, the
presence of sumsets in a spectrum Λ is shown to be an obstruction for the existence of completely
unconditional bases for LpΛ. The last section provides a norm-preserving extension for partially
specified rank 1 Schur multipliers.

Notation. Let T = {z ∈ C : |z| = 1}.
Given an index set C and c ∈ C, ec is the sequence defined on C as the indicator function χ{c}

of the singleton {c}, so that (ec)c∈C is the canonical Schauder basis of the Hilbert space of square
summable sequences indexed by C, denoted by ℓ2

C . We will use the notation ℓ2
n = ℓ2

{1,2,...,n} and ℓ2 =

ℓ2
N
.
Given a product set I = R×C and q = (r, c), the indicator function eq = er,c is the elementary

matrix identified with the linear operator from ℓ2
C to ℓ2

R that maps ec on er and all other basis
vectors on 0. The matrix coefficient at coordinate q of a linear operator x from ℓ2

C to ℓ2
R is xq =

tr e∗
qx and its matrix representation is (xq)q∈R×C =

∑
q∈R×C xqeq. The support or pattern of x

is {q ∈ R × C : xq 6= 0}.
The space of all bounded operators from ℓ2

C to ℓ2
R is denoted by B(ℓ2

C , ℓ
2
R), and its subspace of

compact operators is denoted by S∞.
Let ψ : R+ → R+ be a continuous nondecreasing function vanishing only at 0. The Schatten-

von-Neumann-Orlicz class Sψ is the space of those compact operators x from ℓ2
C to ℓ2

R such that
trψ(|x|/a) < ∞ for some a > 0. If ψ is convex, then Sψ is a Banach space for the norm given by
‖x‖Sψ = inf{a > 0 : trψ(|x|/a) 6 1}. Otherwise, Sψ is a Fréchet space for the F-norm given by
‖x‖Sψ = inf{a > 0 : trψ(|x|/a) 6 a} (see [69, Chapter 3].) This space may also be constructed as
the noncommutative Lebesgue-Orlicz space Lψ(tr) associated to the von Neumann algebra B(ℓ2

C , ℓ
2
R)
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endowed with the normal faithful semifinite trace tr. If ψ is the power function t 7→ tp, this space
is denoted Sp: if p > 1, then ‖x‖Sp = (tr |x|p)1/p; if p < 1, then ‖x‖Sp = (tr |x|p)1/(1+p).

If #C = #R = n, then B(ℓ2
C , ℓ

2
R) identifies with the space of n × n matrices denoted S∞

n , and
we write Sψn for Sψ. Let (Rn × Cn) be a sequence of finite sets such that each element of R × C
eventually is in Rn ×Cn. Then the sequence of operators Pn : x 7→ ∑

q∈Rn×Cn
xq eq tends pointwise

to the identity on Sψ.
For I ⊆ R × C, we define the space SψI as the closed subspace of Sψ spanned by (eq)q∈I : this

coincides with the subspace of those x ∈ Sψ whose support is a subset of I.
A relative Schur multiplier on SψI is a sequence ̺ = (̺q)q∈I ∈ CI such that the associated Schur

multiplication operator M̺ defined by eq 7→ ̺qeq for q ∈ I is bounded on SψI . The norm ‖̺‖M(Sψ
I

)

of ̺ is defined as the norm of M̺. This norm is the supremum of the norm of its restrictions to
finite rectangle sets R′ × C′. We used [76, 78] as a reference.

Let Γ be a discrete group with identity e. The reduced C∗-algebra of Γ is the closed subspace
spanned by the left translations λγ (the linear operators defined on ℓ2

Γ by λγ eβ = eγβ) in B(ℓ2
Γ );

we denote it by C. The von Neumann algebra of Γ is its weak∗ closure, endowed with the normal
faithful normalised finite trace τ defined by τ(x) = xe,e; we denote it by L∞. Let ψ : R+ → R+ be
a continuous nondecreasing function vanishing only at 0: we define the noncommutative Lebesgue-
Orlicz space Lψ of Γ as the completion of L∞ with respect to the norm given by ‖x‖Lψ = inf{a >
0 : τ(ψ(|x|/a)) 6 1} if ψ is convex and with respect to the F -norm given by‖x‖Lψ = inf{a >
0 : τ(ψ(|x|/a)) 6 a} otherwise. If ψ is the power function t 7→ tp, this space is denoted Lp: if
p > 1, then ‖x‖Lp = τ(|x|p)1/p; if p < 1, then ‖x‖Lp = τ(|x|p)1/(1+p). The Fourier coefficient of x
at γ is xγ = τ(λ∗

γx) = xγ,e and its Fourier series is
∑

γ∈Γ xγλγ . The spectrum of an element x
is {γ ∈ Γ : xγ 6= 0}. Let X be the space C or Lψ and let Λ ⊆ Γ : then we define XΛ as the closed
subspace of X spanned by the λγ with γ ∈ Λ. We skip the general question for which spaces X this
coincides with the subspace of those x ∈ X whose spectrum is a subset of Λ, but note that this is
the case if Γ is an amenable group (or if L∞ has the QWEP by [45, Theorem 4.4]) and ψ is the
power function t 7→ tp; note also that our definition of XΛ makes it a subspace of the heart of X : if
x ∈ XΛ, then τ(ψ(|x|/a)) is finite for all a > 0.

A relative Fourier multiplier on XΛ is a sequence ϕ = (ϕγ)γ∈Λ ∈ CΛ such that the associated
Fourier multiplication operator Cϕ defined by λγ 7→ ϕγλγ for γ ∈ Λ is bounded on XΛ. The
norm ‖ϕ‖C(XΛ) of ϕ is defined as the norm of Cϕ. Fourier multipliers on the whole of C are also
called multipliers of the Fourier algebra A(Γ ) (which may be identified with L1); they form the set
C(A(Γ )).

The space Sψ(Sψ) is the space of those compact operators x from ℓ2 ⊗ ℓ2
C to ℓ2 ⊗ ℓ2

R such that
‖x‖Sψ(Sψ) = inf{a : tr ⊗ trψ(|x|/a) 6 1}: it is the noncommutative Lebesgue-Orlicz space Lψ(tr ⊗ tr)

associated to the von Neumann algebra B(ℓ2) ⊗ B(ℓ2
C , ℓ

2
R). One may think of Sψ(Sψ) as the Sψ-

valued Schatten-von-Neumann class: we define the matrix coefficient of x at q by xq = (IdSψ ⊗ tr)(
(Idℓ2 ⊗ e∗

q)x
)

∈ Sψ and its matrix representation by
∑

q∈R×C xq ⊗ eq. The support of x and the

subspace SψI (Sψ) are defined in the same way as SψI .
Similarly, the space Lψ(tr ⊗τ) is the noncommutative Lebesgue-Orlicz space associated to the

von Neumann algebra B(ℓ2) ⊗ L∞ = L∞(tr ⊗τ). One may think of Lψ(tr ⊗τ) as the Sψ-valued
noncommutative Lebesgue space: we define the Fourier coefficient of x at γ by xγ = (IdSψ⊗τ)

(
(Idℓ2 ⊗

λ∗
γ)x
)

∈ Sψ and its Fourier series by
∑
γ∈Γ xγ ⊗ λγ ; the spectrum of x is defined accordingly. The

subspace LψΛ(tr ⊗τ) is the closed subspace of Lψ(tr ⊗τ) spanned by the x⊗λγ with x ∈ Sψ and γ ∈ Λ.

An operator T on SψI is bounded on SψI (Sψ) if the linear operator IdSψ ⊗ T defined by x⊗ y 7→
x⊗T (y) for x ∈ Sψ and y in SψI on finite tensors extends to a bounded operator IdSψ ⊗T on SψI (Sψ).
The norm of a Schur multiplier ̺ on SψI (Sψ) is defined as the norm of IdSψ ⊗ M̺. Similar definitions
hold for an operator T on LψΛ; the norm of a Fourier multiplier ϕ on LψΛ(tr ⊗τ) is the norm of
IdψS ⊗ Cϕ on LψΛ(tr ⊗τ).

Let ψ be the power function t 7→ tp with p > 1: the norms on Sp(Sp) and Lp(tr ⊗τ) describe
the canonical operator space structure on Sp and Lp, respectively: see [76, Corollary 1.4]; we should
rather use the notation Sp[Sp] and Sp[Lp]. This explains the following terminology. An operator T
on SpI is completely bounded (c.b. for short) if IdSp ⊗ T is bounded on SpI(S

p); the norm of IdSp ⊗ T
is the complete norm of T (compare [76, Lemma 1.7].) The complete norm ‖̺‖Mcb(Sp

I
) of a Schur

multiplier ̺ is defined as the complete norm of M̺. Note that the complete norm of a Schur
multiplier ̺ on S∞

I is equal to its norm [71, Theorem 3.2]: ‖̺‖Mcb(S∞
I

) = ‖̺‖M(S∞
I

). The complete
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norm ‖ϕ‖Ccb(Lp
Λ

) of a Fourier multiplier ϕ is defined as the complete norm of Cϕ. The complete norm
of an operator T on CΛ is the norm of IdS∞ ⊗ T on the subspace of S∞ ⊗ C spanned by the x⊗ λγ
with x ∈ S∞ and γ ∈ Λ; in the case Λ = Γ , ϕ is also called a c.b. multiplier of the Fourier algebra
A(Γ ) and one writes ϕ ∈ Ccb(A(Γ )); if Γ is amenable, the complete norm of a Fourier multiplier ϕ
on CΛ is equal to its norm [25, Corollary 1.8]: ‖ϕ‖Ccb(CΛ) = ‖ϕ‖C(CΛ).

An element whose norm is at most 1 is contractive, and if its complete norm is at most 1, it is
completely contractive.

If Γ is abelian, let G be its dual group and endow it with its unique normalised Haar measure m:
then the Fourier transform identifies C as the space of continuous functions on G, L∞ as the
space of classes of bounded measurable functions on (G,m), Lψ as the Lebesgue-Orlicz space of
classes of ψ-integrable functions on (G,m), τ(x) as

∫
G
x(g) dm(g), Lψ(tr ⊗τ) as the Sψ-valued

Lebesgue-Orlicz space Lψ(Sψ) and xγ as x̂(γ).

2 Transfer between Fourier and Schur multipliers

Let Λ be a subset of a discrete group Γ and let ϕ be a relative Fourier multiplier on CΛ, the closed
subspace spanned by (λγ)γ∈Λ in the reduced C∗-algebra of Γ . Let x ∈ CΛ: the matrix of x is constant
down the diagonals in the sense that for every (r, c) ∈ Γ ×Γ , xr,c = xrc−1,e = xrc−1 ; we say that x is
a Toeplitz operator on ℓ2

Γ . Furthermore, the matrix of the Fourier product Cϕx of ϕ with x is given
by (Cϕx)r,c = ϕrc−1xr,c. This shows that if we set Λ̋ = {(r, c) ∈ Γ ×Γ : rc−1 ∈ Λ} and ϕ̋r,c = ϕrc−1 ,
then Cϕx is the Schur product Mϕ̋x of ϕ̋ with x. We have transferred the Fourier multiplier ϕ into
the Schur multiplier ϕ̋: this shows at once that the norm of the Fourier multiplier ϕ on CΛ is the
norm of the Schur multiplier ϕ̋ on the subspace of Toeplitz elements of B(ℓ2

Γ ) with support in Λ̋,
and that the same holds for complete norms.

We shall now give us the means to generalise this identification to the setting of Lebesgue-Orlicz
spaces Lψ: we shall bypass the main obstacle, that Lψ may not be considered as a subspace of Sψ,
by the Szegő limit theorem as stated by Erik Bédos [6, Theorem 10].

As we want to compute complete norms of multipliers, we shall generalise the Szegő limit theorem
to the block matrix case, not considered in [6]. Let us first recall the scalar case. Consider a discrete
amenable group Γ : it admits a Følner averaging net of sets (Γι), that is,

– each Γι is a finite subset of Γ ;

– #(γΓι∆Γι) = o(#Γι) for each γ ∈ Γ .

Each set Γι corresponds to the orthogonal projection pι of ℓ2
Γ onto its (#Γι)-dimensional subspace

of sequences supported by Γι. The truncate of a selfadjoint operator y ∈ B(ℓ2
Γ ) with respect to Γι

is yι = pιypι: it has #Γι eigenvalues αj , counted with multiplicities, and its normalised counting
measure of eigenvalues is

µι =
1

#Γι

#Γι∑

j=1

δαj .

If y is a Toeplitz operator, that is, if y ∈ L∞, Erik Bédos [6, Theorem 10] proves that (µι) converges
weak∗ to the spectral measure of y with respect to τ , which is the unique Borel probability measure µ
on R such that

τ(ψ(y)) =

∫

R

ψ(α)dµ(α)

for every continuous function ψ on R that tends to zero at infinity. If Γ is abelian, then y may be
identified as the class of a real-valued bounded measurable function on the group G dual to Γ and
µ is the distribution of y.

The matrix Szegő limit theorem is the analogue of this result for selfadjoint elements y ∈ S∞
n ⊗L∞,

whose S∞
n -valued spectral measure µ is defined by

∫

R

ψ(α)dµ(α) = Idℓ2
n

⊗ τ(ψ(y)).

The orthogonal projection p̃ι = Idℓ2
n

⊗ pι defines the truncate yι = p̃ιyp̃ι ∈ S∞
n ⊗ B(ℓ2

Γι
), and the

S∞
n -valued normalised counting measure of eigenvalues µι by

∫

R

ψ(α)dµι(α) = Idℓ2
n

⊗ tr

#Γι
(ψ(yι)).
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Theorem 2.1 (Matrix Szegő limit theorem). Let Γ be a discrete amenable group and let (Γι) be a
Følner averaging net for Γ . Let y be a selfadjoint element of S∞

n ⊗ L∞. The net (µι) of S∞
n -valued

normalised counting measures of eigenvalues of the truncates of y with respect to Γι converges in
the weak∗ topology to the spectral measure of y:

∫

R

ψ(α)dµι(α) → Idℓ2
n

⊗ τ(ψ(y))

for every continuous function ψ on R that tends to zero at infinity.

Sketch of proof. Let us first suppose that y ∈ S∞
n ⊗C: we may suppose that y =

∑
γ∈Γ yγ ⊗λγ with

only a finite number of the yγ ∈ S∞
n nonzero: the S∞

n -valued matrix of yι for the canonical basis
of ℓ2

Γι
is (yrc−1)(r,c)∈Γι×Γι . It suffices to prove that

Id ⊗ tr

#Γι
(ykι ) → Id ⊗ τ(yk) (F.3)

for every k. This is trivial if k = 0. If k = 1, then

Id ⊗ tr

#Γι
(yι) =

1

#Γι

∑

c∈Γι

yc,c = Id ⊗ τ(y)

as yc,c = ycc−1 = ye. If k > 2, the same formula holds with yk instead of y:

Id ⊗ τ(yk) = Id ⊗ tr

#Γι
(p̃ιy

kp̃ι),

so that we wish to prove
Id ⊗ tr(p̃ιy

kp̃ι − (p̃ιyp̃ι)
k
) = o(#Γι).

Note that ∥∥Id ⊗ tr
(
p̃ιy

kp̃ι − (p̃ιyp̃ι)
k)∥∥

S1
n
6 ‖p̃ιykp̃ι − (p̃ιyp̃ι)

k‖S1(S1
n).

Lemma 5 in [6] provides the following estimate: as

p̃ιy
kp̃ι − (p̃ιyp̃ι)

k
= p̃ιy

k−1(yp̃ι − p̃ιyp̃ι) + (p̃ιy
k−1p̃ι − (p̃ιyp̃ι)

k−1
)yp̃ι,

an induction yields

‖p̃ιykp̃ι − (p̃ιyp̃ι)
k‖S1(S1

n) 6 k‖y‖k−1
S∞
n ⊗L∞‖yp̃ι − p̃ιyp̃ι‖S1(S1

n).

It suffices to consider the very last norm for each term yγ ⊗ λγ of y: let h ∈ ℓ2
n and β ∈ Γ ; as

(
(yγ ⊗ λγ)p̃ι − p̃ι(yγ ⊗ λγ)p̃ι

)
(h⊗ eβ) =

{
yγ(h)eγβ if β ∈ Γι and γβ /∈ Γι

0 otherwise,

the definition of a Følner averaging net yields

‖(yγ ⊗ λγ)p̃ι − p̃ι(yγ ⊗ λγ)p̃ι‖S1(S1
n) 6 #(Γι \ γ−1Γι)‖yγ‖S1

n
= o(#Γι).

An approximation argument as in [6, proof of Proposition 4] permits to conclude for y ∈ L∞.

Let us now describe and prove the Lψ version of the transfer described at the beginning of this
section.

Lemma 2.2. Let Γ be a discrete amenable group and p > 0. Let Λ ⊆ Γ and ϕ ∈ CΛ. Consider the
associated Toeplitz set Λ̋ = {(r, c) ∈ R × C : rc−1 ∈ Λ} and the Toeplitz matrix defined by ϕ̋r,c =
ϕrc−1 . Let ψ : R+ → R+ be a continuous nondecreasing function vanishing only at 0.

(a) The norm of the relative Fourier multiplier ϕ on LψΛ is the supremum of the norm of the
relative Schur multiplier ϕ̋ on subspaces of truncated Toeplitz matrices in Sψ

Λ̋
.

(b) The norm of the relative Fourier multiplier ϕ on LψΛ(tr ⊗τ) is the supremum of the norm of
the relative Schur multiplier ϕ̋ on subspaces of truncated Toeplitz matrices in Sψ

Λ̋
(Sψ).
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While the restriction to truncated Toeplitz matrices may not be removed in case (a) (see Re-
mark 5.2), Theorem 2.5 (a) below will provide the full picture of case (b).

Proof. A Toeplitz matrix has the form (xrc−1)(r,c)∈Λ̋. Our definition of the space LψΛ (cf. section on
Notation and terminology) ensures that we may suppose that only a finite number of the xγ are
nonzero for the computation of the norm of ϕ. Then (xrc−1)(r,c)∈Λ̋ is the matrix of the operator x =∑

γ∈Λ xγλγ for the canonical basis of ℓ2
Γ .

Let y = x∗x and let us use the notation of Theorem 2.1. Let ψ̃ be a continuous function with
compact support such that ψ̃(t) = ψ(t) on [0, ‖x‖2].

(a). By Szegő’s limit theorem (as given in [6, Theorem 1]),

1

#Γι
trψ(pιypι) =

1

#Γι
tr ψ̃(pιypι) → τ(ψ̃(y)) = τ(ψ(y))

Let us describe how ϕ̋ acts on xpι. Schur multiplication with ϕ̋ transforms the matrix of xpι, that
is the truncated Toeplitz matrix (xrc−1)(r,c)∈Λ̋∩Γ×Γι

, into the matrix (ϕ̋rc−1xrc−1 )(r,c)∈Λ̋∩Γ×Γι
, so

that it transforms xpι into (Cϕx)pι.
(b). Combine the argument in (a) with the matrix Szegő limit theorem.

In the case of a finite abelian group, no limit theorem is needed: this case has been considered
in [66, Proposition 2.5 (b)].

The following well-known argument has been used (first in [17], see [18, Proposition D.6]) to show
that the complete norm of the Fourier multiplier ϕ on L∞

Λ bounds the complete norm of the Schur
multiplier ϕ̋ on S∞

Λ̋
, so that we have in full generality ‖ϕ‖Ccb(CΛ) = ‖ϕ̋‖Mcb(S∞

Λ̋
). This argument

permits to strengthen Lemma 2.2 (b).

Lemma 2.3. Let Γ be a discrete group and let R and C be subsets of Γ . To Λ ⊆ Γ associate Λ̋ =

{(r, c) ∈ R × C : rc−1 ∈ Λ}; given ϕ ∈ CΛ define ϕ̋ ∈ CΛ̋ by ϕ̋r,c = ϕrc−1 . Let ψ : R+ → R+ be a
continuous nondecreasing function vanishing only at 0. The norm of the relative Schur multiplier ϕ̋
on Sψ

Λ̋
(Sψ) is bounded by the norm of the relative Fourier multiplier ϕ on LψΛ(tr ⊗τ).

Proof. We adapt the argument in [76, Lemma 8.1.4]. Let xq ∈ Sψ, of which only a finite number are
nonzero. The space Lψ(tr ⊗ tr ⊗τ) is a left and right L∞(tr ⊗ tr ⊗τ)-module and

∑
γ∈Γ eγγ ⊗ λγ is

a unitary in L∞(tr ⊗τ), so that
∥∥∥
∑

q∈Λ̋

xq ⊗ eq

∥∥∥
Sψ
Λ̋

(Sψ)
=
∥∥∥
(

Id ⊗
∑

r∈R

er,r ⊗ λr

)(∑

q∈Λ̋

xq ⊗ eq ⊗ λe

)(
Id ⊗

∑

c∈C

ec,c ⊗ λ∗
c

)∥∥∥
Lψ(tr ⊗ tr ⊗τ)

=

∥∥∥∥
∑

(r,c)∈Λ̋

xr,c ⊗ er,c ⊗ λrc−1

∥∥∥∥
Lψ(tr ⊗ tr ⊗τ)

=

∥∥∥∥
∑

γ∈Λ

( ∑

rc−1=γ

xr,c ⊗ er,c

)
⊗ λγ

∥∥∥∥
Lψ
Λ

(tr ⊗ tr ⊗τ)

.

This yields an isometric embedding of Sψ
Λ̋

(Sψ) in LψΛ(tr ⊗ tr ⊗τ). As Sψ(Sψ) is the Schatten-von-
Neumann-Orlicz class for the Hilbert space ℓ2 ⊗ ℓ2

Γ which may be identified with ℓ2,

∥∥∥
∑

q∈Λ̋

xq ⊗ ϕ̋q eq

∥∥∥
Sψ
Λ̋

(Sψ)
=

∥∥∥∥
∑

γ∈Λ

( ∑

rc−1=γ

xr,c ⊗ er,c

)
⊗ ϕγλγ

∥∥∥∥
Lψ
Λ

(tr ⊗ tr ⊗τ)

6 ‖IdSψ ⊗ Cϕ‖
∥∥∥
∑

q∈Λ̋

xq ⊗ eq

∥∥∥
Sψ
Λ̋

(Sψ)
.

Remark 2.4. The proof of Lemma 2.3 shows also the following transfer. Let (ri) and (cj) be
sequences in Γ , consider Λ̆ = {(i, j) ∈ N × N : ricj ∈ Λ} and define ϕ̆ ∈ CΛ̆ by ϕ̆(i, j) = ϕ(ricj).
Then the norm of the relative Schur multiplier ϕ̆ on Sψ

Λ̆
(Sψ) is bounded by the norm of the relative

Fourier multiplier IdSψ ⊗ Cϕ on LψΛ(tr ⊗τ) (confer [78, Theorem 6.4].) In particular, if the ricj are
pairwise distinct, this permits to transfer every Schur multiplier, not just the Toeplitz ones. See [66,
Section 11] for applications of this transfer.
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Here is the announced strengthening of Lemma 2.2.

Theorem 2.5. Let Γ be a discrete amenable group. Let Λ ⊆ Γ and ϕ ∈ CΛ. Consider the associated
Toeplitz set Λ̋ = {(r, c) ∈ R× C : rc−1 ∈ Λ} and the Toeplitz matrix defined by ϕ̋r,c = ϕrc−1 .

(a) Let ψ : R+ → R+ be a continuous nondecreasing function vanishing only at 0. The norm of
the relative Fourier multiplier ϕ on LψΛ(tr ⊗τ) and the norm of the relative Schur multiplier ϕ̋
on Sψ

Λ̋
(Sψ) are equal.

(b) Let p > 1. The complete norm of the relative Fourier multiplier ϕ on LpΛ and the complete
norm of the relative Schur multiplier ϕ̋ on Sp

Λ̋
are equal:

‖ϕ‖Ccb(Lp
Λ

) = ‖ϕ̋‖Mcb(Sp
Λ̋

).

(c) The norm of the relative Fourier multiplier ϕ on CΛ, its complete norm, the norm of the
relative Schur multiplier ϕ̋ on S∞

Λ̋
and its complete norm are equal:

‖ϕ‖C(CΛ) = ‖ϕ‖Ccb(CΛ) = ‖ϕ̋‖Mcb(S∞

Λ̋
) = ‖ϕ̋‖M(S∞

Λ̋
).

(d) Suppose that Λ = Γ . The norm of the Fourier algebra multiplier ϕ, its complete norm, the
norm of the Schur multiplier ϕ̋ on S∞ and its complete norm are equal:

‖ϕ‖C(A(Γ )) = ‖ϕ‖Ccb(A(Γ )) = ‖ϕ̋‖Mcb(S∞) = ‖ϕ̋‖M(S∞).

Proof. Combine Proposition 2.2 (b) with Lemma 2.3. Recall that if Γ is amenable, the norm of a
Fourier multiplier ϕ on CΛ is equal to its complete norm [25, Corollary 1.8] and that the complete
norm of a Schur multiplier ϕ̋ on S∞

Λ̋
is equal to its norm [71, Theorem 3.2].

3 Local embeddings of Lp into Sp

The proof of Lemma 2.2 can be interpreted as an embedding of Lψ into an ultraproduct of finite-
dimensional spaces Sψn that intertwines Fourier and Toeplitz Schur multipliers. If we restrict our-
selves to power functions ψ : t 7→ tp with p > 1, such embeddings are well known and the proof of
Lemma 2.2 does not need the full strength of the Matrix Szegő limit theorem but only the existence
of such embeddings. In this section, we explain two ways to obtain them by interpolation.

The first way is to extend the classical result that the reduced C∗-algebra C of a discrete group
Γ has the completely contractive approximation property if Γ is amenable. We follow the approach
of [18, Theorem 2.6.8]. Let Γ be a discrete amenable group and Γι be a Følner averaging net of sets.
As above, we denote by pι the orthogonal projection from ℓ2

Γ to ℓ2
Γι

. Define the compression ϕι and
the embedding ψι by

ϕι : C → B(ℓ2
Γι)

x 7→ pιxpι

and ψι : B(ℓ2
Γι) → C

er,c 7→ (1/# Γι)λrλc−1 .

(F.4)

If we endow B(ℓ2
Γι

) with the normalised trace, these maps are unital completely positive, trace pre-
serving (and normal) and the net (ψιϕι) converges pointwise to the identity of C. One can therefore
extend them by interpolation to completely positive contractions on the respective noncommutative
Lebesgue spaces: recall that Lp(B(ℓ2

Γι
), (1/# Γι) tr) is (# Γι)

−1/p
Sp# Γι

. We get a net of complete
contractions

ϕ̃ι : Lp → (# Γι)
−1/p

Sp# Γι
and ψ̃ι : (# Γι)

−1/p
Sp# Γι

→ Lp,

such that (ψ̃ιϕ̃ι) converges pointwise to the identity of Lp. Moreover, the definitions (F.4) show
that these maps also intertwine Fourier and Toeplitz Schur multipliers.

Remark 3.1. This approach is more canonical as it allows to extend the transfer to the vector-valued
spaces in the sense of [76, Chapter 3]. Recall that for any hyperfinite semifinite von Neumann algebra
M and any operator space E, one can define Lp(M,E): for p = ∞, this space is defined as M⊗minE;
for p = 1, this space is defined as Mop

∗ ⊗̂E; these spaces form an interpolation scale for the complex
method when 1 6 p 6 ∞. For us, M will be B(ℓ2) or the group von Neumann algebra L∞. As
the maps ψι and ϕι are unital completely positive and trace preserving and normal, they define
simultaneously complete contractions on M and M∗. By interpolation, the maps ψι ⊗ IdE and
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ϕι⊗ IdE are still complete contractions on the spaces Lp(E) and Sp[E]. Let ϕ : Γ → C: the transfer
shows that the norm of IdE ⊗ Cϕ on Lp(E) is bounded by the norm of IdE ⊗ Mϕ̋ on Sp[E], and that
their complete norms coincide. In formulas,

‖IdE ⊗ Cϕ‖B(Lp(E)) 6 ‖IdE ⊗ Mϕ̋‖B(Sp[E]),

‖IdE ⊗ Cϕ‖cb(Lp(E)) = ‖IdE ⊗ Mϕ̋‖cb(Sp[E]).

This approximation is two-sided whereas the proof of Lemma 2.2 uses only a one-sided approxi-
mation. This subtlety makes a difference if one tries to give a direct proof by complex interpolation,
as we shall do now.

Proposition 3.2. Let Γ be a discrete amenable group and let (µι) be a Reiter net of means for Γ :

– each µι is a positive sequence summing to 1 with finite support Γι ⊆ Γ and viewed as a diagonal
operator from ℓ2

Γι
to ℓ2

Γ , so that

‖µι‖S1 =
∑

γ∈Γι

(µι)γ = 1;

– the net (µι) satisfies, for each γ ∈ Γ , Reiter’s Property P1:

∑

β∈Γ

∣∣(µι)γ−1β − (µι)β
∣∣ → 0. (F.5)

Let f ∈ S∞
n ⊗ L∞ = L∞(tr ⊗τ) and p > 1. Then

lim sup ‖fµ1/p
ι ‖Sp(Spn) = ‖f‖Lp(tr ⊗τ).

Proof. Consider f =
∑

γ∈Γ xγ ⊗ λγ with only a finite number of the xγ ∈ S∞
n nonzero. As

∑

β∈Γ

∣∣(µι)1/2
γ−1β − (µι)

1/2
β

∣∣2 6
∑

β∈Γ

∣∣(µι)γ−1β − (µι)β
∣∣,

Property P1 implies Property P2:

‖λγµ1/2
ι − µ1/2

ι λγ‖S2 → 0,

so that
‖fµ1/2

ι − µ1/2
ι f‖S2(S2

n) → 0.

As the S∞
n -valued matrix of f for the canonical basis of ℓ2

Γ is (xrc−1 )(r,c)∈Γ×Γ ,

‖fµ1/2
ι ‖2

S2(S2
n) =

∑

(r,c)∈Γ×Γ

‖xrc−1‖2
Sn2

(µι)c

=
∑

c∈Γ

(µι)c
∑

r∈Γ

‖xrc−1‖2
Sn2

=
∑

c∈Γ

(µι)c‖f‖2
L2(tr ⊗τ) = ‖f‖2

L2(tr ⊗τ).

By density and continuity, the result extends to all f ∈ L2(tr ⊗τ).
Let us prove now that for f ∈ L∞(tr ⊗τ)

lim sup ‖fµι‖S1(S1
n) 6 ‖f‖L1(tr ⊗τ).

The polar decomposition f = u|f | yields a factorisation f = ab with a = u|f |1/2 and b = |f |1/2

in L∞(tr ⊗τ) such that

‖a‖L2(tr ⊗τ) = ‖b‖L2(tr ⊗τ) = ‖f‖1/2
L1(tr ⊗τ)

‖a‖L∞(tr ⊗τ) = ‖f‖1/2
L∞(tr ⊗τ).
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Then fµι = a(bµ
1/2
ι − µ

1/2
ι b)µ

1/2
ι + aµ

1/2
ι bµ

1/2
ι , so that the Cauchy-Schwarz inequality yields

‖fµι‖S1(S1
n) 6 ‖a‖L∞(tr ⊗τ)‖(bµ1/2

ι − µ1/2
ι b)µ1/2

ι ‖S1(S1
n) + ‖aµ1/2

ι bµ1/2
ι ‖S1(S1

n)

6 ‖a‖L∞(tr ⊗τ)‖bµ1/2
ι − µ1/2

ι b‖S2(S2
n) + ‖a‖L2(tr ⊗τ)‖b‖L2(tr ⊗τ)

and therefore our claim. Now complex interpolation yields

lim sup ‖fµ1/p
ι ‖Sp(Spn) 6 ‖f‖Lp(tr ⊗τ) (F.6)

for f ∈ L∞(tr ⊗τ) and p ∈ [1,∞]. Indeed, let u be the unitary appearing in the polar decomposition
of f . Consider the function F (z) = u|f |pzµzι analytic in the strip 0 < ℑz < 1 and continuous on its
closure: then F (it) is a product of unitaries for t ∈ R, so that

‖F (it)‖L∞(tr ⊗τ) = 1.

Also

‖F (1 + it)‖S1(S1
n) = ‖|f |pµι‖S1(S1

n)

As Sp(Spn) is the complex interpolation space (S∞(S∞
n ), S1(S1

n))1/p,

‖fµ1/p
ι ‖Sp(Spn) = ‖F (1/p)‖Sp(Spn) 6 ‖|f |pµι‖1/p

S1(S1
n).

Then, taking the upper limit and using the estimate on S1(S1
n)

lim sup ‖fµ1/p
ι ‖Sp(Spn) 6 lim sup ‖|f |pµι‖1/p

S1(S1
n)

6 ‖|f |p‖1/p
L1(tr ⊗τ) = ‖f‖Lp(tr ⊗τ).

The reverse inequality is obtained by duality; first note that for g ∈ L∞(tr ⊗τ),

lim tr gµi = τ(g).

With the above notation and the inequality for p′,

‖f‖pLp = τ(|f |p) = lim tr |f |pµi = lim trµ
1−1/p
i |f |1−pu∗fµ

1/p
i

6 lim sup ‖µ1−1/p
i |f |1−p‖

Sp′(Sp
′

n )
‖fµ1/p

i ‖Sp(Spn)

= lim sup ‖|f |1−pµ
1−1/p
i ‖

Sp′(Sp
′
n )

‖fµ1/p
i ‖Sp(Spn)

6 ‖|f |1−p‖Lp′ lim sup ‖fµ1/p
i ‖Sp(Spn)

so that
lim sup ‖fµ1/p

ι ‖Sp(Spn) = ‖f‖pLp(tr ⊗τ).

Remark 3.3. Let µ be any positive diagonal operator with trµ = 1 and p > 2: then ‖fµ1/p‖Sp(Spn) 6

‖f‖Lp for all f ∈ L∞(tr ⊗τ). The Reiter condition is only necessary to go below exponent 2.

In the same way, using interpolation, we can come back to approximation on both sides using
Reiter means, that is

‖µ1/2p
ι fµ1/2p

ι ‖Sp(Spn) 6 ‖f‖Lp

and we have
lim sup ‖µ1/2p

ι fµ1/2p
ι ‖Sp(Spn) = ‖f‖Lp(tr ⊗τ).

Note that this formula is in the same spirit as the first approach of this section.

4 Transfer of lacunary sets into lacunary matrix patterns

As a first application of Theorem 2.5, let us mention that it provides a shortcut for some ar-
guments in [37] as it permits to transfer lacunary subsets of discrete group Γ into lacunary matrix
patterns in Γ × Γ . Let us first introduce the following terminology.
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Definition 4.1. Let Γ be a discrete group and Λ ⊆ Γ . Let X be the reduced C∗-algebra C of Γ or
its noncommutative Lebesgue space Lp for p ∈ [1,∞[.

(a) The set Λ is unconditional in X if the Fourier series of every x ∈ XΛ converges unconditionally:
there is a constant D such that

∥∥∥∥
∑

γ∈Λ′

xγεγλγ

∥∥∥∥
X

6 D‖x‖X

finite Λ′ ⊆ Λ and εγ ∈ T. The minimal constant D is the unconditional constant of Λ in X .

(b) If X = C, let X̃ = S∞⊗C; if X = Lp, let X̃ = Lp(tr ⊗τ). The set Λ is completely unconditional
in X if the Fourier series of every x ∈ X̃Λ converges unconditionally: there is a constant D
such that ∥∥∥∥

∑

γ∈Λ′

xγ ⊗ εγλγ

∥∥∥∥
X̃

6 D‖x‖X̃

for finite Λ′ ⊆ Λ and εγ ∈ T. The minimal constant D is the complete unconditional constant
of Λ in X .

Unconditional sets in Lp have been introduced as “Λ(p) sets” in [37, Definition 1.1] for p > 2:
if Γ is abelian, they are Walter Rudin’s Λ(p) sets if p > 2 and his Λ(2) sets if p < 2: see [87, 15].
Asma Harcharras [37, Definition 1.5, Comments 1.9] termed completely unconditional sets in Lp

“Λ(p)cb sets” if p ∈ ]2,∞[, and “K(p)cb sets” if p ∈ ]1, 2]; her definitions are equivalent to ours by
the noncommutative Khinchin inequality.

Sets that are unconditional in C have been introduced as “unconditional Sidon sets” in [16]. If
Γ is amenable, Fourier multipliers are automatically c.b. on CΛ, so that such sets are automatically
completely unconditional in C, and there are at least three more equivalent definitions for the
counterpart of Sidon sets in an abelian group. If Γ is nonamenable, these definitions are not all
equivalent anymore and our notion of completely unconditional sets in C corresponds to Marek
Bożejko’s “c.b. Sidon sets.”

Definition 4.2. Let 1 6 p 6 ∞ and I ⊆ R × C.

(a) The set I is unconditional in Sp if the matrix representation of every x ∈ SpI converges uncon-
ditionally: there is a constant D such that

∥∥∥
∑

q∈I′

xqεqeq

∥∥∥
p
6 D‖x‖p

for finite I ′ ⊆ I and εq ∈ T. The minimal constant D is the unconditional constant of I in Sp.

(b) The set I is completely unconditional in Sp if the matrix representation of every x ∈ SpI(S
p)

converges unconditionally: there is a constant D such that
∥∥∥
∑

q∈I′

xq ⊗ εqeq

∥∥∥
p
6 D‖x‖p

for finite I ′ ⊆ I and εq ∈ T. The minimal constant D is the complete unconditional constant
of I in Sp.

Harcharras [37, Definitions 4.1 and 4.4, Remarks 4.6 (iv)] termed unconditional and completely
unconditional sets in Sp “σ(p) sets” and “σ(p)cb sets,” respectively; her definitions are equivalent
by the noncommutative Khinchin inequality.

Proposition 4.3. Let Γ be a discrete group. Let Λ ⊆ Γ and consider the associated Toeplitz set
Λ̋ = {(r, c) ∈ R× C : rc−1 ∈ Λ}. Let p ∈ [1,∞[.

(a) If Γ is amenable, then Λ is unconditional in Lp if Λ̋ is unconditional in Sp.

(b) If Λ is completely unconditional in Lp, then Λ̋ is completely unconditional in Sp. The converse
holds if Γ is amenable.

Proof. The first part of (b) follows by the argument of the proof of [37, Proposition 4.7]: let us sketch
it. Consider the isometric embedding of the space Sp

Λ̋
(Sp) in LpΛ(tr ⊗ tr ⊗τ) that is given in the proof

of Lemma 2.3 and apply the equivalent Definition 1.5 in [37] of the complete unconditionality of Λ:
this gives the complete unconditionality of Λ̋ in the equivalent Definition 4.4 in [37].
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Unconditionality in Lp expresses the uniform boundedness of relative unimodular Fourier mul-
tipliers on LpΛ; complete unconditionality expresses their uniform complete boundedness. Uncondi-
tionality in Sp expresses the uniform boundedness of relative unimodular Schur multipliers on Sp

Λ̋
;

complete unconditionality expresses their uniform complete boundedness. The second part of (b)
follows therefore from Theorem 2.5 (b) and (a) follows from Lemma 2.2 (a).

Remark 4.4. This transfer does not pass to the limit p = ∞: Nicholas Varopoulos ([99, Theorem 4.2],
see [66, § 5] for a reader’s guide) proved that unconditional sets in S∞ are finite unions of patterns
whose rows or whose columns contain at most one element, and this excludes sets of the form Λ̋ for
any infinite Λ.

Remark 4.5. See [66, Remark 11.3] for an illustration of Proposition 4.3 (b) in a particular context.

Remark 4.6. Let p be an even integer greater or equal to 4. The existence of a σ(p)cb set that is
not a σ(q) set for any q > p [37, Theorem 4.9] becomes a direct consequence of Walter Rudin’s
construction [87, Theorem 4.8] of a Λ(p) set that is not a Λ(q) set for any q > p, because this set
has property B(p/2) [37, Definition 2.4] and is therefore Λ(p)cb by [37, Theorem 1.13] (in fact, it is
even “1-unconditional” in Lp because B(p/2) is “p/2-independence” [66, § 11].)

Remark 4.7. In the same way, Theorem 5.2 in [37] becomes a mere reformulation of [37, Proposition
3.6] if one remembers that the Toeplitz Schur multipliers are 1-complemented in the Schur multipliers
for an amenable discrete group and for all classical norms. Basically results on Λ(p)cb sets produce
results on σ(p)cb sets.

Let us now estimate the complete unconditional constant of sumsets. In the case Γ = Z,
Harcharras [37, Prop. 2.8] proved that a completely unconditional set in Lp cannot contain the
sumset of characters A + A for arbitrary large finite sets A: in particular, if Λ ⊇ A + A with A
infinite, then Λ is not a completely unconditional set. Her proof provided thus examples of Λ(p)
sets that are not Λ(p)cb sets.

We generalise Harcharras’ result in two directions. Compare [54, § 1.4].

Proposition 4.8. Let Γ be a discrete group and p 6= 2. A completely unconditional set in Lp

cannot contain the sumset of two arbitrarily large sets. More precisely, let R and C be subsets of Γ
with #R > n and #C > n3. Then, for any p > 1, the complete unconditional constant of the
sumset RC in Lp is at least n|1/2−1/p|.

Proof. Let r1, . . . , rn be pairwise distinct elements in R. We shall select inductively elements
c1, . . . , cn in C such that the ricj are pairwise distinct. Assume there are c1, . . . , cm−1 such that the
induction hypothesis

∀ i, k 6 n ∀ j, l 6 m− 1 (i, j) 6= (k, l) ⇒ ricj 6= rkcl.

holds. We are looking for an element cm ∈ C such that

∀ i, k 6 n ∀ l 6 m− 1 ricm 6= rkcl.

Such an element exists as long as m 6 n because the set {r−1
i rkcl : i, k 6 n, l 6 m− 1} has at most(

n(n− 1) + 1
)
(m− 1) < n3 elements.

The end of the proof is the same as Harcharras’. The unconditional constant of the canonical basis
of elementary matrices in Spn is n|1/2−1/p|; in particular, there is an unimodular Schur multiplier ϕ̆
on Spn of norm n|1/2−1/p| (which is also its complete norm, by the way): see [76, Lemma 8.1.5]. Let
Λ be the sumset {ricj : i, j 6 n}; as the ricj are pairwise distinct, we may define a sequence ϕ ∈ CΛ

by ϕricj = ϕ̆i,j . By Remark 2.4, the complete norm of the Fourier multiplier ϕ on LpΛ is bounded
below by the complete norm of the Schur multiplier ϕ̆ on SpI .

Example 4.9. Λ = {2i − 2j : i > j} is not a complete Λ(p) set for any p 6= 2. Indeed, {2i − 2j} =
Λ ∪ −Λ does not and if Λ did, then also −Λ and Λ ∪ −Λ.

5 Toeplitz Schur multipliers on Sp for p < 1

When 0 < p < 1, a complete characterisation of bounded Schur multiplier of Toeplitz type has
been obtained by Alexey Alexandrov and Vladimir Peller in [1, Theorem 5.1]. This result was an
easy consequence of their deep results on Hankel Schur multipliers. The transfer approach provides
a direct proof.
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Corollary 5.1. Let 0 < p < 1. Let Γ be a discrete abelian group with dual group G. Let ϕ be
a sequence indexed by Γ and define the associated Toeplitz matrix ϕ̋ ∈ CΛ̋ by ϕ̋(r, c) = ϕ(rc−1)
for (r, c) ∈ Γ × Γ . Then the following are equivalent:

(a) The sequence ϕ is the Fourier transform of an atomic measure µ =
∑
agδg on G with

∑|ag|p 6
1;

(b) The Fourier multiplier ϕ is contractive on Lp;

(c) The Fourier multiplier ϕ is contractive on Lp(Sp);

(d) The Schur multiplier ϕ̋ is contractive on Sp;

(e) The Schur multiplier ϕ̋ is contractive on Sp(Sp).

Proof. The implication (d) ⇒ (b) follows from Lemma 2.2 (a). The equivalence (c) ⇔ (e) follows
from Theorem 2.5 (a). The characterisation (a) ⇔ (b) is an old result of Daniel Oberlin [67]. It is
plain that (e) ⇒ (d). At last, (a) ⇒ (c) is obvious by the p-triangular inequality.

Remark 5.2. As a consequence, we get that the norm of a Toeplitz Schur multiplier on Sp(Sp)
coincides with its norm on Sp when p < 1. If p ∈ {1, 2,∞}, this holds for every Schur multiplier.
Let p ∈ ]1, 2[ ∪ ]2,∞[. Then we still do not know whether Schur multipliers are automatically c.b.
on Sp. But from [76, Proposition 8.1.3], we know that (b) and (c) are not equivalent: if Γ is an
infinite abelian group, there is a bounded Fourier multiplier on Lp that is not c.b. This example is
easy to describe: if an infinite set A ⊆ Γ is lacunary enough, the sumset A+A is unconditional in Lp

(see [54, Theorem 5.13]); by Proposition 4.8, it cannot be completely unconditional. In particular,
this shows that in Lemma 2.2 (a) we cannot remove the restriction to truncated Toeplitz matrices
in the computation of the Schur multiplier norm, that is, (b) ⇒ (d) does not hold.

Remark 5.3. Our questions may also be addressed in the case of a compact group: a measurable
function ϕ on T defines

– the Fourier multiplier on measurable functions on T by x 7→ ϕx;

– the Schur multiplier on integral operators on L2(T) with kernel a measurable function x on
T × T by x 7→ ϕ̋x, where ϕ̋(z, w) = ϕ(zw−1).

Victor Olevskii [68] constructed a continuous function ϕ that defines a bounded Fourier multiplier
on the space of functions with p-summable Fourier series endowed with the norm given by ‖x‖ =(∑|x̂(n)|p

)1/p
for every p ∈ ]1,∞[, while the corresponding Schur multiplier is not bounded on the

Schatten-von-Neumann class Sp of operators on L2(T) for any p ∈ ]1, 2[ ∪ ]2,∞[.

6 The Riesz projection and the Hilbert transform

In this section, we concentrate on Γ = Z, the dual group of T.

Proposition 6.1. Let ̺ be a linear combination of the identity and the upper triangular projection
of N × N: there are z, w ∈ C so that ̺i,j = z if i 6 j and ̺i,j = w if i > j. Then the norm of the
Schur multiplier ̺ on Sψ coincides with the norm of the Schur multiplier ̺ on Sψ(Sψ).

Proof. Let a ∈ Sψm(Sψn ): a may be considered as an m×m matrix (aij) whose entries aij are n× n
matrices, and a may be identified with the block matrix

ã =




0 a11 0 a12 · · ·
0 0 0 0 · · ·
0 a21 0 a22 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




In this identification, IdSψn
⊗ M̺(a) is M̺(ã).

The Hilbert transform H is the Schur multiplier obtained by choosing z = −1 and w = 1. The
upper triangular operators in Sp can be seen as a noncommutative Hp space, and H corresponds
exactly to the Hilbert transform in this setting (see [82, 58]). Using classical results on Hp spaces,
all Hilbert transforms are c.b. for 1 < p < ∞ (see [100, 82, 58]).

On the torus T, the classical Hilbert transform H corresponds to the Fourier multiplier given
by the sign function (with the convention sgn(0) = 1) and its norm on Lp is cot (π/2 max(p, p′)) =
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csc(π/p) + cot(π/p) for 1 < p < ∞. The story of the computation of this norm starts with a paper
by Israel Gohberg and Naum Krupnik [34] for p a power of 2. The remaining cases were handled
by Stylianos Pichorides [75] and Brian Cole (see [30]) independently. The most achieved results are
those of Brian Hollenbeck, Nigel Kalton and Igor Verbitsky [42], but they rely on complex variable
methods that are not available in the operator-valued case. When p is a power of 2 (or its conjugate),
a combination of arguments of Gohberg and Krupnik [33] with some of László Zsidó [100] yields the
following result.

Theorem 6.2. Let p ∈ ]1,∞[. The norm and the complete norm of the Hilbert transform H
on Sp coincide with the complete norm of the Hilbert transform H on Lp: if ˝sgn(i, j) = sgn(i − j)
for i, j > 1,

‖ ˝sgn ‖M(Sp) = ‖ ˝sgn ‖Mcb(Sp) = ‖ sgn ‖Ccb(Lp).

If p is a power of 2, then these norms coincide with the norm of H on Lp:

‖ ˝sgn ‖M(Sp) = ‖ ˝sgn ‖Mcb(Sp) = ‖ sgn ‖Ccb(Lp) = ‖ sgn ‖C(Lp) = cot(π/2p).

Proof. Let p > 2. The norm of H on Lp is cot(π/2p) and the three other norms are equal by the
transfer theorem 2.5 and the above proposition: we only need to compute the complete norm of H .
Let H̃ = IdSp ⊗H be the Hilbert transform on Lp(tr ⊗τ). We shall use Mischa Cotlar’s trick to go
from Lp to L2p: the equality sgn i sgn j + 1 = sgn(i+ j)(sgn i+ sgn j) shows that

(H̃f)(H̃g) + fg = H̃
(
(H̃f)g + f(H̃g)

)
. (F.7)

First step. The function sgn is not odd because of its value in 0: this can be fixed in the following
way. Let Λ = 2Z + 1. The norm of H̃ on Lp(tr ⊗τ) is equal to its norm on LpΛ(tr ⊗τ). In fact, let
D be defined by Df(z) = zf(z2): D is a complete isometry on Lp with range LpΛ that commutes
with H .
Second step. Let S be the real subspace of LpΛ(tr ⊗τ) consisting of functions with values in Sp so
that f(z) is selfadjoint for almost all z ∈ T. Let us apply Vern Paulsen’s off-diagonal trick [70,
Lemma 8.1] to show that the norm of H̃ on Lp is equal to its norm on S. Let f ∈ LpΛ(tr ⊗τ):
identifying Sp2(Sp) with Sp,

g(z) =

(
0 f(z)

f(z)∗ 0

)

defines an element of S. As adjoining is isometric on Sp,

‖g‖S = 21/p‖f‖Lp(tr ⊗τ).

Let us now consider

H̃g =

(
0 H̃f

H̃(f∗) 0

)
.

As 0 /∈ Λ by step 1, the equality sgn(−i) = − sgn i holds for i ∈ Λ: this yields that H̃(f∗) = −(H̃f)∗.
Therefore

‖H̃g‖S = 21/p‖H̃f‖Lp(tr ⊗τ).

Third step. Let up be the norm of H̃ on Lp(tr ⊗τ): then u2p 6 up+
√

1 + up. It suffices to prove this
estimate for f ∈ S, and by approximation we may suppose that f is a finite linear combination of
terms ai⊗zi+a∗

i ⊗z−i with ai finite matrices. Note that H̃f = −(H̃f)∗. Formula (F.7) with f = g
yields, combined with Hölder’s inequality,

‖(H̃f)2‖Lp(tr ⊗τ) 6 ‖f2‖Lp(tr ⊗τ) + 2up‖f‖L2p(tr ⊗τ)‖H̃f‖L2p(tr ⊗τ).

Since f and H̃f take normal values,

‖f2‖Lp(tr ⊗τ) = ‖f‖2
L2p(tr ⊗τ)

‖(H̃f)2‖Lp(tr ⊗τ) = ‖H̃f‖2
L2p(tr ⊗τ).

Therefore, if ‖f‖L2p(tr ⊗τ) = 1, ‖H̃f‖L2p(tr ⊗τ) must be smaller than the bigger root of t2 − 2upt− 1,
that is

‖H̃f‖2
L2p(tr ⊗τ) 6 up +

√
u2
p + 1

and u2p 6 up +
√
u2
p + 1.

Fourth step. The multiplier H is an isometry on L2(tr ⊗τ), so that u2 = 1 = cot(π/4). As
cot(ϑ/2) = cotϑ+

√
cot2 ϑ+ 1 for ϑ ∈ ]0, π[, we conclude by an induction.

83



Unfortunately, we cannot deal with other values of p > 2 by this method.
The Riesz projection T is the Schur multiplier obtained by choosing z = 0 and w = 1 in

Proposition 6.1: it is the projection on the upper triangular part. On the torus, the classical Riesz
projection T , that is the projection onto the analytic part, corresponds to the Fourier multiplier
given by the indicator function χZ+ of nonnegative integers; its norm on Lp has been computed by
Hollenbeck and Verbitsky [43]: it is csc(π/p). As for the Hilbert transform, we know that the norm
and the complete norm of T on Sp are equal and coincide with the complete norm of T on Lp; but,
to the best of our knowledge, there is no simple formula like (F.7) to go from exponent p to 2p. We
only obtained the following computation.

Proposition 6.3. Let p ∈ ]1,∞[. The norm and the complete norm of the Riesz projection T
on Sp coincide with the complete norm of the Riesz projection T on Lp: if χ̋Z+(i, j) = χZ+(i − j)
for i, j > 1,

‖χ̋Z+‖M(Sp) = ‖χ̋Z+‖Mcb(Sp) = ‖χZ+‖Ccb(Lp).

If p = 4, then these norms coincide with the norm of T on Lp:

‖χ̋Z+‖M(S4) = ‖χ̋Z+‖Mcb(S4) = ‖χZ+‖Ccb(L4) = ‖χZ+‖C(L4) =
√

2.

Proof. We shall compute the norm of T on S4. Let x be a finite upper triangular matrix and let
y be a finite strictly lower triangular matrix. We have to prove that

√
2‖x+ y‖S4 > ‖x‖S4 .

Let us make the obvious estimates on S2 and use the fact that adjoining is isometric:

‖T (xx∗)‖S2 = ‖T ((x+ y)x∗)‖S2 6 ‖x+ y‖S4‖x‖S4

and similarly,

‖(Id − T )(xx∗)‖S2 = ‖(Id − T )(x(x + y)∗)‖S2 6 ‖x‖S4‖x+ y‖S4 .

As T and Id − T have orthogonal ranges,

‖x‖4
S4 = ‖xx∗‖2

S2 = ‖(Id − T )(xx∗)‖2
S2 + ‖T (xx∗)‖2

S2 6 2‖x‖2
S4‖x+ y‖2

S4.

7 Unconditional approximating sequences

The following definition makes sense for general operator spaces, but we chose to state it only
in our specific context.

Definition 7.1. Let Γ be a discrete group and Λ ⊆ Γ . Let X be the reduced C∗-algebra of Γ or
its noncommutative Lebesgue space Lp for p ∈ [1,∞[.

(a) A sequence (Tk) of operators on XΛ is an approximating sequence if each Tk has finite rank
and Tkx → x for every x ∈ XΛ. It is a complete approximating sequence if the Tk are uniformly
c.b. If X admits a complete approximating sequence, then XΛ enjoys the c.b. approximation
property.

(b) The difference sequence (∆Tk) of a sequence (Tk) is given by ∆T1 = T1 and ∆Tk = Tk −Tk−1

for k > 2. An approximating sequence (Tk) is unconditional if the operators

n∑

k=1

εk∆Tk with n > 1 and εk ∈ {−1, 1} (F.8)

are uniformly bounded on XΛ: then XΛ enjoys the unconditional approximation property.

(c) An approximating sequence (Tk) is completely unconditional if the operators in (F.8) are
uniformly c.b. on XΛ: then XΛ enjoys the complete unconditional approximation property.
The minimal uniform bound of these operators is the complete unconditional constant of XΛ.

We may always suppose that a complete approximating sequence on CΛ is a Fourier multiplier
sequence: see [36, Theorem 2.1]. We may also do so on LpΛ if L∞ has the so-called QWEP: see [45,
Theorem 4.4]. More precisely, the following proposition holds.
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Proposition 7.2. Let Γ be a discrete group and Λ ⊆ Γ . Let X either be its reduced C∗-algebra
or its noncommutative Lebesgue space Lp, where p ∈ [1,∞[ and L∞ has the QWEP. If XΛ enjoys
the completely unconditional approximation property with constant D, then, for every D′ > D,
there is a complete approximating sequence of Fourier multipliers (ϕk) that realises the completely
unconditional approximation property with constant D′: the Fourier multipliers

∑n
k=1 εk∆ϕk are

uniformly completely bounded by D′ on XΛ.

Let us now describe how to skip blocks in an approximating sequence in order to construct an
operator that acts like the Riesz projection on the sumset of two infinite sets. The following trick
will be used in the induction below: compare [61, proof of Theorem 4.2]:




1 1 0
0 1 0
0 0 0


−




1 1 0
1 1 0
1 1 0


+




1 1 1
1 1 1
1 1 1


 =




1 1 1
0 1 1
0 0 1




Lemma 7.3. Let Γ be a discrete group and Λ ⊆ Γ . Suppose that Λ contains the sumset RC of two
infinite sets R and C. Let (Tk) be either an approximating sequence on LpΛ with p ∈ [1,∞[, or an
approximating sequence of Fourier multipliers on CΛ. Let ε > 0. There is a sequence (ri) in R, a
sequence (ci) in C and there are indices l1 < k2 < l2 < k3 < . . . such that, for every n, the skipped
block sum

Un = Tl1 + (Tl2 − Tk2) + · · · + (Tln − Tkn) (F.9)

acts, up to ε, as the Riesz projection on the sumset {ricj}i,j6n:
{

‖Un(λricj ) − λricj‖ < ε if i 6 j 6 n,

‖Un(λricj )‖ < ε if j < i 6 n.
(F.10)

Proof. Let us construct the sequences and indices by induction. If n = 1, let r1 and c1 be arbitrary;
there is l1 such that ‖Tl1(λr1c1) − λr1c1‖ < ε. Suppose that r1, . . . , rn, c1, . . . , cn, l1, . . . , kn, ln have
been constructed. Let δ > 0 to be chosen later.

– The operator Un defined by Equation (F.9) has finite rank. If it is a Fourier multiplier, one
can choose an element rn+1 ∈ R such that Un(λrn+1cj ) = 0 for j 6 n. If it acts on LpΛ with
p ∈ [1,∞[, one can choose an element rn+1 ∈ R such that ‖Un(λrn+1cj )‖ < δ for j 6 n because
(λγ)γ∈Γ is weakly null in Lp.

– There is kn+1 > ln such that ‖Tkn+1(λγ) − λγ‖ < δ for γ ∈ {ricj : 1 6 i 6 n+ 1, 1 6 j 6 n}.

– Again, choose cn+1 ∈ C such that ‖(Un − Tkn+1)(λricn+1)‖ < δ for i 6 n+ 1.

– Again, choose ln+1 > kn+1 such that ‖Tln+1(λγ) − λγ‖ < δ for γ ∈ {ricj : 1 6 i, j 6 n+ 1}.

Let Un+1 = Un + (Tln+1 − Tkn+1). If i 6 n+ 1 and j 6 n, then

‖∆Un+1(λricj)‖ 6 ‖Tln+1(λricj) − λricj‖ + ‖λricj − Tkn+1(λricj )‖ < 2δ,

so that

‖Un+1(λricj) − λricj‖ < ε+ 2δ if i 6 j 6 n

‖Un+1(λricj)‖ < ε+ 2δ if j < i 6 n

‖Un+1(λrn+1cj )‖ < 3δ if j 6 n.

If i 6 n+ 1, then

‖Un+1(λricn+1) − λricn+1‖ 6 ‖(Un − Tkn+1)(λricn+1)‖ + ‖Tln+1(λricn+1) − λricn+1‖ < 2δ.

This shows that our choice of rn+1, cn+1, kn+1 and ln+1 is adequate if δ is small enough.

This construction will provide an obstacle to the unconditionality of sumsets.

Theorem 7.4. Let Γ be a discrete group and Λ ⊆ Γ . Suppose that Λ contains the sumset RC of
two infinite sets R and C.

(a) Let 1 < p < ∞. The complete unconditional constant of any approximating sequence for Lp is
bounded below by the norm of the Riesz projection on Sp, and thus by cscπ/p.

(b) The spaces L1
Λ and CΛ do not enjoy the complete unconditional approximation property.
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(c) If Γ is amenable, then the space CΛ does not enjoy the unconditional approximation property.

Proof. Let (Tk) be an approximating sequence on LpΛ. By Lemma 7.3, for every ε > 0 and every n,
there are elements r1, . . . , rn ∈ R, c1, . . . , cn ∈ C such that the Fourier multiplier ϕ given by
the indicator function of {ricj}i6j is near to a skipped block sum Un of (Tk) in the sense that
‖Un(λricj ) − ϕricjλricj‖ < ε. But Un is the mean of two operators of the form (F.8): its complete
norm will provide a lower bound for the complete unconditional constant of XΛ. Let us repeat the
argument of Lemma 2.3 with x ∈ Spn: as

∥∥∥
n∑

i,j=1

xi,j ei,j

∥∥∥
Spn

=
∥∥∥
( n∑

i=1

ei,i ⊗ λri

)( n∑

i,j=1

xi,j ei,j ⊗ λe

)( n∑

j=1

ej,j ⊗ λcj

)∥∥∥
Lp(tr ⊗τ)

=
∥∥∥
n∑

i=1

xi,j ei,j ⊗ λricj

∥∥∥
Lp(tr ⊗τ)

and ∥∥∥
n∑

i=1

xi,j ei,j ⊗ (Un(λricj ) − ϕricjλricj )
∥∥∥

Lp(tr ⊗τ)
< n2ε‖x‖Spn ,

the complete norm of Un is nearly bounded below by the norm of the Riesz projection on Spn:

∥∥∥
n∑

i=1

xi,j ei,j ⊗ Un(λricj )
∥∥∥

Lp(tr ⊗τ)
>
∥∥∥
∑

i6j

xi,j ei,j ⊗ λricj

∥∥∥
Lp(tr ⊗τ)

− n2ε‖x‖Spn

= ‖T (x)‖Spn − n2ε‖x‖Spn .

This proves as well (a) as the first assertion in (b), because the Riesz projection is unbounded on S1.
Let (Tk) be an approximating sequence on CΛ: by Lemma 7.2, we may suppose that (Tk) is a
sequence of Fourier multipliers. Thus the second assertion in (b) follows from Lemma 7.3 combined
with the preceding argument (where Spn is replaced by S∞

n and Lp(tr ⊗τ) by S∞
n ⊗ C) and the

unboundedness of the Riesz projection on S∞. For (c), note that the Fourier multipliers Tk are
automatically c.b. on CΛ if Γ is amenable [25, Corollary 1.8].

Theorem 7.4 (b) has been devised originally to prove that the Hardy space H1, corresponding
to the case Λ = N ⊆ Z and p = 1, admits no completely unconditional basis: see [84, 85]. Theo-
rem 7.4 (c) both generalises the fact that a sumset cannot be a Sidon set (see [54, §§ 1.4, 6.6] for two
proofs and historical remarks, or [51, Proposition IV.7]) and Daniel Li’s result [50, Corollary 13]
that the space CΛ does not have the “metric” unconditional approximation property if Γ is abelian
and Λ contains a sumset. Li [50, Theorem 10] also constructed a set Λ ⊆ Z such that CΛ has this
property while Λ contains the sumset of arbitrarily large sets. This theorem also provides a new
proof that the disc algebra has no unconditional basis and answers [64, Question 6.1.6].

Example 7.5. Neither the span of products {rirj} of two Rademacher functions in the space of
continuous functions on {−1, 1}∞ nor the span of products {sisj} of two Steinhaus functions in the
space of continuous functions on T∞ have an unconditional basis.

8 Relative Schur multipliers of rank one

Let ̺ be an elementary Schur multiplier on S∞, that is,

̺ = x⊗ y = (xryc)(r,c)∈R×C :

then its norm is supr∈R|xr | supc∈C |yc|. How is this norm affected if ̺ is only partially specified, that
is, if the action of ̺ is restricted to matrices with a given support?

Theorem 8.1. Let I ⊆ R × C and consider (xr)r∈R and (yc)c∈C. The relative Schur multiplier
on S∞

I given by (xryc)(r,c)∈I has norm sup(r,c)∈I |xryc|.

Note that the norm of (xryc)(r,c)∈I is bounded by supr∈R|xr | supc∈C |yc| because the matrix (xryc)(r,c)∈R×C

trivially extends (xryc)(r,c)∈I ; the proof below provides a constructive nontrivial extension of this
Schur multiplier that is a composition of ampliations of the Schur multiplier in the following lemma.
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Lemma 8.2. The Schur multiplier
(
z w
w z

)
has norm max(|z|, |w|) on S∞

2 .

Proof. This follows from the decomposition
(
z w
w z

)
=

|z| + |w|
2

(
t̄u
tū

)
⊗
(
tu tu

)
+

|z| − |w|
2

(
t̄u

−tū

)
⊗
(
tu −tu

)
,

where t, u ∈ T are chosen so that z = |z|t2 and w = |w|u2.

Proof of Theorem 8.1. We may suppose that C is the finite set {1, . . . ,m} and that R is the finite
set {1, . . . , n}, that each yc is nonzero and that each row in R contains an element of I. We may
also suppose that (|xr |)r∈R and (|yc|)c∈C are nonincreasing sequences. For each r ∈ R let cr be the
least column index of elements of I in or above row r: in other words,

cr = min
r′6r

min{c : (r′, c) ∈ I}.

The sequence (cr)r∈R is nonincreasing. Let us define its inverse (rc)c∈C in the sense that rc 6 r ⇔
cr 6 c: for each c ∈ C let rc = min{r : cr 6 c}. Given r, let r′ 6 r be such that (r′, cr) ∈ I: then
|xrycr | 6 |xr′ycr |, so that supr∈R|xrycr | 6 sup(r,c)∈I |xryc| and the rank 1 Schur multiplier

̺0 = (xrycr)(r,c)∈R×C

with pairwise equal columns is bounded by sup(r,c)∈I |xryc| on S∞
n . We will now “correct” ̺0 without

increasing its norm so as to make it an extension of (xryc)(r,c)∈I . Let r ∈ R and c′ > cr: then

xryc′ = xrycr
ycr+1

ycr
· · · yc′

yc′−1
= xrycr

∏

cr6c6c′−1

yc+1

yc

= xrycr
∏

r>rc
c′>c+1

yc+1

yc
.

This shows that it suffices to compose the Schur multiplier ̺0 with the m−1 rank 2 Schur multipliers
with block matrix

̺c =




1 ··· c c+1 ··· m

1

...

rc−1

(
yc+1

yc

)
1

rc
...

n

1
yc+1

yc



,

each of which has norm 1 on S∞
n by Lemma 8.2.

Remark 8.3. As an illustration, let C = R = {1, ..., n} and I = {(r, c) : r > c}, and let ai be
an increasing sequence of positive numbers. Take xr = ar and yc = 1/ac. Then the relative
Schur multiplier (ar/ac)r6c has norm 1. The above proof actually constructs the norm 1 extension
(min(ar/ac, ac/ar))(r,c). If we put ai = exi , we recover that (e−|xr−xc|)(r,c) is positive definite, that
is, |·| is a conditionally negative function on R.
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Chapter G

The Sidon constant of sets with

three elements

We solve an elementary extremal problem on trigonometric polynomials and obtain the
exact value of the Sidon constant for sets with three elements {n0, n1, n2}: it is

sec (π gcd(n1 − n0, n2 − n0)/2max |ni − nj |) .

1 Introduction

Let Λ = {λ0, λ1, λ2} be a set of three frequencies and ̺0, ̺1, ̺2 three positive intensities. We solve
the following extremal problem:

(†)
To find ϑ0, ϑ1, ϑ2 three phases such that, putting cj = ̺j e

iϑj , the maximum maxt |c0e iλ0t +
c1e iλ1t + c2e iλ2t| is minimal.

This enables us to generalise a result of D. J. Newman. He solved the following extremal problem
for Λ = {0, 1, 2}:

(‡) To find f(t) = c0e iλ0t + c1e iλ1t + c2e iλ2t with ‖f‖∞ = maxt |f(t)| 6 1 such that ‖f̂‖1 =
|c0| + |c1| + |c2| is maximal.

Note that for such an f , ‖f̂‖1 is the Sidon constant of Λ. Newman’s argument is the following
(see [93, Chapter 3]): by the parallelogram law,

max
t

|f(t)|2 = max
t

|f(t)|2 ∨ |f(t+ π)|2

> max
t

(
|f(t)|2 + |f(t+ π)|2

)
/2

= max
t

(
|c0 + c1e it + c2e i2t|2 + |c0 − c1e it + c2e i2t|2

)
/2

= max
t

|c0 + c2e i2t|2 + |c1|2 =
(
|c0| + |c2|

)2
+ |c1|2

>
(
|c0| + |c1| + |c2|

)2
/2

and equality holds exactly for multiples and translates of f(t) = 1 + 2ie it + e i2t.
Let us describe this paper briefly. We use a real-variable approach: Problem (†) reduces to

studying a function of form

Φ(t, ϑ) = |1 + re iϑe ikt + se ilt|2 for r, s > 0, k 6= l ∈ Z∗

and more precisely Φ∗(ϑ) = maxt Φ(t, ϑ). We obtain the variations of Φ∗: the point is that we find
“by hand” a local minimum of Φ∗ and that any two minima of Φ∗ are separated by a maximum
of Φ∗, which corresponds to an extremal point of Φ and therefore has a handy description. The
solution to Problem (‡) then turns out to derive easily from this.

The initial motivation was twofold. In the first place, we wanted to decide whether sets Λ = {λn}
such that λn+1/λn is bounded by some q may have a Sidon constant arbitrarily close to 1 and to
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find evidence among sets with three elements. That there are such sets, arbitrarily large but finite,
may in fact be proven by the method of Riesz products in [47, Appendix V, §1.II]. In the second
place, we wished to show that the real and complex unconditionality constants are distinct for basic
sequences of characters e int; we prove however that they coincide in the space C (T) for sequences
with three terms.

Notation. T = { z ∈ C : |z| = 1 } and eλ(z) = zλ for z ∈ T and λ ∈ Z.

2 Definitions

Definition 2.1. (1) Let Λ ⊆ Z. Λ is a Sidon set if there is a constantC such that for all trigonometric
polynomials f(t) =

∑
λ∈Λ cλe iλt with spectrum in Λ we have

‖f̂‖1 =
∑

λ∈Λ

|cλ| 6 C max
t

|f(t)| = ‖f‖∞.

The optimal C is called the Sidon constant of Λ.
(2) Let X be a Banach space. The sequence (xn) ⊆ X is a real (vs. complex) unconditional basic

sequence in X if there is a constant C such that
∥∥∥
∑

ϑncnxn

∥∥∥
X

6 C
∥∥∥
∑

cnxn

∥∥∥
X

for every real (vs. complex) choice of signs ϑn ∈ {−1, 1} (vs. ϑn ∈ T) and every finitely supported
family of coefficients (cn). The optimal C is the real (vs. complex) unconditionality constant of (xn)
in X .

Let us state the two following well known facts.

Proposition 2.2. (1) The Sidon constant of Λ is the complex unconditionality constant of the
sequence of functions (eλ)λ∈Λ in the space C (T).

(2) The complex unconditionality constant is at most π/2 times the real unconditionality constant.

Proof. (1) holds because
∥∥∑ϑλcλeλ

∥∥
∞

=
∑ |cλ| for ϑλ = cλ/|cλ|.

(2) Because the complex unconditionality constant of the sequence (ǫn) of Rademacher functions
in C ({−1, 1}∞) is π/2 (see [92]),

sup
ϑn∈T

∥∥∥
∑

ϑncnxn

∥∥∥
X

= sup
x∗∈BX∗

sup
ϑn∈T

sup
ǫn=±1

∣∣∣
∑

ϑncn〈x∗, xn〉ǫn
∣∣∣

6 π/2 sup
x∗∈BX∗

sup
ǫn=±1

∣∣∣
∑

cn〈x∗, xn〉ǫn
∣∣∣

= π/2 sup
ǫn=±1

∥∥∥
∑

ǫncnxn

∥∥∥
X
.

Furthermore the real unconditionality constant of (ǫn) in C ({−1, 1}∞) is 1: therefore the factor π/2
is optimal.

Let us straighten out the expression of the Sidon constant. For

f(t) = c0e iλ0t + c1e iλ1t + c2e iλ2t, cj = ̺j e
iϑj ,

the supremum norm ‖f‖∞ of f is equal to

‖̺0 + ̺1e iϑeλ1−λ0 + ̺2eλ2−λ0 ‖∞, ϑ =
λ1 − λ2

λ2 − λ0
ϑ0 + ϑ1 +

λ0 − λ1

λ2 − λ0
ϑ2 (G.1)

and therefore the Sidon constant C of Λ = {λ0, λ1, λ2} may be written

C = max
r,s>0,ϑ

(1 + r + s)/‖1 + re iϑek + sel‖∞ with
{
k = λ1 − λ0

l = λ2 − λ0.
(G.2)

By change of variables, we may suppose w.l.o.g. that k and l are coprime.
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3 A solution to Extremal problem (†)

Let us first establish

Lemma 3.1. Let λ1, . . . , λk ∈ Z∗ and ̺1, . . . , ̺k > 0. Let

f(t, ϑ) = 1 + ̺1e i(λ1t+ϑ1) + · · · + ̺k−1 e i(λk−1t+ϑk−1) + ̺ke iλkt

and Φ(t, ϑ) = |f(t, ϑ)|2. The critical points (t, ϑ) such that ∇Φ(t, ϑ) = 0 satisfy either f(t, ϑ) = 0
or λ1t+ ϑ1 ≡ · · · ≡ λk−1t+ ϑk−1 ≡ λkt ≡ 0 mod π.

Proof. As Φ = (ℜf)2 + (ℑf)2, the critical points (t, ϑ) satisfy
{

ℜ∂f
∂t (t, ϑ) ℜf(t, ϑ) + ℑ∂f

∂t (t, ϑ) ℑf(t, ϑ) = 0
− sin(λit+ ϑi) ℜf(t, ϑ) + cos(λit+ ϑi) ℑf(t, ϑ) = 0 (1 6 i 6 k − 1),

which simplifies to

− sin(λit+ ϑi) ℜf(t, ϑ) + cos(λit+ ϑi) ℑf(t, ϑ) = 0 (1 6 i 6 k, ϑk = 0).

Suppose that f(t, ϑ) 6= 0: then the system above implies that

− sin(λit+ ϑi) cos(λjt+ ϑj) + cos(λit+ ϑi) sin(λjt+ ϑj) = 0 (1 6 i, j 6 k, ϑk = 0)

and it simplifies therefore to

sin(λit+ ϑi) = 0 (1 6 i 6 k, ϑk = 0).

The following result is the core of the paper.

Lemma 3.2. Let r, s > 0, k, l ∈ Z∗ distinct and coprime. Let

Φ(t, ϑ) = |1 + re iϑe ikt + se ilt|2
= 1 + r2 + s2 + 2r cos(kt+ ϑ) + 2s cos lt+ 2rs cos((l − k)t− ϑ).

Let Φ∗(ϑ) = maxt Φ(t, ϑ). Then Φ∗ is an even function with period 2π/|l| that decreases on [0, π/|l|].
Therefore minϑ Φ∗(ϑ) = Φ∗(π/l).

Proof. Φ∗ is continuous (see [80, Chapter 5.4]) and even, as Φ(t,−ϑ) = Φ(−t, ϑ). Φ∗ is (2π/|l|)-
periodical: let j ∈ Z be such that jk ≡ 1 mod. l. Then

Φ(t+ 2jπ/l, ϑ) = |1 + re i(ϑ+2πjk/l) e ikt + se ilt|2 = Φ(t, ϑ+ 2π/l).

Thus Φ∗ attains its minimum on [0, π/|l|]. Furthermore, we have

Φ(−t− 2jπ/l, π/l− ϑ) = Φ(t+ 2jπ/l,−π/l+ ϑ) = Φ(t, π/l + ϑ),

so that Φ∗ has an extremum at π/l. Now

Φ∗(π/l + ϑ) = Φ∗(π/l) + |ϑ| max
Φ(t,π/l)=Φ∗(π/l)

∣∣∣∂Φ

∂ϑ
(t, π/l)

∣∣∣+ o(ϑ).

Choose a t such that Φ(t, π/l) = Φ∗(π/l). If ∂Φ/∂ϑ(t, π/l) 6= 0, then this shows that Φ∗ has a
local minimum and a cusp at π/l. Let us now suppose that ∂Φ/∂ϑ(t, π/l) = 0. If Φ∗ had a local
maximum at π/l, then (t, π/l) would be a critical point of Φ, so that by Lemma 3.1 cos(kt+π/l) = δ,
cos lt = ǫ, cos((l− k)t−π/l) = δǫ for some δ, ǫ ∈ {−1, 1}. One necessarily would have (δ, ǫ) 6= (1, 1).
Furthermore,

∂2Φ

∂ϑ2
(t, π/l) = −2rδ(1 + sǫ) 6 0

∣∣∣∣
∂2Φ/∂t2 ∂2Φ/∂t∂ϑ
∂2Φ/∂ϑ∂t ∂2Φ/∂ϑ2

∣∣∣∣ (t, π/l) = 4rsl2(δǫ+ rǫ+ sδ) > 0,

which would imply ǫ = −1, r = 0, s = 1. Therefore Φ∗ has a local minimum at π/l. Let us
show that then Φ∗ must decrease on [0, π/|l|]. Otherwise there are 0 6 ϑ0 < ϑ1 6 π/|l| such that
Φ∗(ϑ1) > Φ∗(ϑ0). As π/|l| is a local minimum, there is a ϑ0 < ϑ∗ < π/|l| such that

Φ∗(ϑ∗) = max
ϑ06ϑ6π/|l|

Φ∗(ϑ) = max
06t<2π

ϑ06ϑ6π/|l|

Φ(t, ϑ),

i.e., there further is some t∗ such that Φ has a local maximum at (t∗, ϑ∗). But then kt∗+ϑ∗ ≡ lt∗ ≡ 0
mod π and ϑ∗ ≡ 0 mod π/l and this is false.
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By Computation (G.1) and Lemma 3.2, we obtain

Theorem 3.3. Let λ0, λ1, λ2 ∈ R and ̺0, ̺1, ̺2 > 0. The solution to Extremal problem (†) is the
following.

– If the smallest additive group containing λ1 −λ0 and λ2 −λ0 is dense in R, then the maximum
is independent of the phases ϑ0, ϑ1, ϑ2 and makes ̺0 + ̺1 + ̺2.

– Otherwise let d = gcd(λ1 − λ0, λ2 − λ0) be a generator of this group. Then the sought phases
ϑ0, ϑ1, ϑ2 are given by

ϑ0(λ2 − λ1) + ϑ1(λ0 − λ2) + ϑ2(λ1 − λ0) ≡ dπ mod 2dπ.

In particular, these phases may be chosen among 0 and π.

4 A solution to Extremal problem (‡)

There are two cases where one can make explicit computations by Lemma 3.2.

Example 4.1. The real and complex unconditionality constant of {0, 1, 2} in C (T) is
√

2. Indeed, a
case study shows that

‖1 + ire1 + se2‖∞ =

{
r + |s− 1| if r|s− 1| > 4s

(1 + s)(1 + r2/4s)1/2 if r|s− 1| 6 4s

and this permits to compute the maximum (G.2), which is obtained for r = 2, s = 1. This yields
another proof to Newman’s result presented in the Introduction.

Example 4.2. The real and complex unconditionality constant of {0, 1, 3} in C (T) is 2/
√

3. Indeed,
a case study shows that ‖1 + re iπ/3e1 + se3‖∞ makes

{
1 + r − s if s 6 r/(4r + 9)(

2
27s(r

2 + 9 + 3r/s)3/2 − 2
27r

3s+ 2
3r

2 + rs + s2 + 1
)1/2

if s > r/(4r + 9)

and this permits to compute the maximum (G.2), which is obtained exactly at r = 3/2, s = 1/2.

These examples are particular cases of the following theorem.

Theorem 4.3. Let λ0, λ1, λ2 ∈ Z be distinct. Then the Sidon constant of Λ = {λ0, λ1, λ2} is
sec(π/2n), where n = max |λi − λj |/ gcd(λ1 − λ0, λ2 − λ0).

Proof. We may suppose λ0 < λ1 < λ2. Let k = (λ1 − λ0)/ gcd(λ1 − λ0, λ2 − λ0) and l = (λ2 − λ0)/
gcd(λ1 −λ0, λ2 −λ0). By Lemma 3.2, the Arithmetic-Geometric Mean Inequality bounds the Sidon
constant C of {0, k, l} in the following way:

C = max
r,s>0

1 + r + s

‖1 + re iπ/lek + sel‖∞
6 max

r,s>0

1 + r + s

|1 + re iπ/l + s|

= max
r,s>0

(
1 − sin2 π

2l

4r(1 + s)

(1 + r + s)2

)−1/2

6
(
1 − sin2(π/2l)

)−1/2
= sec(π/2l).

This inequality is sharp: we have equality for s = k/(l − k) and r = 1 + s. In fact the derivative of
|1 + re iπ/le ikt + se ilt|2 is then

8kl

k − l
cos

kt+ π/l

2
sin

lt

2
cos

(l − k)t− π/l

2
,

so that its critical points are

2j + 1

k
π − π

kl
,

2j

l
π,

2j + 1

l − k
π +

π

l(l − k)
: j ∈ Z,

where it makes

4s2 sin2 2j + 1 + l

2k
π, 4r2 cos2 2j + 1

2l
π, 4 cos2 2j + 1 + k

2(l − k)
π : j ∈ Z.

Therefore the maximum of |1 + re iπ/le ikt + se ilt| is 2r cos(π/2l).
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This proof and (G.1) yield also the more precise

Proposition 4.4. Let Λ = {λ0, λ1, λ2} ⊆ Z. The solution to Extremal problem (‡) is a multiple of

f(t) = ǫ0 |λ1 − λ2| e iλ0t + ǫ1 |λ0 − λ2| e iλ1t + ǫ2 |λ0 − λ1| e iλ2t

with ǫ0, ǫ1, ǫ2 ∈ {−1, 1} real signs such that

– ǫ0ǫ1 = −1 if 2j | λ1 − λ0 and 2j ∤ λ2 − λ0 for some j;

– ǫ0ǫ2 = −1 if 2j ∤ λ1 − λ0 and 2j | λ2 − λ0 for some j;

– ǫ1ǫ2 = −1 otherwise.

The Sidon constant of Λ is attained for this f . Therefore the complex and real unconditionality
constants of {eλ}λ∈Λ in C (T) coincide for sets Λ with three elements.

5 Some consequences

Let us underline the following consequences of our computation.

Corollary 5.1. (1) The Sidon constant of sets with three elements is at most
√

2.

(2) The Sidon constant of {0, n, 2n} is
√

2, while the Sidon constant of {0, n+ 1, 2n} is at most
sec(π/2n) = 1 + π2/8n2 + o(n−2) and thus arbitrarily close to 1.

(3) The Sidon constant of {λ0 < λ1 < λ2} does not depend on λ1 but on the g.c.d. of λ1 −λ0 and
λ2 − λ0.

Theorem 4.3 also shows anew that no set of integers with more than two elements has Sidon
constant 1 (see [93, p. 21] or [21]). Recall now that Λ = {λn} ⊆ Z is a Hadamard set if there is
a q > 1 such that |λn+1/λn| > q for all n. By [63, Cor. 9.4], the Sidon constant of Λ is at most
1 + π2/(2q2 − 2 − π2) if q >

√
π2/2 + 1 ≈ 2.44. On the other hand Theorem 4.3 shows

Corollary 5.2. (1) If there is an integer q > 2 such that Λ ⊇ {λ, λ+µ, λ+ qµ} for some integers
λ and µ, then the Sidon constant of Λ is at least

sec(π/2q) > 1 + π2/(8q2).

(2) In particular, we have the following bounds for the Sidon constant C of the set Λ = {qk},
q ∈ Z \ {0,±1,±2}:

1 +
π2

8 max(−q, q + 1)2
< C 6 1 +

π2

2q2 − 2 − π2
.

6 Three questions

(a) Is there a set Λ for which the real and complex unconditionality constants of {eλ}λ∈Λ in C (T)
differ? The same question is open in spaces Lp(T), 1 6 p < ∞, and even for the case of three
element sets if p is not a small even integer, and especially for the set {0, 1, 2, 3} in any space
but L2(T).

(b) Let q > 1. Are there infinite sets Λ = {λn} such that |λn+1/λn| 6 q with Sidon constant arbi-
trarily close to 1? What about the sequence of integer parts of the powers of a transcendental
number σ > 1 (see [63, Cor. 2.10, Prop. 3.2])?

(c) The only set with more than three elements with known Sidon constant is {0, 1, 2, 3, 4}, for
which it makes 2 (see [93, Chapter 3]). Can one compute the Sidon constant of sets with four
elements? I conjecture that the Sidon constant of {0, 1, 2, 3} is 5/3.
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Chapter H

The maximum modulus of a

trigonometric trinomial

Let Λ be a set of three integers and let CΛ be the space of 2π-periodic functions with
spectrum in Λ endowed with the maximum modulus norm. We isolate the maximum
modulus points x of trigonometric trinomials T ∈ CΛ and prove that x is unique unless
|T | has an axis of symmetry. This enables us to compute the exposed and the extreme
points of the unit ball of CΛ, to describe how the maximum modulus of T varies with
respect to the arguments of its Fourier coefficients and to compute the norm of unimo-
dular relative Fourier multipliers on CΛ. We obtain in particular the Sidon constant of
Λ.

1 Introduction

Let λ1, λ2 and λ3 be three pairwise distinct integers. Let r1, r2 and r3 be three positive real
numbers. Given three real numbers t1, t2 and t3, let us consider the trigonometric trinomial

T (x) = r1e i(t1+λ1x) + r2e i(t2+λ2x) + r3 e i(t3+λ3x) (H.1)

for x ∈ R. The λ’s are the frequencies of the trigonometric trinomial T , the r’s are the moduli or
intensities and the t’s the arguments or phases of its Fourier coefficients r1e it1 , r2 e it2 and r3 e it3 .

−1

−e iπ/3

Figure H.1: The unit circle, the hypotrochoid H with equation z = 4e−i2x + e ix, the segment from
−1 to the unique point on H at maximum distance and the segments from −e iπ/3 to the two points
on H at maximum distance.

The maximum modulus of a trigonometric trinomial has an interpretation in plane geometry.
Without loss of generality, we may assume that λ2 is between λ1 and λ3. Let H be the curve with
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complex equation

z = r1 e i(t1−(λ2−λ1)x) + r3e i(t3+(λ3−λ2)x) (−π < x 6 π). (H.2)

H is a hypotrochoid: it is drawn by a point at distance r3 to the centre of a circle with radius
r1|λ2 −λ1|/|λ3 −λ2| that rolls inside another circle with radius r1|λ3 −λ1|/|λ3 −λ2|. The maximum
modulus of (H.1) is the maximum distance of points z ∈ H to a given point −r2e it2 of the complex
plane. If λ3 − λ2 = λ2 − λ1, then H is the ellipse with centre 0, half major axis r1 + r3 and half
minor axis |r1 − r3|. Note that an epitrochoid (Ptolemy’s epicycle) amounts also to a hypotrochoid.
Figure H.1 illustrates the particular case T (x) = 4e−i2x + e it + e ix.

We deduce an interval on which T attains its maximum modulus independently of the moduli
of its Fourier coefficients (see Theorem 7.1 (a) for a detailed answer.) We prove in particular the
following result.

Theorem 1.1. Let d = gcd(λ2 − λ1, λ3 − λ2) and let τ be the distance of

λ2 − λ3

d
t1 +

λ3 − λ1

d
t2 +

λ1 − λ2

d
t3 (H.3)

to 2πZ. The trigonometric trinomial T attains its maximum modulus at a unique point modulo
2π/d, with multiplicity 2, unless τ = π.

Theorem 1.1 shows that if there are two points of the hypotrochoid H at maximum distance to
−r2e it2 , it is so only because −r2e it2 lies on an axis of symmetry of H .

We obtain a precise description of those trigonometric trinomials that attain their maximum
modulus twice modulo 2π/d: see Theorem 7.1 (c). Their rôle becomes clear by the following result
in convex geometry: they yield the exposed points of the unit ball of the ambient normed space.
Let us first put up the proper functional analytic framework. Let Λ = {λ1, λ2, λ3} be the spectrum
of the trigonometric trinomial T and write eλ : x 7→ e iλx. Let CΛ be the space of functions spanned
by {eλ : λ ∈ Λ}, endowed with the maximum modulus norm. Recall that a point P of a convex set
K is exposed if there is a hyperplane that meets K only in P ; P is extreme if it is not the midpoint
of any two other points of K.

Theorem 1.2. Let K be the unit ball of the space CΛ and let P ∈ K.

(a) The point P is an exposed point of K if and only if P is either a trigonometric monomial
e iαeλ with α ∈ R and λ ∈ Λ or a trigonometric trinomial that attains its maximum modulus,
1, at two points modulo 2π/d. Every linear functional on CΛ attains its norm on an exposed
point of K.

(b) The point P is an extreme point of K if and only if P is either a trigonometric monomial
e iαeλ with α ∈ R and λ ∈ Λ or a trigonometric trinomial such that 1 − |P |2 has four zeroes
modulo 2π/d, counted with multiplicities.

We describe the dependence of the maximum modulus of the trigonometric trinomial T on the
arguments. The general issue has been studied for a long time; [52, 90] are two early references. In
particular, the following problem has been addressed: see [26, page 2 and Supplement].

Extremal problem 1.3 (Complex Mandel′shtam problem). To find the minimum of the maximum
modulus of a trigonometric polynomial with given Fourier coefficient moduli.

It appeared originally in electrical circuit theory: “L. I. Mandel′shtam communicated to me a
problem on the phase choice of electric currents with different frequencies such that the capacity of
the resulting current to blow [the circuit] is minimal”, tells N. G. Chebotarëv in [24, p. 396], where
he discusses applications of a formula given in Section 9 that we would like to advertise.

Our main theorem solves an elementary case of the complex Mandel′shtam problem.

Theorem 1.4. The maximum modulus of T as defined in (H.1) is a strictly decreasing function of
τ as defined in Theorem 1.1. In particular,

min
t1,t2,t3

max
x

∣∣r1e i(t1+λ1x) + r2e i(t2+λ2x) + r3 e i(t3+λ3x)
∣∣

= max
x

∣∣ǫ1r1e iλ1x + ǫ2r2e iλ2x + ǫ3r3e iλ3x
∣∣

if ǫ1, ǫ2 and ǫ3 are real signs +1 or −1 such that ǫiǫj = −1, where i, j, k is a permutation of 1, 2, 3
such that the power of 2 in λi − λj is greater than the power of 2 in λi − λk and in λk − λj.
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This shows that the maximum modulus is minimal when the phases are chosen in opposition,
independently of the intensities r1, r2 and r3.

The decrease of the maximum modulus of (H.1) may be bounded as shown in the next result.

Theorem 1.5. Let d and τ be defined as in Theorem 1.1. Suppose that λ2 is between λ1 and λ3.
The quotient of the maximum modulus of T by

∣∣r1 + r2e iτd/|λ3−λ1| + r3

∣∣ is a strictly increasing
function of τ unless r1 : r3 = |λ3 − λ2| : |λ2 − λ1|, in which case it is constantly equal to 1.

When r1 : r3 = |λ3 − λ2| : |λ2 − λ1|, the hypotrochoid H with equation (H.2) is a hypocycloid
with |λ3 − λ1|/d cusps: the rolling point is on the rolling circle. Note that an epicycloid amounts
also to an hypocycloid. Figure H.2 illustrates the particular case T (x) = (1/3)e−i2x+ e it+(2/3)e ix.

−1

−e iπ/3

Figure H.2: The unit circle, the deltoid H with equation z = (1/3)e−i2x + (2/3)e ix, the segment
from −1 to the unique point on H at maximum distance and the segments from −e iπ/3 to the two
points on H at maximum distance.

We may deduce from Theorem 1.5 a less precise but handier inequality.

Theorem 1.6. Let d and τ be defined as in Theorem 1.1. Let

D =
max(|λ2 − λ1|, |λ3 − λ2|, |λ3 − λ1|)

gcd(λ2 − λ1, λ3 − λ1)
(H.4)

be the quotient of the diameter of Λ by d. Let t′1, t′2 and t′3 be another three real numbers and define
correspondingly τ ′. If τ > τ ′, then

max
x

∣∣r1e i(t1+λ1x) + r2e i(t2+λ2x) + r3e i(t3+λ3x)
∣∣

>
cos(τ/2D)

cos(τ ′/2D)
max
x

∣∣r1e i(t′1+λ1x) + r2 e i(t′2+λ2x) + r3e i(t′3+λ3x)
∣∣

with equality if and only if r1 : r2 : r3 = |λ3 − λ2| : |λ3 − λ1| : |λ2 − λ1|.

Figure H.3 illustrates the inequalities obtained in Theorems 1.5 and 1.6 for the particular case
T (x) = 4e−i2x + e it + e ix, as in Figure H.1.

If we choose τ ′ = 0 in Theorem 1.6, we get the solution to an elementary case of the following
extremal problem.

Extremal problem 1.7. To find the minimum of the maximum modulus of a trigonometric poly-
nomial with given spectrum, Fourier coefficient arguments and moduli sum.

Theorem 1.8. Let τ be defined as in Theorem 1.1 and D be given by (H.4). Then

maxx
∣∣r1 e i(t1+λ1x) + r2e i(t2+λ2x) + r3e i(t3+λ3x)

∣∣
r1 + r2 + r3

> cos(τ/2D)

with equality if and only if τ = 0 or r1 : r2 : r3 = |λ3 − λ2| : |λ3 − λ1| : |λ2 − λ1|.
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0

m

5 t
π/3

m = max
x

|4e −i2x + e it + e ix|

m = |4 + e it + 1|

m = (4 + 1 + 1) cos(t/2)

Figure H.3: Let H be the hypotrochoid with equation z = 4e−i2x + e ix. This plot shows the
maximum distance m of points z ∈ H to the point −e it and the two estimates of this maximum
distance provided by Theorems 1.5 and 1.6 for t ∈ [0, π/3].

The dependence of the maximum modulus of (H.1) on the arguments may also be expressed as
properties of relative multipliers. Given three real numbers t1, t2 and t3, the linear operator on
CΛ defined by eλj 7→ e itj eλj is a unimodular relative Fourier multiplier : it multiplies each Fourier
coefficient of elements of CΛ by a fixed unimodular number; let us denote it by (t1, t2, t3). Consult
[40] for general background on relative multipliers.

Theorem 1.9. The unimodular relative Fourier multiplier (t1, t2, t3) has norm

cos
(
(π − τ)/2D

)/
cos(π/2D),

where τ is defined as in Theorem 1.1 and D is given by (H.4), and attains its norm exactly at
functions of the form

r1 e i(u1+λ1x) + r2e i(u2+λ2x) + r3e i(u3+λ3x)

with r1 : r2 : r3 = |λ3 − λ2| : |λ3 − λ1| : |λ2 − λ1| and

λ2 − λ3

d
u1 +

λ3 − λ1

d
u2 +

λ1 − λ2

d
u3 = π mod 2π.

The maximum of the norm of unimodular relative Fourier multipliers is the complex unconditional
constant of the canonical basis (eλ1 , eλ2 , eλ3 ) of CΛ. As

r1 + r2 + r3 = max
x

∣∣r1 e iλ1x + r2e iλ2x + r3e iλ3x
∣∣,

this constant is the minimal constant C such that

r1 + r2 + r3 6 C max
x

∣∣r1e i(u1+λ1x) + r2e i(u2+λ2x) + r3e i(u3+λ3x)
∣∣;

it is therefore the Sidon constant of Λ. It is also the solution to the following extremal problem.

Extremal problem 1.10 (Sidon constant problem). To find the minimum of the maximum mo-
dulus of a trigonometric polynomial with given spectrum and Fourier coefficient moduli sum.

Setting τ = π in Theorem 1.9, we obtain the following result.

Corollary 1.11. The Sidon constant of Λ is sec(π/2D), where D is given by (H.4). It is attained
exactly at functions of the form given in Theorem 1.9.

Finally, we would like to stress that each of the above results gives rise to open questions if the
set Λ is replaced by any set of four integers.

Let us now give a brief description of this article. In Sections 2 and 3, we use carefully the
invariance of the maximum modulus under rotation, translation and conjugation to reduce the
arguments t1, t2 and t3 of the Fourier coefficients of the trigonometric trinomial T to the variable
τ . Section 4 shows how to further reduce this study to the trigonometric trinomial

r1e−ikx + r2e it + r3e ilx (H.5)

with k and l positive coprime integers and t ∈ [0, π/(k+l)]. In Section 5, we prove that (H.5) attains
its maximum modulus for x ∈ [−t/k, t/l]. Section 6 studies the variations of the modulus of (H.5)
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for x ∈ [−t/k, t/l]: it turns out that it attains its absolute maximum only once on that interval.
This yields Theorem 1.1. Section 7 restates the results of the two previous sections for a general
trigonometric trinomial T . Section 8 is dedicated to the proof of Theorem 1.2. In Section 9, we
compute the directional derivative of the maximum modulus of (H.5) with respect to the argument
t and prove Theorems 1.4, 1.5, 1.6 and 1.8. In Section 10, we prove Theorem 1.9 and show how to
lift unimodular relative Fourier multipliers to operators of convolution with a linear combination of
two Dirac measures. Section 11 replaces our computation of the Sidon constant in a general context;
it describes the initial motivation for this research.

Part of these results appeared previously, with a different proof, in [64, Chapter II.10] and in
[62].

Notation. Throughout this article, λ1, λ2 and λ3 are three pairwise distinct integers, Λ = {λ1, λ2, λ3}
and d = gcd(λ2 − λ1, λ3 − λ2). If λ is an integer, eλ is the function x 7→ e iλx of the real variable
x. A trigonometric polynomial is a linear combination of functions eλ; it is a monomial, binomial
or trinomial if this linear combination has one, two or three nonzero coefficients, respectively. The
normed space CΛ is the three-dimensional space of complex functions spanned by eλ with λ ∈ Λ,
endowed with the maximum modulus norm. The Dirac measure δx is the linear functional T 7→ T (x)
of evaluation at x on the space of continuous functions. Given three real numbers t1, t2 and t3, the
linear operator on CΛ defined by eλj 7→ e itj eλj is a unimodular relative Fourier multiplier denoted
by (t1, t2, t3).

2 Isometric relative Fourier multipliers

The rôle of Quantity (H.3) is explained by the following lemma.

Lemma 2.1. Let t1, t2 and t3 be real numbers. The unimodular relative Fourier multiplier M = (t1,
t2, t3) is an isometry on CΛ if and only if

λ2 − λ3

d
t1 +

λ3 − λ1

d
t2 +

λ1 − λ2

d
t3 ∈ 2πZ. (H.6)

Then it is a unimodular multiple of a translation: there are real numbers α and v such that Mf(x) =
e iαf(x− v) for all f ∈ CΛ and all x ∈ R.

Proof. If M is a unimodular multiple of a translation by a real number v, then
∣∣r1e i(t1+λ1v) + r2e i(t2+λ2v) + r3 e i(t3+λ3v)

∣∣ = r1 + r2 + r3,

which holds if and only if

t1 + λ1v = t2 + λ2v = t3 + λ3v modulo 2π. (H.7)

There is a v satisfying (H.7) if and only if Equation (H.6) holds as (H.7) means that there exist
integers a1 and a3 such that

v =
t2 − t1 + 2πa1

λ1 − λ2
=
t2 − t3 + 2πa3

λ3 − λ2
.

If t1, t2 and t3 are three real numbers satisfying (H.6), let v be such that (H.7) holds. Then

r1e i(t1+u1+λ1x) + r2 e i(t2+u2+λ2x) + r3e i(t3+u3+λ3x)

= e i(t2+λ2v)
(
r1 e i(u1+λ1(x−v)) + r2 e i(u2+λ2(x−v)) + r3 e i(u3+λ3(x−v))

)

for all real numbers u1, u2, u3 and x.

3 The arguments of the Fourier coefficients of a trigonome-

tric trinomial

We have used a translation and a rotation to reduce the three arguments of the Fourier coefficients
of a trigonometric trinomial to just one variable. Use of the involution f(−x) of CΛ allows us to
restrict even further the domain of that variable.
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Lemma 3.1. Let t1, t2 and t3 be real numbers and let t̃2 be the representative of

λ2 − λ3

λ3 − λ1
t1 + t2 +

λ1 − λ2

λ3 − λ1
t3 (H.8)

modulo 2π/|λ3 − λ1| in
[
−πd/|λ3 − λ1|, πd/|λ3 − λ1|

[
.

(a) There are real numbers α and v such that

r1e i(t1+λ1x) + r2e i(t2+λ2x) + r3e i(t3+λ3x) = e iα
(
r1e iλ1(x−v) + r2e i(t̃2+λ2(x−v)) + r3e iλ3(x−v))

)

(H.9)
for all x.

(b) Let t = |t̃2| be the distance of (H.8) to (2πd/|λ3 − λ1|)Z. There is a sign ε ∈ {+1,−1} such
that
∣∣r1 e i(t1+λ1x) + r2e i(t2+λ2x) + r3e i(t3+λ3x)

∣∣ =
∣∣r1e iλ1ε(x−v) + r2e i(t+λ2ε(x−v)) + r3 e iλ3ε(x−v))

∣∣

for all x.

Proof. (a). The argument t̃2 is chosen so that the relative multiplier (t1, t2 − t̃2, t3) is an isometry.
(b). If t̃2 is negative, take the conjugate under the modulus of the right hand side in (H.9).

Remark 3.2. This proves the following periodicity formula:
∣∣r1e iλ1x + r2e i(t+2πd/(λ3−λ1)+λ2x) + r3 e iλ3x

∣∣ =
∣∣r1e iλ1(x−v) + r2 e i(t+λ2(x−v)) + r3e iλ3(x−v)

∣∣

for all x and t, where v satisfies λ1v = 2πd/(λ3 − λ1) + λ2v = λ3v modulo 2π, that is

v =
2mπ

λ3 − λ1
with m an inverse of

λ3 − λ2

d
modulo

λ3 − λ1

d
.

4 The frequencies of a trigonometric trinomial

We may suppose without loss of generality that λ1 < λ2 < λ3. Let k = (λ2 − λ1)/d and l =
(λ3 − λ2)/d. Then

r1e i(t1+λ1x) + r2 e i(t2+λ2x) + r3e i(t3+λ3x) = e iλ2x(r1e i(t1−k(dx)) + r2e it2 + r3 e i(t3+l(dx)))

This defines an isometry between CΛ and C{−k,0,l} and shows that CΛ is normed by the maximum
modulus norm on [0, 2π/d[. With Lemma 3.1 (b), this shows that a homothety by d−1 allows us to
restrict our study to the function

f(t, x) =
∣∣r1e−ikx + r2e it + r3e ilx

∣∣2

for x ∈ R with k and l two positive coprime numbers and t ∈
[
0, π/(k + l)

]
. We have

f(−t, x) = f(t,−x) (H.10)

and Remark 3.2 shows that

f
(
t+ 2π/(k + l), x

)
= f(t, x− 2mπ/(k + l)) (H.11)

for all x and t, where m is the inverse of l modulo k+ l. In particular, if t = π/(k+ l), we have the
symmetry relation

f
(
π/(k + l), x

)
= f

(
π/(k + l), 2mπ/(k + l) − x

)
. (H.12)

5 Location of the maximum point

The purpose of our first proposition is to deduce the existence of a small interval on which a
trigonometric trinomial attains its maximum modulus. Note that a trigonometric binomial attains
its maximum modulus at a point that depends only on the phase of its coefficients:

–
∣∣r1e−ikx + r2 e it

∣∣ attains its maximum at −t/k independently of r1 and r2,
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–
∣∣r1 e−ikx + r3 e ilx

∣∣ attains its maximum at 0 independently of r1 and r3,

–
∣∣r2 e it + r3 e ilx

∣∣ attains its maximum at t/l independently of r2 and r3.

The next proposition shows that if the point at which a trigonometric trinomial attains its maximum
modulus changes with the modulus of its coefficients, it changes very little; we get bounds for this
point that are independent of the intensities.

Proposition 5.1. Let k and l be positive coprime integers. Let r1, r2 and r3 be three positive real
numbers. Let t ∈

[
0, π/(k + l)

]
. Let

f(x) =
∣∣r1e−ikx + r2e it + r3e ilx

∣∣2

for x ∈ R.

(a) The function f attains its absolute maximum in the interval [−t/k, t/l].
(b) If f attains its absolute maximum at a point y outside of [−t/k, t/l] modulo 2π, then t =

π/(k+ l) and 2mπ/(k+ l)−y lies in [−t/k, t/l] modulo 2π, where m is the inverse of l modulo
k + l.

Proof. (a). We have

f(x) = r2
1 + r2

2 + r2
3 + 2·

(
r1r2 cos(t+ kx) + r1r3 cos

(
(k + l)x

)
+ r2r3 cos(t− lx)

)
. (H.13)

Let us prove that f attains its absolute maximum on [−t/k, t/l]. Let y be outside of [−t/k, t/l]
modulo 2π. Let I be the set of all x ∈ [−t/k, t/l] such that





cos(t+ kx) > cos(t+ ky)

cos
(
(k + l)x

)
> cos

(
(k + l)y

)

cos(t− lx) > cos(t− ly).

Note that if x ∈ [−t/k, t/l], then




t+ kx ∈ [0, (k + l)t/l]

(k + l)x ∈ [−(k + l)t/k, (k + l)t/l]

t− lx ∈ [0, (k + l)t/k],

and that (k + l)t/k, (k + l)t/l ∈ [0, π]. Let

– α be the distance of t/k + y to (2π/k)Z,

– β be the distance of y to
(
2π/(k + l)

)
Z,

– γ be the distance of t/l− y to (2π/l)Z.

Then
I = [−t/k, t/l] ∩ [−t/k − α,−t/k + α] ∩ [−β, β] ∩ [t/l − γ, t/l+ γ]. (H.14)

Let us check that I is the nonempty interval

I =
[
max(−t/k,−β, t/l− γ),min(t/l,−t/k+ α, β)

]
. (H.15)

In fact, we have the following triangular inequalities:

– −β 6 −t/k + α because t/k is the distance of (t/k + y) − y to (2π/k(k + l))Z;

– t/l− γ 6 −t/k + α because t/l+ t/k is the distance of (t/k + y) + (t/l − y) to (2π/kl)Z;

– t/l− γ 6 β because t/l is the distance of (t/l − y) + y to (2π/l(k + l))Z.

The other six inequalities that are necessary to deduce (H.15) from (H.14) are obvious.
(b). We have proved in (a) that there is an x ∈ [−t/k, t/l] such that cos(t + kx) > cos(t + ky),

cos
(
(k+ l)x

)
> cos

(
(k+ l)y

)
and cos(t− lx) > cos(t− ly). In fact, at least one of these inequalities

is strict unless there are signs δ, ε, η ∈ {−1, 1} such that t+ kx = δ(t + ky), t− lx = ε(t− ly) and
(k + l)x = η(k + l)y modulo 2π. Two out of these three signs are equal and the corresponding two
equations imply the third one with the same sign. This system is therefore equivalent to

{
k(x− y) = 0

l(x− y) = 0
or

{
k(x+ y) = −2t

l(x+ y) = 2t
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modulo 2π. The first pair of equations yields x = y modulo 2π because k and l are coprime. Let m
be an inverse of l modulo k + l; then the second pair of equations is equivalent to

{
2(k + l)t = 0

x+ y = 2mt

modulo 2π. Therefore g does not attain its absolute maximum at y unless t = π/(k + l) and
2mπ/(k + l) − y ∈ [−t/k, t/l].

Remark 5.2. This proposition is a complex counterpart to Lemma 2.1. i) in [83], where cosine
trinomials are investigated.

6 Uniqueness of the maximum point

Note that

r1e−ikx + r2e it + r3e ilx = r3e−il(−x) + r2 e it + r1 e ik(−x)

= r′
1e−ik′x′

+ r2e it + r′
3e il′x′

with r′
1 = r3, r′

3 = r1, k′ = l, l′ = k and x′ = −x. We may therefore suppose without loss of
generality that kr1 6 lr3.

Our second proposition studies the points at which a trigonometric trinomial attains its maximum
modulus. Note that if k = l = 1, the derivative of |f |2 has at most 4 zeroes, so that the modulus of
f has at most two maxima and attains its absolute maximum in at most two points. Proposition 6.1
shows that this is true in general, and that if it may attain its absolute maximum in two points, it
is so only because of the symmetry given by (H.12).

Proposition 6.1. Let k and l be positive coprime integers. Let r1, r2 and r3 be three positive real
numbers such that kr1 6 lr3. Let t ∈ ]0, π/(k + l)]. Let

f(x) =
∣∣r1e−ikx + r2e it + r3e ilx

∣∣2

for x ∈ [−t/k, t/l].
(a) There is a point x∗ ∈ [0, t/l] such that df/dx > 0 on ]−t/k, x∗[ and df/dx < 0 on ]x∗, t/l[.

(b) There are three cases:

1. f attains its absolute maximum at 0 if and only if kr1 = lr3;

2. f attains its absolute maximum at t/l if and only if l = 1, t = π/(k + 1) and k2r1r2 +
(k + 1)2r1r3 − r2r3 6 0;

3. otherwise, f attains its absolute maximum in ]0, t/l[.

(c) The function f attains its absolute maximum with multiplicity 2 unless l = 1, t = π/(k + 1)
and k2r1r2 +(k+1)2r1r3 −r2r3 = 0, in which case it attains its absolute maximum at π/(k+1)
with multiplicity 4.

Proof. (a). By Proposition 5.1, the derivative of f has a zero in [−t/k, t/l]. Let us study the sign
of this derivative. Equation (H.13) yields

1

2

df

dx
(x) = −kr1r2 sin(t+ kx) − (k + l)r1r3 sin

(
(k + l)x

)
+ lr2r3 sin(t− lx). (H.16)

We wish to compare sin(t+ kx) with sin(t− lx): note that

sin(t+ kx) − sin(t− lx) = 2 sin
(
(k + l)x/2

)
cos
(
t+ (k − l)x/2

)
,

and that if x ∈ [−t/k, t/l], then

−π/2 6 −π/2k 6 −(k + l)t/2k 6 (k + l)x/2 6 (k + l)t/2l 6 π/2l 6 π/2

0 6 t+ (k − l)x/2 6

{
t+ (l − k)t/2k = (k + l)t/2k if k 6 l

t+ (k − l)t/2l = (k + l)t/2l if l 6 k
6 π/2.
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Suppose that x ∈ [−t/k, 0[: then it follows that sin(t+kx) 6 sin(t−lx) and also sin
(
(k+l)x

)
6 0,

with equality if and only if k = 1 and −x = t = π/(1 + l). This yields with kr1 6 lr3 that

1

2

df

dx
(x) > −(k + l)r1r3 sin

(
(k + l)x

)
> 0 (H.17)

with equality if and only if k = 1 and −x = t = π/(1 + l).
Suppose that x ∈ [0, t/l]. If l > 2, then





t+ kx ∈ [t, (k + l)t/l] ⊂ [t, π/2]

(k + l)x ∈ [0, (k + l)t/l] ⊂ [t, π/2]

t− lx ∈ [0, t] ⊂ [0, π/3],

so that the second derivative of f is strictly negative on [0, t/l]: its derivative is strictly decreasing
on this interval and (a) is proved. If l = 1, let g(x) = f(t− x) for x ∈ [0, t]: we have to prove that
there is a point x∗ such that dg/dx > 0 on ]0, x∗[ and dg/dx < 0 on ]x∗, t[. We already know that
(dg/dx)(0) > 0 and that dg/dx has a zero on [0, t]. Put α = (k + 1)t: then

1

2

dg

dx
(x) = kr1r2 sin(α− kx) + (k + 1)r1r3 sin

(
α− (k + 1)x

)
− r2r3 sinx

and it suffices to prove that

1

2 sinx

dg

dx
(x) = kr1r2

sin(α− kx)

sinx
+ (k + 1)r1r3

sin
(
α− (k + 1)x

)

sinx
− r2r3 (H.18)

is a strictly decreasing function of x on ]0, α/(k + 1)]. Let us study the sign of

d

dx

sin(α− kx)

sinx
=

−k cos(α− kx) sin x− sin(α− kx) cosx

sin2 x

for α ∈ ]0, π] and x ∈ ]0, α/k]. If k = 1, then

−k cos(α− kx) sin x− sin(α− kx) cos x = − sinα 6 0

and the inequality is strict unless α = π. Let us prove by induction on k that

k cos(α− kx) sin x+ sin(α − kx) cosx > 0

for all k > 2, α ∈ ]0, π] and x ∈ ]0, α/k]. This will complete the proof of (a). Let k > 1 and x ∈ ]0,
α/(k + 1)]. Then

(k + 1) cos
(
α− (k + 1)x

)
sin x+ sin

(
α− (k + 1)x

)
cosx

= (k + 1) cos(α− kx) cos x sinx+ (k + 1) sin(α− kx) sin2 x

+ sin(α− kx) cos2 x− cos(α− kx) sin x cosx

=
(
k cos(α− kx) sin x+ sin(α− kx) cos x

)
cosx

+(k + 1) sin(α− kx) sin2 x

> (k + 1) sin(α− kx) sin2 x > 0

(b). 1. By Proposition 5.1 and (a), f attains its absolute maximum at 0 if and only if 0 is a
critical point for f . We have

1

2

df

dx
(0) = (lr3 − kr1)r2 sin t > 0

and equality holds if and only if kr1 = lr3.
2. We have

1

2

df

dx
(t/l) =

(
−kr1r2 − (k + l)r1r3

)
sin
(
(k + l)t/l

)
6 0

and equality holds if and only if l = 1 and t = π/(k+ 1). Let l = 1 and t = π/(k+ 1) and let us use
the notation introduced in the last part of the proof of (a): we need to characterise the case that g
has a maximum at 0. As α = π and

1

2 sinx

dg

dx
(x) = k2r1r2 + (k + 1)2r1r3 − r2r3 + o(x) (H.19)
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is a strictly decreasing function of x on ]0, π/(k+ 1)], g has a maximum at 0 if and only if k2r1r2 +
(k + 1)2r1r3 − r2r3 6 0.

(c). If l > 2, then the second derivative of f is strictly negative on [0, t/l]. If l = 1, then the
derivative of (H.18) is strictly negative on ]0, α/(k + 1)]: this yields that the second derivative of g
can only vanish at 0. By (b) 2., g has a maximum at 0 only if t = π/(k + 1); then

1

2

d2g

dx2
(0) = k2r1r2 + (k + 1)2r1r3 − r2r3 (H.20)

1

2

d4g

dx4
(0) = −k4r1r2 − (k + 1)4r1r3 + r2r3 (H.21)

If (H.20) vanishes, then the sum of (H.21) with (H.20) yields

1

2

d4g

dx4
(0) = −k(k + 1)r1

(
(k − 1)kr2 + (k + 1)(k + 2)r3

)
< 0.

Remark 6.2. We were able to prove directly that the system




f(x) = f(y)

df

dx
(x) =

df

dx
(y) = 0

d2f

dx2
(x),

d2f

dx2
(y) 6 0

implies x = y modulo 2π or t = π/(k + l) and x+ y = 2mπ/(k + l), but our computations are very
involved and opaque.

Remark 6.3. This proposition is a complex counterpart to [83, Lemma 2.1. ii)].

Remark 6.4. Suppose that l = k = 1. If t ∈ ]0, π/2[, it is necessary to solve a generally irreducible
quartic equation in order to compute the maximum of f . If t = π/2, it suffices to solve a linear
equation and one gets the following expression for maxx

∣∣r1e−ix + ir2 + r3 e ix
∣∣ :

{
(r1 + r3)

√
1 + r2

2/4r1r3 if
∣∣r−1

1 − r−1
3

∣∣ < 4r−1
2

r2 + |r3 − r1| otherwise.

This formula appears in [2, (3.1)]. In the first case, the maximum is attained at the two points x∗

such that sinx∗ = r2(r3 − r1)/4r1r3.

Remark 6.5. Suppose that l = 1 and k = 2. If t ∈ ]0, π/3[, it is necessary to solve a generally
irreducible sextic equation in order to compute the maximum of f . If t = π/3, it suffices to solve
a quadratic equation and one gets the following expression for maxx

∣∣r1 e−i2x + r2e iπ/3 + r3e ix
∣∣ : if

r−1
1 − 4r−1

3 < 9r−1
2 , then its square makes

r2
1 +

2

3
r2

2 + r2
3 + r1r2 + 2r1r3

[(( r2

3r3

)2

+
r2

3r1
+ 1

)3/2

−
( r2

3r3

)3
]

and the maximum is attained at the two points x∗ such that

2 cos(π/3 − x∗) =

(( r2

3r3

)2

+
r2

3r1
+ 1

)1/2

− r2

3r3
;

otherwise, it makes −r1 + r2 + r3.

7 The maximum modulus points of a trigonometric trinomial

If we undo all the reductions made in Sections 3 and 4 and at the beginning of Section 6, we get
the following theorem.

Theorem 7.1. Let λ1, λ2 and λ3 be three pairwise distinct integers such that λ2 is between λ1 and
λ3. Let r1, r2 and r3 be three positive real numbers. Given three real numbers t1, t2 and t3, consider
the trigonometric trinomial

T (x) = r1e i(t1+λ1x) + r2e i(t2+λ2x) + r3e i(t3+λ3x)
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for x ∈ R. Let d = gcd(λ2 − λ1, λ3 − λ2) and choose integers a1 and a3 such that

τ =
λ2 − λ3

d
(t1 − 2πa1) +

λ3 − λ1

d
t2 +

λ1 − λ2

d
(t3 − 2πa3),

satisfies |τ | 6 π. Let t̃1 = t1 − 2πa1 and t̃3 = t3 − 2πa3.

(a) The trigonometric trinomial T attains its maximum modulus at a unique point of the interval
bounded by (t̃1 − t2)/(λ2 − λ1) and (t2 − t̃3)/(λ3 − λ2). More precisely,

– if r1|λ2 − λ1| 6 r3|λ3 − λ2|, then this point is between (t̃1 − t̃3)/(λ3 − λ1) and (t2 −
t̃3)/(λ3 − λ2);

– if r1|λ2 − λ1| > r3|λ3 − λ2|, then this point is between (t̃1 − t̃3)/(λ3 − λ1) and (t̃1 −
t2)/(λ2 − λ1);

– T attains its maximum modulus at (t̃1−t̃3)/(λ3−λ1) if and only if r1|λ2−λ1| = r3|λ3−λ2|
or τ = 0.

(b) The function T attains its maximum modulus at a unique point modulo 2π/d, and with mul-
tiplicity 2, unless |τ | = π.

(c) Suppose that |τ | = π, i.e.,

λ2 − λ3

d
t1 +

λ3 − λ1

d
t2 +

λ1 − λ2

d
t3 = π mod 2π. (H.22)

Let s be a solution to 2t1 + λ1s = 2t2 + λ2s = 2t3 + λ3s modulo 2π: s is unique modulo 2π/d.
Then T (s− x) = e i(2t2+λ2s)T (x) for all x. Suppose that |λ3 −λ2| 6 |λ2 −λ1|. There are three
cases.

1. If λ2 − λ1 = k(λ3 − λ2) with k > 2 integer and

r−1
1 − k2r−1

3 > (k + 1)2r−1
2 ,

then T attains its maximum modulus, −r1 + r2 + r3, only at x = (t2 − t̃3)/(λ3 − λ2)
modulo 2π/d, with multiplicity 2 if the inequality is strict and with multiplicity 4 if there
is equality;

2. if λ2 − λ1 = λ3 − λ2 and ∣∣r−1
1 − r−1

3

∣∣ > 4r−1
2 ,

then T attains its maximum modulus, r2 + |r3 − r1|, at a unique point x modulo 2π/d,
with multiplicity 2 if the inequality is strict and with multiplicity 4 if there is equality.
This point is (t2 − t̃3)/(λ3 − λ2) if r1 < r3, and (t̃1 − t2)/(λ2 − λ1) if r3 < r1;

3. otherwise T attains its maximum modulus at exactly two points x and y modulo 2π/d,
with multiplicity 2, where x is strictly between (t̃1 − t2)/(λ2 −λ1) and (t2 − t̃3)/(λ3 −λ2),
and x+ y = s modulo 2π/d.

Note that s− x = x modulo 2π/d in Cases 1 and 2.

8 Exposed and extreme points of the unit ball of CΛ

The characterisation of the maximum modulus points of a trigonometric trinomial enables us to
compute the exposed and the extreme points of the unit ball of CΛ. We begin with a lemma.

Lemma 8.1. (a) A trigonometric trinomial with a given spectrum that attains its maximum mo-
dulus at two given points modulo 2π/d is determined by its value at these points.

(b) The trigonometric trinomials with a given spectrum that attain their maximum modulus with
multiplicity 4 at a given point and have a given value at this point lie on a parabola.

Proof. We will use the notation of Theorem 7.1. Without loss of generality, we may suppose that
λ1 = −k, λ2 = 0 and λ3 = l with k and l positive coprime integers. Let x and y be two real numbers
that are different modulo 2π/d, let ϑ and ζ be real numbers and let ̺ be a positive real number.

(a). Let us prove that at most one trigonometric trinomial T attains its maximum modulus
at x and y and satisfies T (x) = ̺e iϑ and T (y) = ̺e iζ . Let us translate T by (x + y)/2: we
may suppose that x + y = 0. Let us divide T by e i(ϑ+ζ)/2: we may suppose that ϑ + ζ = 0.
As T attains its maximum modulus at the two points x and y, we have s = x + y = 0 and
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2t1 − ks = 2t2 = 2t3 + ls = ϑ + ζ = 0 modulo 2π. Therefore t1 = t2 = t3 = 0 modulo π. Let
pj = e itjrj : the pj are nonzero real numbers. We have

T (x) = p1e−ikx + p2 + p3e ilx = ̺e iϑ,

so that, multiplying by e−iϑ and taking real and imaginary parts,

p1 cos(ϑ+ kx) + p3 cos(ϑ− lx) = ̺− p2 cosϑ (H.23)

p1 sin(ϑ+ kx) + p3 sin(ϑ− lx) = −p2 sinϑ. (H.24)

The computation

1

2

d|T |2
dx

(x) = ℜ
(
T (x)

dT

dx
(x)
)

= ℜ
(
T (x)

(
−ikp1e−ikx + ilp3e ilx

))
,

yields
kp1 sin(ϑ+ kx) − lp3 sin(ϑ− lx) = 0. (H.25)

Equations (H.24) and (H.25) yield p1 and p3 as linear functions of p2 because sin(ϑ+kx) sin(ϑ−lx) 6=
0: otherwise both factors would vanish, so that ϑ = x = 0 modulo π and x = y modulo 2π. As
̺ 6= 0, Equation (H.23) has at most one solution in p2.

(b). We are necessarily in Case 1 or 2 of Theorem 7.1(c), so that we may suppose that l = 1.
Let us determine all trigonometric trinomials T that attain their maximum modulus at x with
multiplicity 4 and satisfy T (x) = ̺e iϑ. Let us translate T by x: we may suppose that x = 0. Let
us divide T by e iϑ: we may suppose that ϑ = 0. As T attains its maximum modulus at 0 with
multiplicity 4, we have s − 0 = 0 and 2t1 − ks = 2t2 = 2t3 + s = 2ϑ = 0 modulo 2π. Therefore
t1 = t2 = t3 = 0 modulo π. Let pj = e itjrj : the pj are nonzero real numbers and satisfy the system

{
p1 + p2 + p3 = ̺

k2p1p2 + (k + 1)
2
p1p3 + p2p3 = 0,

that is {
p2 = ̺− p1 − p3

(kp1 − p3)2 = ̺(k2p1 + p3).

This is the equation of a parabola.

Remark 8.2. The equality

max
x

∣∣r1 e i(t1+λ1x) + r2e i(t2+λ2x)
∣∣ = r1 + r2 (H.26)

shows that the exposed points of the unit ball of the space C{λ1,λ2} are the trigonometric monomials
e iαeλ1 and e iαeλ2 with α ∈ R and that no trigonometric binomial is an extreme point of the unit
ball of CΛ.

Proof of Theorem 1.2 (a). Necessity. Let f ∈ K. Let us make four remarks:

– if f is an exposed point, then ‖f‖ = 1;

– if l is a nonzero linear functional on CΛ and z is a complex number such that l−1(z)∩K = {f},
then |l(f)| = |z| = ‖l‖, so that l attains its norm at f ;

– f is exposed if and only if ‖f‖ = 1 and there is a nonzero linear functional l on CΛ that attains
its norm only at multiples of f ;

– if l is a linear functional on CΛ that attains its norm at f and µ is the measure on [0, 2π/d[
identified with the Hahn-Banach extension of l to the space of continuous functions on [0, 2π/d[,
then the support of µ must be a subset of the maximum modulus points of f on [0, 2π/d[.

Theorem 7.1 (b, c) tells that a trigonometric trinomial attains its maximum modulus at one or two
points modulo 2π/d. We have therefore to show that trigonometric binomials and trigonometric
trinomials with only one maximum modulus point modulo 2π/d are not exposed.

– A linear functional that attains its modulus at a trigonometric binomial attains its norm at a
trigonometric monomial because this trigonometric binomial is a convex combination of two
trigonometric monomials with same norm by Equation (H.26).
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– If f attains its maximum modulus at a unique point x ∈ [0, 2π/d[, then l must be a multiple
of the Dirac measure δx at x, so that l attains also its norm at the monomials in CΛ.

These arguments show also that every linear functional on CΛ attains its norm at monomials or at
trigonometric trinomials with two maximum modulus points.

Sufficiency. Conversely, the trigonometric monomial e iαeλ is exposed to the linear form

P 7→ 1

2π

∫ 2π

0

P (x)e−i(α+λx) dx.

A trigonometric trinomial T that attains its maximum modulus, 1, at two points x∗
1 and x∗

2 modulo
2π/d is exposed, by Lemma 8.1 (a), to any nontrivial convex combination of the unimodular multiples
of Dirac measures T (x∗

1)δx∗
1

and T (x∗
2)δx∗

2
.

Remark 8.3. This is a complex counterpart to Lemma 2.3 in [83], dealing with the exposed points
of the unit ball of the three-dimensional space spanned by the functions 1, cosx and cos kx in the
space of continuous functions.

Proof of Theorem 1.2 (b). Let K be the unit ball of CΛ. Straszewicz’s Theorem [96] tells that
the exposed points of K are dense in the set of its extreme points. Let P be a limit point of
exposed points of K. If P is a trigonometric monomial, P is exposed. If P is a trigonometric
binomial, P is not an extreme point of K by Remark 8.2. If P is a trigonometric trinomial, it is
the limit point of trigonometric trinomials that attain their maximum modulus twice modulo 2π/d,
so that either P also attains its maximum modulus twice modulo 2π/d or, by Rolle’s Theorem, P
attains its maximum modulus with multiplicity 4. Let us prove that if a trigonometric trinomial T
attains its maximum modulus with multiplicity 4 at a point x, then T is an extreme point of K.
Suppose that T is the midpoint of two points A and B in K. Then |A(x)| 6 1, |B(x)| 6 1 and(
A(x) +B(x)

)/
2 = T (x), so that A(x) = B(x) = T (x). Furthermore

|T (x+ h)| 6 |A(x+ h)| + |B(x+ h)|
2

= 1 +
h2

4

(
d2|A|
dx2

(x) +
d2|B|
dx2

(x)

)
+ o(h2)

so that, as |T (x+ h)| = 1 + o(h3),

d2|A|
dx2

(x) +
d2|B|
dx2

(x) > 0 while
d2|A|
dx2

(x),
d2|B|
dx2

(x) 6 0

and therefore A and B also attain their maximum modulus with multiplicity 4 at x. As this implies
that A and B are trigonometric trinomials, Lemma 8.1 (b) yields that T , A and B lie on a parabola:
this implies A = B = T .

Remark 8.4. The set of extreme points of the unit ball of CΛ is not closed: for example, if λ2 is
between λ1 and λ3, every absolutely convex combination of eλ1 and eλ3 is a limit point of exposed
points.

Remark 8.5. If λ2 is between λ1 and λ3, and λ1 − λ2 is not a multiple of λ3 − λ2 nor vice versa,
then we obtain that every extreme point of the unit ball of CΛ is exposed.

Remark 8.6. In particular, compare our description of the extreme points of the unit ball of C{0,1,2}

with the characterisation given by K. M. Dyakonov in [27, Theorem 1]. He shows in his Example 1
that it is false that “in order to recognize the extreme points”, “one only needs to know ‘how often’
[the modulus of a trigonometric polynomial] takes the extremal value 1”. We show that with the
exception of trigonometric binomials, the extreme points of the unit ball of C{0,1,2} are characterised
by the number of zeroes of 1 − |P |2.

Remark 8.7. This is a complex counterpart to [60], dealing with the extreme points of the unit ball
of the three-dimensional space spanned by the functions 1, xn and xm in the space of real valued
continuous functions on [−1, 1].
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9 Dependence of the maximum modulus on the arguments

We wish to study how the maximum modulus of a trigonometric trinomial depends on the phase
of its coefficients. We shall use the following formula that gives an expression for the directional
derivative of a maximum function. It was established in [23]. Elementary properties of maximum
functions are addressed in [80, Part Two, Problems 223–226].

N. G. Chebotarëv’s formula ([26, Theorem VI.3.2, (3.6)]). Let I ⊂ R be an open interval and

let K be a compact space. Let f(t, x) be a function on I ×K that is continuous along with
∂f

∂t
(t, x).

Let
f∗(t) = max

x∈K
f(t, x).

Then f∗(t) admits the following expansion at every t ∈ I:

f∗(t+ h) = f∗(t) + max
f(t,x)=f∗(t)

(
h
∂f

∂t
(t, x)

)
+ o(h). (H.27)

Proposition 9.1. Let k and l be positive coprime integers. Let r1, r2 and r3 be three positive real
numbers. Then

max
x

∣∣r1e−ikx + r2e it + r3e ilx
∣∣

is an even 2π/(k + l)-periodic function of t that decreases strictly on [0, π/(k + l)]: in particular

min
t

max
x

∣∣r1 e−ikx + r2 e it + r3 e ilx
∣∣ = max

x

∣∣r1e−ikx + r2e iπ/(k+l) + r3 e ilx
∣∣.

Proof. Let

f(t, x) =
∣∣r1 e−ikx + r2e it + r3 e ilx

∣∣2. (H.28)

By (H.10) and (H.11), f∗ is an even 2π/(k + l)-periodic function.
Let t ∈ ]0, π/(k + l)[ and choose x∗ such that f(t, x∗) = f∗(t): then x∗ ∈ [−t/k, t/l] by Proposi-

tion 5.1, so that
1

2r2

∂f

∂t
(t, x∗) = −r1 sin(t+ kx∗) − r3 sin(t− lx∗) < 0

because t + kx∗ ∈ [0, (k + l)t/l] and t − lx∗ ∈ [0, (k + l)t/k] do not vanish simultaneously. By
Formula (H.27), f∗ decreases strictly on [0, π/(k + l)].

Proposition 9.2. Let k and l be positive coprime integers. Let r1, r2 and r3 be three positive real
numbers. Then

maxx
∣∣r1e−ikx + r2e it + r3e ilx

∣∣
∣∣r1 + r2 e it + r3

∣∣ (H.29)

is an increasing function of t ∈ [0, π/(k + l)]. If kr1 = lr3, it is constantly equal to 1; otherwise it
is strictly increasing.

Proof. Let f(t, x) be as in (H.28): then the expression (H.29) is g∗(t)1/2 with

g(t, x) =
f(t, x)

f(t, 0)
.

If kr1 = lr3, then f(t, 0) = f∗(t), so that g∗(t) = 1. As shown in the beginning of Section 6, we
may suppose without loss of generality that kr1 < lr3. Let t ∈ ]0, π/(k+ l)[ and choose x∗ such that
f(t, x∗) = f∗(t): then x∗ ∈ ]0, t/l[ by Propositions 5.1 and 6.1 and

f(t, 0)2

2r2

∂g

∂t
(t, x∗) =

1

2r2

(
∂f

∂t
(t, x∗)f(t, 0) − f(t, x∗)

∂f

∂t
(t, 0)

)

=
(
−r1 sin(t+ kx∗) − r3 sin(t− lx∗)

)
f(t, 0) + f∗(t)(r1 + r3) sin t

= h(0)f∗(t) − h(x∗)f(t, 0)

with
h(x) = r1 sin(t+ kx) + r3 sin(t− lx).
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Let us show that h is strictly decreasing on [0, t/l]: in fact, if x ∈ ]0, t/l[,

dh

dx
(x) = kr1 cos(t+ kx) − lr3 cos(t− lx) < (kr1 − lr3) cos(t− lx) < 0.

As f∗(t) > f(t, 0) and h(0) > h(x∗), (∂g/∂t)(t, x∗) > 0. By N. G. Chebotarëv’s formula, g∗ increases
strictly on [0, π/(k + l)].

It is possible to describe the decrease of the maximum modulus of a trigonometric trinomial
independently of the r’s as follows.

Proposition 9.3. Let k and l be two positive coprime integers. Let r1, r2 and r3 be three positive
real numbers. Let 0 6 t′ < t 6 π/(k + l). Then

max
x

∣∣r1e−ikx + r2e it′ + r3 e ilx
∣∣ 6 cos(t′/2)

cos(t/2)
max
x

∣∣r1 e−ikx + r2 e it + r3 e ilx
∣∣ (H.30)

with equality if and only if r1 : r2 : r3 = l : k + l : k.

Proof. Let us apply Proposition 9.2. We have

∣∣r1 + r2e it′ + r3

∣∣2
∣∣r1 + r2e it + r3

∣∣2 = 1 +
2r2(r1 + r3)(cos t′ − cos t)

(r1 + r3)2 + 2r2(r1 + r3) cos t+ r2
2

= 1 +
cos t′ − cos t

cos t+
(
r2

2 + (r1 + r3)2
)
/2r2(r1 + r3)

6 1 +
cos t′ − cos t

cos t+ 1
=

cos t′ + 1

cos t+ 1

by the arithmetic-geometric inequality, with equality if and only if r2 = r1 + r3. Therefore Inequa-
lity (H.30) holds, with equality if and only if kr1 = lr3 and r2 = r1 + r3.

We may now find the minimum of the maximum modulus of a trigonometric trinomial with given
spectrum, Fourier coefficient arguments and moduli sum. Proposition 9.3 yields with t′ = 0

Corollary 9.4. Let k and l be two positive coprime integers. Let r1, r2 and r3 be three positive real
numbers. Let t ∈ ]0, π/(k + l)]. Then

maxx
∣∣r1 e−ikx + r2 e it + r3 e ilx

∣∣
r1 + r2 + r3

> cos(t/2)

with equality if and only if r1 : r2 : r3 = l : k + l : k.

Remark 9.5. There is a shortcut proof to Corollary 9.4:

maxx
∣∣r1e−ikx + r2e it + r3e ilx

∣∣
r1 + r2 + r3

>

∣∣r1 + r2 e it + r3

∣∣
r1 + r2 + r3

=

√
1 − 4(r1 + r3)r2

(r1 + r2 + r3)
2 sin2(t/2)

>

√
1 − sin2(t/2) = cos(t/2)

and equality holds if and only if
∣∣r1 e−ikx + r2 e it + r3 e ilx

∣∣ is maximal for x = 0 and r1 + r3 = r2.

10 The norm of unimodular relative Fourier multipliers

We may now compute the norm of unimodular relative Fourier multipliers.

Corollary 10.1. Let k and l be two positive coprime integers. Let t ∈ [0, π/(k + l)]. Let M be the
relative Fourier multiplier (0, t, 0) that maps the element

r1e iu1 e−k + r2 e iu2 e0 + r3 e iu3 el (H.31)
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of the normed space C{−k,0,l} on

r1 e iu1 e−k + r2e i(t+u2)e0 + r3 e iu3 el.

Then M has norm cos
(
π/2(k + l) − t/2

)/
cos
(
π/2(k + l)

)
and attains its norm exactly at elements

of form (H.31) with r1 : r2 : r3 = l : k + l : k and

−lu1 + (k + l)u2 − ku3 = π mod 2π.

Proof. This follows from Proposition 9.3 and the concavity of cos on [0, π/2].

Remark 10.2. This corollary enables us to guess how to lift M to an operator that acts by convolution
with a measure µ. Note that µ is a Hahn-Banach extension of the linear form f 7→ Mf(0). The
relative multiplier M is an isometry if and only if t = 0 and µ is the Dirac measure in 0. Otherwise,
t 6= 0; the proof of Theorem 1.2 (a) in Section 8 shows that µ is a linear combination αδy + βδw of
two Dirac measures such that the norm of M is |α|+ |β|. Let f(x) = le−ikx+(k+ l)e iπ/(k+l) +ke ilx:
M attains its norm at f , f attains its maximum modulus at 0 and 2mπ/(k + l), and Mf attains
its maximum modulus at 2mπ/(k + l), where m is the inverse of l modulo k + l. As

(|α| + |β|) max
x

|f(x)| = max
x

|Mf(x)|

= |µ ∗ f
(
2mπ/(k + l)

)
|

= |αf
(
2mπ/(k + l) − y

)
+ βf

(
2mπ/(k + l) − w

)
|,

we must choose {y, w} = {0, 2mπ/(k + l)}. A computation yields then

µ = e it/2 sin
(
π/(k + l) − t/2

)

sin
(
π/(k + l)

) δ0 + e i(t/2+π/(k+l)) sin(t/2)

sin
(
π/(k + l)

)δ2mπ/(k+l).

If k = l = 1, this is a special case of the formula appearing in [41, proof of Prop. 1]. Consult [94] on
this issue.

11 The Sidon constant of integer sets

Let us study the maximum modulus of a trigonometric trinomial with given spectrum and Fourier
coefficient moduli sum. We get the following result as an immediate consequence of Corollary 9.4.

Proposition 11.1. Let k and l be two positive coprime integers. Let r1, r2 and r3 be three positive
real numbers. Let t ∈ [0, π/(k + l)]. Then

max
x

∣∣r1 e−ikx + r2 e it + r3 e ilx
∣∣ > cos

(
π/2(k + l)

)
· (r1 + r2 + r3)

with equality if and only if r1 : r2 : r3 = l : k + l : k and t = π/(k + l).

This means that the Sidon constant of {−k, 0, l} equals sec
(
π/2(k + l)

)
.

The Sidon constant of integer sets was previously known only in the following three instances:

– The equality
max
x

∣∣r1 e i(t1+λ1x) + r2e i(t2+λ2x)
∣∣ = r1 + r2

shows that the Sidon constant of sets with one or two elements is 1.

– The Sidon constant of {−1, 0, 1} is
√

2 and it is attained for e−1 + 2i + e1. Let us give the
original argument: if f(x) =

∣∣r1 e−ix + r2e it + r3e ix
∣∣2, the parallelogram identity and the

arithmetic-quadratic inequality yield

max
x

f(x) > max
x

f(x) + f(x+ π)

2

= max
x

∣∣r1e−ix + r3 e ix + r2e it
∣∣2 +

∣∣r1 e−ix + r3e ix − r2e it
∣∣2

2

= max
x

∣∣r1e−ix + r3 e ix
∣∣2 +

∣∣r2 e it
∣∣2

= (r1 + r3)2 + r2
2 >

(r1 + r2 + r3)2

2
.
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– The Sidon constant of {0, 1, 2, 3, 4} is 2 and it is attained for 1 + 2e1 + 2e2 − 2e3 + e4.

These results were obtained by D. J. Newman (see [93].) The fact that the Sidon constant of sets
of three integers cannot be 1 had been noted with pairwise different proofs in [93, 21, 50].

Remark 11.2. The real algebraic counterpart is better understood: the maximal absolute value of a
real algebraic polynomial of degree at most n with given coefficient absolute value sum is minimal
for multiples of the nth Chebyshev polynomial Tn (look up the last paragraph of [28], and [81,
Theorem 16.3.3] for a proof). As the sum of the absolute values of Tn’s coefficients is the integer tn
nearest to (1 +

√
2)
n
/2, we have for real a0, a1, . . . , an

max
x∈[−1,1]

∣∣a0 + a1x+ · · · + anx
n
∣∣ > t−1

n (|a0| + |a1| + · · · + |an|).

The following estimates for the Sidon constant of large integer sets are known.

– E. Beller and D. J. Newman [8] showed that the Sidon constant of {0, 1, . . . , n} is equivalent
to

√
n.

– (Hadamard sets.) Let q > 1 and suppose that the sequence (λj)j>1 grows with geometric
ratio q: |λj+1| > q|λj | for every j. Then the Sidon constant of {λ1, λ2, . . .} is finite; it is at
most 4.27 if q > 2 (see [46]), at most 2 if q > 3 (see [54]), and at most 1 + π2

/ (
2q2 − 2 − π2

)

if q >
√

1 + π2/2 (see [63, Corollary 9.4] or the updated [64, Corollary 10.2.1].)

Our computations show that the last estimate of the Sidon constant has the right order in q−1

for geometric progressions.

Proposition 11.3. Let C be the Sidon constant of the geometric progression {1, q, q2, . . .}, where
q > 3 is an integer. Then

1 + π2
/

8(q + 1)2
6 sec

(
π/2(q + 1)

)
6 C 6 1 + π2

/ (
2q2 − 2 − π2

)
.

One initial motivation for this work was to decide whether there are sets {λj}j>1 with |λj+1| >
q|λj | whose Sidon constant is arbitrarily close to 1 and to find evidence among sets with three
elements. That there are such sets, arbitrarily large albeit finite, may in fact be proved by the
method of Riesz products in [47, Appendix V, §1.II]; see also [64, Proposition 13.1.3]. The case of
infinite sets remains open.

A second motivation was to show that the real and complex unconditional constants of the
basis (eλ1 , eλ2 , eλ3 ) of CΛ are different; we prove however that they coincide, and it remains an
open question whether they may be different for larger sets. The real unconditional constant of
(eλ1 , eλ2 , eλ3) is the maximum of the norm of the eight unimodular relative Fourier multipliers
(t1, t2, t3) such that tk = 0 modulo π. Let i, j, k be a permutation of 1, 2, 3 such that the power of
2 in λi − λk and in λj − λk are equal. Lemma 2.1 shows that the four relative multipliers satisfying
ti = tj modulo 2π are isometries and that the norm of any of the four others, satisfying ti 6= tj
modulo 2π, gives the real unconditional constant. In general, the complex unconditional constant
is bounded by π/2 times the real unconditional constant, as proved in [92]; in our case, they are
equal.

Corollary 11.4. The complex unconditional constant of the basis (eλ1 , eλ2 , eλ3) of CΛ is equal to
its real unconditional constant.
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Chapter I

On the Sidon constant of {0, 1, 2, 3}

We study an elementary extremal problem on trigonometric polynomials of degree 3.
We discover a distinguished torus of extremal functions.

1 Introduction

Let Λ = {λ0, λ1, . . . , λn−1} be a set of n frequencies. We study the following extremal problem:

(†)
Given n positive intensities ̺0, ̺1, . . . , ̺n−1, to find n phases ϑ0, ϑ1, . . . , ϑn−1 such that the
maximum maxt |∑ ̺j e

iϑj e iλj t| is minimal.

This should help us to study the following extremal problem:

(‡)
To find n complex coefficients c0, c1, . . . , cn−1 with given moduli sum |c0|+|c1|+· · ·+|cn−1| = 1
such that the maximum maxt |∑ cj e

iλjt| is minimal.

Note that this maximum’s inverse is the Sidon constant S(Λ). D. J. Newman (see [93, Chapter 3])
obtained the following upper bound for S({0, 1, . . . , n}): by Parseval’s theorem on ℓ2({1, e2iπ/n, . . . ,
e2i(n−1)π/n}), putting

∑
cj e

ijt = f(t),

max
t

|f(t)|2 = max
t

|f(t)|2 ∨ |f(t+ 2π/n)|2 ∨ · · · ∨ |f(t+ 2(n− 1)π/n)|2

> max
t

(
|f(t)|2 + |f(t+ 2π/n)|2 + · · · + |f(t+ 2(n− 1)π/n)|2

)
/n

= max
t

|c0 + cne int|2 + |c1|2 + · · · + |cn−1|2

=
(
|c0| + |cn|

)2
+ |c1|2 + |c2|2 + · · · + |cn−1|2 (I.1)

>
(
|c0| + |c1| + · · · + |cn|

)2
/n,

and H. S. Shapiro showed (ibid.) that equality can hold exactly if n ∈ {1, 2, 4}. If n = 2, equality
holds exactly for multiples and translates of f(t) = 1 + 2ie it + e i2t. If n = 3, the functions

i2
√

2 cos τ − 1 − 3 sin τ

15
+

3 + sin τ

10
e it +

3 − sin τ

10
e i2t +

i2
√

2 cos τ − 1 + 3 sin τ

15
e i3t

have their modulus bounded by 3/5 for each τ , so that 5/3 6 S({0, 1, 2, 3}) <
√

3.

The motivation is that we wish to know whether the real and complex unconditionality constants
are distinct for basic sequences of characters e int.

Notation. T = { z ∈ C : |z| = 1 } and eλ(z) = zλ for z ∈ T and λ ∈ Z.

2 Necessary conditions for solutions to Extremal problem (†)

Let us the state the theorem of Chebotarev (see [26, Th. VI.3.2, (3.6)]) in our context.
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Theorem 2.1. Let Φ: Rk × R → R be a continuous function that is C1 in the first variable and
periodic in the second variable. If Φ∗ : x 7→ maxy Φ(x, y) achieves its minimum at x∗, then there are
r points y1, . . . , yr such that 1 6 r 6 k + 1 and Φ(x∗, y1) = · · · = Φ(x∗, yr) = Φ∗(x∗), and

∃α1, . . . , αr > 0
∑
αi = 1

∑
αi
∂Φ

∂x
(x∗, yi) = 0.

Let us apply this theorem to our problem. For n pairwise distinct integers λ0, λ1, . . . , λn−1, n
positive real numbers ̺0, ̺1, . . . , ̺n−1 and arguments t and ϑ = (ϑ0, ϑ1, . . . , ϑn−1) let

f(t, ̺, ϑ) =

∑
̺j e

i(λjt+ϑj)

∑
̺j

= R(t, ̺, ϑ)e iΘ(t,̺,ϑ) with R(t, ̺, ϑ) > 0 and Φ = R2.

Define
Φ∗(̺, ϑ) = max

t
Φ(t, ̺, ϑ), Φ∗

∗ = min Φ∗

and, for fixed ̺j > 0,

Φ̺(t, ϑ) = Φ(t, ̺, ϑ), Θ̺(t, ϑ) = Θ(t, ̺, ϑ), Φ∗
̺(ϑ) = Φ∗(̺, ϑ), (Φ∗

̺)∗ = min Φ∗
̺.

Note that Φ∗ is continuous (see [80, Chapter 5.4]). Then

Φ =

∑∑
ρjρk cos((λk − λj)t+ ϑk − ϑj)

(
∑
̺j)2

∂Φ

∂t
=

∑∑
(λj − λk)̺j̺k sin((λk − λj)t+ ϑk − ϑj)

(
∑
̺j)2

= 2ℜ
(
f̄
∂f

∂t

)

∂Φ

∂ϑk
= −2̺k

∑
̺j sin((λk − λj)t+ ϑk − ϑj)

(
∑
̺j)2

=
−2̺k∑
̺j

ℑ(f̄ e i(λkt+ϑk)) (I.2)

Note that our problem depends in fact on n− 2 phases only; we have

∑ ∂Φ

∂ϑk
= 0 ,

∑
λk

∂Φ

∂ϑk
=
∂Φ

∂t
. (I.3)

We get thus

Lemma 2.2. Let Φ∗
̺ achieve its minimum at ϑ and M = { t : Φ̺(t, ϑ) = (Φ∗

̺)∗ }.

(a) If M is a singleton {t}, then (t, ϑ) is a critical point of Φ̺. Then all λkt+ ϑk are congruent
to Θ̺(t, ϑ) modulo π.

(b) If M is a pair {t, u} and (t, ϑ), (u, ϑ) are not critical points of Φ̺, then

∃µ, ν > 0 ∀ k µ
∂Φ

∂ϑk
(t, ϑ) + ν

∂Φ

∂ϑk
(u, ϑ) = 0.

Then µ sin(Θ̺(t, ϑ) − λkt− ϑk) + ν sin(Θ̺(u, ϑ) − λku− ϑk) = 0 for all k.

Furthermore one may compute

∂Φ

∂̺k
= 2

∑
̺j cos((λk − λj)t+ ϑk − ϑj)

(
∑
̺j)2

− 2Φ∑
̺j

=
2∑
̺j

(
ℜ(f̄ e i(λkt+ϑk)) − Φ

)
.

Note that our problem depends on n− 1 intensities only; we have

∑
̺k
∂Φ

∂̺k
= 0.

Thus ∑
̺j

2

∂Φ

∂̺k
− i

∑
̺j

2̺k

∂Φ

∂ϑk
= R(e i(λkt+ϑk−Θ) −R).

Lemma 2.3. Let Φ∗ achieve its minimum at (̺, ϑ) and M = { t : Φ(t, ̺, ϑ) = Φ∗
∗ }.

(a) If M is a singleton {t}, then (t, ̺, ϑ) is a critical point of Φ. Then Φ∗
∗ = 1.
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(b) If M is a pair {t, u} and Φ∗
∗ 6= 1, then

∃µ, ν > 0 ∀ k µ
( ∂Φ

∂ϑk
,
∂Φ

∂̺k

)
(t, ̺, ϑ) + ν

( ∂Φ

∂ϑk
,
∂Φ

∂̺k

)
(u, ̺, ϑ) = 0. (I.4)

If in turn Φ∗
∗ 6= 1 and (I.4) holds, then there is an α and there are signs εj ∈ {−1, 1} not all

equal such that, with dijk = gcd(λk − λi, λj − λi) and δijk ∈ {0, 1}




R(t, ̺, ϑ) = R(u, ̺, ϑ) = cosα∑
εi̺i =

∑
εiλi̺i = 0

∀ i, j, k
(
(λj − λk)εi + (λk − λi)εj + (λi − λj)εk

)
α ≡

(λj − λk)ϑi + (λk − λi)ϑj + (λi − λj)ϑk ≡ δijkdijkπ mod 2dijkπ
∀ j Θ(t, ̺, ϑ) − λjt− ϑj = εjα = −(Θ(u, ̺, ϑ) − λju− ϑj).

Proof. Let R = R(t, ̺, ϑ) = R(u, ̺, ϑ), Θt = Θ(t, ̺, ϑ), Θu = Θ(u, ̺, ϑ). Then

∀ k µ(e i(λkt+ϑk−Θt) − R) + ν(e i(λku+ϑk−Θu) − R) = 0.

Let us suppose µ+ ν = 1. By taking moduli, we get then

∀ k cos(λkt+ ϑk − Θt) =
R2 + µ2 − ν2

2µR
, cos(λku+ ϑk − Θu) =

R2 + ν2 − µ2

2νR
;

Returning to the definition of f , we have then

∀ k cos(λkt+ ϑk − Θt) = R = cos(λku+ ϑk − Θu),

so that furthermore µ = ν. Thus we may choose signs εk ∈ {−1, 1} such that

∀ j, k εj sin(λjt+ ϑj − Θt) = εk sin(λkt+ ϑk − Θt) = −εk sin(λku+ ϑk − Θu).

These sines do not vanish, because otherwise R = 1. The expressions of f and ∂Φ/∂t yield therefore
∑

εj̺j = 0,
∑

εjλj̺j = 0.

We can therefore choose α, α′ and signs εj ∈ {−1, 1} such that

∀ j Θt − λjt− ϑj = εjα , Θu − λju− ϑj = εjα
′.

(λk − λj)t+ ϑk − ϑj =

{
0 if εj = εk

2εjα otherwise.

and similarly for u. Finally

λj − λk
dijk

ϑi +
λk − λi
dijk

ϑj +
λi − λj
dijk

ϑk = ±
(λj − λk

dijk
εi +

λk − λi
dijk

εj +
λi − λj
dijk

εk

)
α.

3 Necessary conditions for solutions to Extremal problem (‡)

Let (̺, ϑ) solve the extremal problem. If the point t such that Φ∗(̺, ϑ) = Φ(t, ̺, ϑ) were unique,
then Φ∗(̺, ϑ) = 1. If there are exactly two points t, u such that Φ∗(̺, ϑ) = Φ(t, ̺, ϑ) = Φ(u, ̺, ϑ),
then either Φ∗(̺, ϑ) = 1 or there is an α and there are signs ε0, ε1, ε2 ∈ {−1, 1} such that, with
d = gcd(λ1 − λ0, λ2 − λ0),





R(t, ̺, ϑ) = R(u, ̺, ϑ) = cosα
ε0̺0 + ε1̺1 + ε2̺2 = ε0λ0̺0 + ε1λ1̺1 + ε2λ2̺2 = 0(
(λ1 − λ2)ε0 + (λ2 − λ0)ε1 + (λ0 − λ1)ε2

)
α ≡

(λ1 − λ2)ϑ0 + (λ2 − λ0)ϑ1 + (λ0 − λ1)ϑ2 ≡ dπ mod 2dπ

We need not consider the case (λ1 −λ2)ϑ0 + (λ2 −λ0)ϑ1 + (λ0 −λ1)ϑ2 ≡ 0 mod 2dπ, for which the
system

λ0t+ ϑ0 = λ1t+ ϑ1 = λ2t+ ϑ2
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has a solution, so that Φ∗(̺, ϑ) = 1. Then

ε0 = sgn(λ1 − λ2)ε, ε1 = sgn(λ2 − λ0)ε, ε2 = sgn(λ0 − λ1)ε for some ε ∈ {−1, 1},

so that
̺0 = |λ1 − λ2|σ, ̺1 = |λ2 − λ0|σ, ̺2 = |λ0 − λ1|σ for some σ > 0.

Choose {i, j, k} = {0, 1, 2} such that εi 6= εj = εk. Then 2|λj − λk|α ≡ dπ mod 2dπ, so that
R 6 cos(dπ/2|λj − λk|). Further ̺k + ̺j = ̺i, and the system

λjt+ ϑj = λkt+ ϑk = λit+ ϑi − dπ/(λj − λk)

has a solution t, for which

R =
|̺k + ̺j + ̺ie

idπ/(λj−λk)|
2̺i

= cos
dπ

2|λj − λk| .

This solves the problem for Λ = {0, 1, 2}, as t 7→ Φ(t, ̺, ϑ) has at most two maxima.

4 The case {0, 1, 2, 3}: a distinguished family of polynomials

Let Λ = {0, 1, 2, 3}. Let (̺, ϑ) solve the extremal problem. If the point t such that Φ∗(̺, ϑ) =
Φ(t, ̺, ϑ) were unique, then Φ∗

∗ = 1. If there were exactly two points t, u such that Φ∗(̺, ϑ) =
Φ(t, ̺, ϑ) = Φ(u, ̺, ϑ), then Φ∗

∗ =
√

2. There are therefore exactly three points t, u, t′′ such that
Φ∗(̺, ϑ) = Φ(t, ̺, ϑ) = Φ(u, ̺, ϑ) = Φ(t′′, ̺, ϑ).

Let f(t, τ) be given by

i2
√

2 cos τ − 1 − 3 sin τ

15
+

3 + sin τ

10
e it +

3 − sin τ

10
e i2t +

i2
√

2 cos τ − 1 + 3 sin τ

15
e i3t.

One computes that the moduli sum of the coefficients is 1, independently of τ . Note that f(t,−τ) =
e i3tf(−t, τ) and f(t, τ + π) = e i3tf(t, τ), so that we shall restrict the parameter τ to [0, π/2]. Let
Φ(t, τ) = |f(t, τ)|2. We get

Φ(t, τ) =
2
√

2 sin 2τ

75
(sin t− sin 2t+ 2 sin 3t) +

247 − 13 cos 2τ

900

+ (1 + cos 2τ)
(cos t

20
− cos 2t

25

)
+

1 + 17 cos2τ

225
cos 3t.

Let us put

M =




2 sin 2t

25
− sin t

20
− 17 sin 3t

75

2
√

2

75
(cos t− 2 cos 2t+ 6 cos 3t)

2
√

2

75
(sin t− sin 2t+ 2 sin 3t)

13

900
− cos t

20
+

cos 2t

25
− 17 cos 3t

225




The critical points (t, τ) of Φ satisfy

M

(
cos 2τ
sin 2τ

)
=

( sin t

20
− 2 sin 2t

25
+

sin 3t

75
0

)

We have

detM =
1

6750
sin t

(
cos t− 1

4

)
(4 cos t− 11)(16 cos3 t− 72 cos2 t+ 33 cos t− 41),

which vanishes exactly if cos t ∈ {−1, 1/4, 1}. Otherwise we get





cos 2τ = −272 cos3 t− 72 cos2 t− 159 cos t+ 23

16 cos3 t− 72 cos2 t+ 33 cos t− 41
= C(t)

sin 2τ = − 24
√

2 sin t(4 cos t+ 1)(2 cos t− 1)

16 cos3 t− 72 cos2 t+ 33 cos t− 41
= S(t)

(I.5)
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Note that this solution is consistent, as C2 + S2 = 1. For such τ , Φ(t, τ) = 9/25. Checking the
special cases cos t ∈ {−1, 1/4, 1} yields that all local maxima are given by the above formulas, that
Φ attains its global minimum, 0, exactly for τ = 0 and t = π, and has exactly one other local
minimum, of value 49/225, for τ = π/2 and t = 0. There is exactly one other critical point, of value
5/18, that is a saddle point, given by τ = arccos(17/37)/2, t = arccos 1/4.

As C(0) = 1, C(±π/3) = −1, C(± arccos(−1/4)) = 1, C(π) = −1, the intermediate values
theorem shows that for a given τ , there are exactly three solutions t to system (I.5), for which
Φ(t, τ) achieves then its global maximum, 9/25.

These formulas yield in turn that for a sign ε ∈ {−1,+1}




cos τ =
8ε(2 cos t− 1) cos t/2√

−16 cos3 t+ 72 cos2 t− 33 cos t+ 41
= Cε(t)

sin τ =
3
√

2ε(4 cos t+ 1) sin t/2√
−16 cos3 t+ 72 cos2 t− 33 cos t+ 41

= Sε(t)

(I.6)

5 The real unconditional constant of {0, 1, 2, 3}
If L is a subspace of the space of complex continuous functions on a compact space T with

n dimensions, then every functional l on L extends isometrically to a linear combination of at most
2n Dirac measures: there are m 6 2n points tk ∈ T and coefficients bk ∈ C such that for every
f ∈ L one has l(f) =

∑
bkf(tk) and ‖l‖ =

∑ |bk| (see [13, Exercice 6.8].) This implies in particular
that there is a function f ∈ L whose maximum modulus points contain the tk.

Let us now specialise to the case L = CΛ(T) with Λ a finite set. Note that a function in L has at
most max Λ − min Λ maximum modulus points; a trigonometric trinomial has at most 2 maximum
modulus points up to periodicity.

Let us make the ad hoc hypothesis that the tk are the nth roots of unity, whose set forms the
group Un: this obliges us to restrict our study to those functionals l such that l(ej) = l(ej′) if
j ≡ j′ mod n. Then the condition l(f) =

∑
bkf(tk) reads

l(ej) =
n−1∑

k=0

bke i2jkπ/n for j ∈ Λ,

which may be interpreted as telling that the l(ej) are the Fourier coefficients of the measure µ on
Un given by

µ =
n−1∑

k=0

bkδe i2kπ/n

(where the Dirac measures act on Un). A solution to these equations is given by

bk =
1

n

n−1∑

j=0

e−i2jkπ/n

{
l(ej′) if there is j′ ≡ j mod n in Λ

0 otherwise.

The norm of µ is bounded by
n−1∑

k=0

|bk|

and is attained at u ∈ C(Un) if and only if u(e i2kπ/n)bk = |bk| for every k, up to a nonzero
complex number. This yields an upper bound for the norm of l that becomes an equality if there is
an f ∈ C(T) of norm 1 such that f(e i2kπ/n) = u(e i2kπ/n).

Here are two applications.

Proposition 5.1. Let Λ be a finite subset of Z. The Sidon constant of Λ is at most (# Λ − 1)1/2.

Proof. One may suppose that min Λ = 0 and choose n = max Λ. Let l be a linear functional l with
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coefficients l(ej) of modulus 1: one may suppose that l(e0) = l(en). Then

‖l‖ 6
1

n

n−1∑

k=0

∣∣∣∣
∑

j∈Λ\{n}

l(ej)e−i2jkπ/n

∣∣∣∣

6

(
1

n

n−1∑

k=0

∣∣∣∣
∑

j∈Λ\{n}

l(ej)e−i2jkπ/n

∣∣∣∣
2
)1/2

(I.7)

=

( ∑

j∈Λ\{n}

|l(ej)|2
)1/2

= (# Λ − 1)1/2.

Remark 5.2. Hervé Queffélec showed me a more elementary proof of the same fact, that follows the
line of D. J. Newman’s computation in the introduction: if f ∈ CΛ(T), then there are only # Λ − 1
squares, and not n, in Inequality (I.1)!

Remark 5.3. If Λ = {0, 1, . . . , n}, then Inequality (I.7) is an equality if and only if (l(ej))
n−1
j=0 is

a biunimodular sequence, that is a unimodular function on Un whose Fourier transform is also
unimodular. In other words, the matrix H = (l(ej−k))06j,k6n−1 is a circulant complex Hadamard
matrix, where the indices j − k are computed modulo n: it satisfies H∗H = n Id. Such matrices
always exist: see [10].

Proposition 5.4. Let Λ = {0, 1, 2, 3}. The real unconditional constant of CΛ(T) is 5/3.

Proof. The polynomials in the previous section show that the real unconditional constant of CΛ(T)
is at least 5/3. This constant is the maximum of the norm of linear functionals l with l(ej) ∈ {−1, 1}.
As l has the same norm as l̃ : f 7→ l(f(· + π)), for which l̃(ej) = (−1)jl(ej), one may suppose that
l(e0) = l(e3). Let us now try to lift l to a sum of Dirac measures on the third roots of unity. Such
a lifting is either the Dirac measure at 0 or

±(l(ej))06j62 ∈ {(−1, 1, 1), (1,−1, 1), (1, 1,−1)}

and these six cases yield the same norm

1

3
(|−1 + 1 + 1| + |−1 + e i2π/3 + e i4π/3| + |−1 + e i4π/3 + e i2π/3|) = 5/3.

6 Trigonometric polynomials of degree 3 with real coeffi-

cients

Suppose c0, c1, c2, c3 are real and c0c3 6= 0. Let εi = sgn ci be their sign. Then

‖c0 + c1e it + c2e2it + c3e3it‖∞ = |c0 + c2| + |c1 + c3|

if ∣∣∣∣∣∣∣∣∣∣

ε0 = ε2 and ε1 = ε3

or
{
ε0ε3(c0c1 + c1c2 + c2c3 + 9c0c3) + 4(c0c2 + c1c3) > 0
6|c0c3| 6 |c0c2 + c1c3|

or ε0ε3(c0c1 + c1c2 + c2c3 + 9c0c3) 6 4(c0c2 + c1c3)
or ε0ε1ε2ε3 = −1 and (|c0c2| + |c1c3|)2 6 4(|c0| + |c3|)c0c3(ε0c1 + ε3c2).

Otherwise ‖c0 + c1e it + c2e2it + c3e3it‖2
∞ is equal to

2c0c3

(( c1

3c0
+

c2

3c3

)3

+

(( c1

3c0
− c2

3c3

)2

+
(

1 − c2

3c0

)(
1 − c1

3c3

))3/2
)

+
(

1 − c1c2

3c0c3

)
(c2

0 + c2
3) −

(
1 +

c1c2

3c0c3

)
(c0c2 + c1c3) +

2

3
(c2

1 + c2
2).

Suppose c0, c1, c2 are real and c0c2 6= 0. Let εi = sgn ci be their sign. Then

‖c0 + c1e it + c2e2it‖∞ = |c0 + c2| + |c1| if ε0 = ε2 or |c1| |c−1
0 + c−1

2 | > 4;

otherwise
‖c0 + c1e it + c2e2it‖2

∞ = (c0 − c2)2(1 − c2
1/4c0c2).
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