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Abstract

We consider the problem of sharing the cost of cleaning the non-point source pollution

of industrial sites among the firms that own these sites. The bilateral liabilities between

firms are depicted by an undirected graph. We introduce and characterize axiomatically

two allocation rules inspired by the celebrated Polluter pays and Beneficiary pays principles

in environmental law. The first one shares evenly the cost of cleaning up a site among

the firms that can have caused the corresponding environmental damage. The second one

charges to each firm the entire cost of cleaning up its own production site. We also establish

connections with cooperative game theory.
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1. Introduction

1.1. Context and problematic

According to the global Climate Litigation Report: 2023 Status Review, the total number

of court cases focused on climate action has more than doubled since 2017. In the coming

years, environmental damage will be increasingly denounced as shown by the succession of

rulings taken by the European Court of Human Rights (ECHR). The ECHR has delivered on

April 9, 2024 two rulings in climate change cases. In the first case, Verein KlimaSeniorinnen

Schweiz and Others v. Switzerland, the Court found that the Swiss Confederation had failed

to comply with its obligation to act to reduce global warming. In the second case, Duarte
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Agostinho and Others v. Portugal and 32 Others, although the Court declared inadmissible

the complaint, it recognizes that the 33 states are the cause of climate change and should

respect their commitments to reduce pollution (see Paris Agreement adopted in 2015). These

rulings highlight the fact that anyone (persons, firms1, governments) is condemnable and

can be jointly implicated in environmental damage, or pollution for short.

One of the objectives of environmental law is to force pollution clean up. One prominent

principle is the Polluter-pays principle, which stipulates that the polluter pays for the

cost of cleaning up the pollution. This principle is widely adopted in environmental law, for

instance in Europe in the Single European Act2 and in France in the Charter for the Envi-

ronment3. An alternative to the Polluter-pays principle is the Beneficiary-pays principle,

widely studied in philosophy (see, for instance, Page, 2012; Butt, 2014; Bazargan-Forward,

2021; Kim, 2023). It forces those who benefit from pollution to bear the cost of cleaning up

the pollution. Both principles require a precise definition of what is meant by pollution.

Pollution can be divided into two main categories, the point-source pollution (PS) and

the non-point source pollution (NPS). The PS pollution is a single identifiable source of

air, water, thermal, noise or light pollution. For instance, air pollution from an industrial

source or noise pollution from a jet engine. On the contrary, the NPS pollution is a diffuse

source of water or air pollution, as land runoff or atmospheric deposition. It does not

originate from a single discrete source, but from several sources whose exact contribution to

NPS pollution is unknown. For the first category of pollution, it is not difficult to identify

the polluter or the beneficiary of the pollution, which implies that the cost allocation is often

immediate. We focus on NPS pollution problems in which several firms can be the source. In

this case, the Article 9 of the European Directive4 2004/35/CE states that liability sharing

should be determined in accordance with national law.

With regard to the specific case of France, Article L-162-18 of the Environmental code

states that the cost of cleaning up NPS pollution is shared to the extent of the contribution

of firms’ activity to the pollution. However, by definition, it is not possible to determine the

exact share of firms’ liability in the NPS pollution. In this case, two allocation methods are

used by the Courts, the Equal share rule and the Market share rule. Both were used in the

Distilbène litigation5. The first shares the cost of cleaning up the pollution equally among

the liable firms and the second proportionally to the market share of each liable firms. One

1In this paper, we focus on the firms that are most often sources of pollution.
2Single European Act, Article 25(2), “ [...] environmental damage should as a priority be rectified at

source and that the polluter should pay”
3French Charter for the Environment, Article 4, “ [...] everyone must contribute to repairing the damage

they cause to the environment.”
4European Directive 2004/35/CE of 21 April 2004 on environmental liability with regard to the prevention

and remedying of environmental damage.
5See Cour d’Appel of Paris, October 2012, n°10/18297 for Equal share rule and Tribunal de Grande

Instance of Nanterre, April 2014, n°12/12349 for the Market share rule.
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of the two allocation methods that we study implements the Polluter-pays principle and the

Equal share rule. The other is inspired by the Beneficiary-pays principle.

1.2. Methodology and results

In our approach, the exact contribution of firms to NPS pollution is unknown but the

area of pollution influence of each firm can be established, i.e. a firm can pollute its own

site and the site of specific other firms., for instance neighboring firms. Although the NPS

pollution is by definition diffuse, a multitude of factors can establish a causal relationship

between firms and pollution, including geographical location and the presence of natural

phenomena such as rivers, mountains, or the position of a firm within the production chain.

We represent these liabilities in NPS pollution emissions by an undirected graph. The firms,

or equivalently their production sites are represented by a set of vertices. The fact that the

firms’ activities can pollute the site of another firm is represented by a link between them.

Hence, we envisage bilateral liabilities. The cost needed to clean up each production site is

specified and the sum of these costs must be allocated among the firms. For this purpose, we

use two allocation rules called the Polluter-pays allocation rule and the Beneficiary-

pays allocation rule. The first is based on the Polluter-pays principle, i.e. firms should

equally share the cost of cleaning up NPS pollution for which they can be liable. The second

follows the Beneficiary-pays principle, the cost of cleaning up a site can be fully supported

by the firm that owns the site because it is the only one to benefit from the site’s clean-up.

In order to analyze the relevance of both allocation rules, we adopt a normative approach

by introducing several desirable properties, called axioms. The first fives axioms highlight

the importance of liable firms in the network, while the others are adaptations of classical

axioms in our context. The axiom of No liability focuses on a situation in which the site of

the firm and those of the firms that could have been polluted by its activities are free from

pollution. Hence, such a firm is not involved in any NPS pollution, which we translate into

requirement that it does not bear any cost. We provide a stronger version of the previous

axiom, the axiom of Strong no liability. It requires that a firm should not bear any cost if

its own production site is not polluted. These axioms follow the no liability rule in tort law,

i.e. if no fault is established for any defendant, then non one is liable. The axiom of Equal

allocation under equal liabilities focuses on a situation in which the area of pollution

influence of two firms contains a unique common polluted site. Their respective areas of

influence are everywhere else free from NPS pollution. The axiom imposes an identical share

of the cost. The axiom of Strong equal allocation under equal liabilities relaxes the

previous axiom by considering that the area of pollution influence of two firms contains

the same polluted production sites. The axiom of Fairness, inspired by Myerson (1977),

requires that if measures are taken to ensure that two firms initially liable to each other

cannot pollute the other firm’s site anymore, then the change in each firm’s share of the

costs is the same. This axiom encourages firms to jointly limit or control their NPS pollution
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emissions.

Then, the classical axiom Cost efficiency requires that the total cost of cleaning up

NPS pollution should be entirely allocated among the liable firms. This axiom could also

be applied within each industrial districts, i.e. firms connected to each other by links in the

liability graph but not to the rest of the firms. Indeed, the axiom of District cost efficiency

requires that each industrial district redistributes its total cost of cleaning up NPS pollution

among the member firms. The axiom of Area of influence monotonicity imposes that if

the costs within the area of pollution influence of a given firm weakly increases, then the cost

share allocated to this firm should weakly increase as well. Finally, the axiom of Additivity

in costs requires classically that an allocation rule is additive in the cost vector.

We demonstrate in Proposition 1 that the Polluter-pays allocation rule is the unique

allocation rule satisfying the axioms of Cost efficiency, Additivity in costs, No liability and

Equal allocation under equal liabilities. Proposition 2 shows that the Polluter-pays princi-

ple rule is the unique allocation rule satisfying the axioms of Cost efficiency, Strong equal

allocation under equal liabilities and Area of influence monotonicity. Moreover, Proposition

3 states that the Beneficiary-pays allocation rule is the unique allocation rule that satisfies

District cost efficiency and Fairness. In addition, the Beneficiary-pays allocation rule is the

unique allocation rule that satisfies Cost efficiency, Strong no liability and either Additivity

in costs or Area of influence monotonicity, see Proposition 4.

Our last axiomatic characterization involve a natural consistency axiom. This axiom is

applicable when the proposed allocation designates unambiguously for which site firms pay.

It requires that the cost shares of the firms are the same in the original problem and in a

reduced game obtain by revising the problem data when a firm is no longer involved after

paying its share. We call it Unambiguous consistency. Proposition 5 proves that the

Polluter-pays allocation rule is the unique allocation rule satisfying Unambiguous consistency

together with District cost efficiency, Additivity in costs and either Equal allocation under

equal liabilities or Strong equal allocation under equal liabilities.

In order to analyze sustainability of both allocation rules, we rely on a cooperative game

approach. We construct the Polluters game that assigns to each coalition of firms their

extended cost of cleaning up pollution, i.e. the cost of cleaning up their sites and the sites

for which they can be liable. We show that the Polluters game is concave (Proposition 7)

and that the Polluter-pays allocation rule coincides with the allocation recommended by the

Shapley value of the Polluters game (Proposition 6). Since Shapley (1971) showed that the

Shapley value lies in the core of a concave game, we obtain that the Polluter-pays allocation

rules yields a core allocation of the Polluters game. We demonstrate that the Polluter-pays

allocation rule is the Shapley value of the Polluters game and thus it lies in the core. In

addition, Proposition 7 further reveals that the Beneficiary-pays allocation rule is also in

the core of the Polluters game. Therefore, both allocation rules can be seen as sustaining

cooperation among the firms.
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1.3. Related literature

Ni and Wang (2007) study the allocation of the costs of cleaning a polluted river among

the players located along it. As our paper, they rely on the main advocated doctrines in

international disputes. Applying these doctrines, they propose two allocation rules taking

into account the player’s position along the river. The first, the Local Responsibility Sharing

rule, charges the player in a given segment her own local costs. The second, the Upstream

Equal Sharing rule, considers that upstream players are liable for pollution discharged down-

stream, and charges a player a part of all downstream costs including her own local costs.

For both allocation rules, a suitable cooperative game can be constructed to show that the

associated allocation is a core allocation and coincides with that prescribed by the Shapley

value. The authors also provide axiomatic characterizations with specific axioms inspired

by the context. Dong et al. (2012) model this cost sharing problem on tree network and

introduce another allocation rule named the Downstream Equal Sharing rule, which the

same logic as the Upstream Equal Sharing rule but based on the upstream costs. These

papers have given rise to a literature, see Alcade-Unzu et al. (2015); van der Laan and Moes

(2016); Sun et al. (2019); Hou et al. (2020); Li et al. (2023), among other. Our paper differs

from this literature in at least two points. First, a river is seen as a directed graph with one

source and one spring. Players are located along the river and they are connected directly

or indirectly by a link. On the contrary, we consider an undirected graph where the players

may or may not be connected to each other, i.e. we allow the possibility to have multiple

industrial districts. Moreover, pollution is not transitive: contrary to water pollution, we

assume that pollution does not spread via the neighborhood on the graph. Second, these

papers deal more with PS pollution than with NPS pollution, each player makes a pollution

by using the river network then players’ pollutant emissions can be identified.

Cooperative game theory and the axiomatic approach have also been used to analyze

allocation problems within a tort law context. Dehez and Ferey (2013) use cooperative game

theory to share a damage among multiple tortfeasors who have collectively caused an eco-

nomic loss. They study the Shapley value and its weighted variants (see Kalai and Samet,

1987) of a suitable cooperative game. Similar to our approach, Ferey and Dehez (2016) con-

sider an axiomatic approach to ensure that the damage sharing is in line with fundamental

principles of tort law. Following this article, they deepen the axiomatic study to define an

acceptable and fair sharing of the damage. They retain classical axioms characterizing the

Shapley value and identify new ones more adapted to their cooperative framework. More

recently, Oishi et al. (2023) axiomatize two solutions, including the Shapley value, with

axioms derived from the legal concept of tort law. Other legal contexts are also analyzed

through cooperative game theory. Crettez and Deloche (2019) demonstrate that the share

of an elevator’s costs given by the French law increases the risk of disputes between neigh-

bors. Ambec and Sprumont (2002) focus on the fair distribution resulting from the optimal

allocation of water among agents located along a river and rely on principles inspired by
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international water Agreements6.

1.4. Plan

The rest of the paper is organized as follows. Section 2 defines the NPS pollution cost

sharing problems. We study them by means of a normative approach in Section 3 and then

by means of a cooperative game approach in Section 4.

2. Cost sharing problems and allocation rules

We consider a finite set N of firms. The production site of each firm i ∈ N is polluted,

and this NPS pollution may be caused by other firms. The cost of cleaning up pollution

on the site of firm i is denoted as ci ≥ 0.7 This is a NPS pollution situation as studied by

Segerson (1988), meaning that the actions of possibly several polluters contribute to the

NPS pollution, and only combined effects are observable. Thus, the exact level of liability

of each firm in the global NSP pollution is unknown. However, we know that the activities

of certain firms can pollute the sites of other firms. This situation is represented by a

graph (N,L) whose set of vertices N is the set of participating firms and the set of links

L ⊆ LN ∶= {{i, j} ∈ N ×N ∶ i ≠ j} is such that that a link {i, j} ∈ L means that i’s activity

can also harm j’s site and vice versa. We often write ij instead of {i, j}. For each i ∈ N , the

neighborhood of i in (N,L) is denoted by Li = {j ∈ N ∶ ij ∈ L} and the set L+i = Li ∪ {i} is
called the area of pollution influence of firm i. The connected components8 of (N,L) are
interpreted as independent (with respect to pollution) industrial districts. The objective

is to share the total cost of cleaning up NPS pollution

∑
i∈N ci

across the entire industry. The triple (N, c,L), where c = (ci)i∈N , is called a NPS pollution

cost sharing with network externalities or simply problem. We denote by CSN the

set of all such problems with a given set of firms N . Since N is fixed throughout this article

(with the exception of subsection 3.3), we write (c,L) instead of (N, c,L). We often invoke

6For instance, revisited Convention on the navigation of the Rhine (1868), Colombia river Treaty (1961).
7The objective of environmental law is to force pollution clean up thus, we consider ci as a clean-up

cost. However, it could also represent damages paid to the victims of pollution, firms are both polluters and

victims. We consider this cost as exogenous, it may be provided by firms or by external institutions such as

associations or governmental institutions which have no incentive to lie.
8For any subset of vertices S ⊆ N , L(S) = {ij ∈ L ∶ i, j ∈ S} is the subset of links in L with endpoints in

S. Two vertices i, j ∈ N are connected in (N,L) if either i = j or there is a sequence (i1, . . . , ik) such that

i1 = i, ik = j and for each q ∈ {1, ..., k − 1}, {iq, iq+1} ∈ L. A set S ⊆ N is connected in (N,L) if for each

i, j ∈ S, i and j are connected. A connected component of (N,L) is a connected set S such that for each

i ∈ N/S, S ∪ {i} is not connected. We denote by N/L the set of connected components of (N,L).
6



the following two specific cost sharing problems: (0, L) and (ci, L), for each i ∈ N , where

0 is the null ∣N ∣-dimensional cost vector and ci is obtained from a given cost vector c by

setting cii = ci and cij = 0 for each j ∈ N/{i}. Our cost sharing problem is solved by relying

on an allocation rule. More specifically, an allocation rule on CSN is a function f which

assigns to each problem (c,L) ∈ CSN a non-negative allocation f(c,L) ∈ R∣N ∣+ specifying the

cost share fi(c,L) of each firm i ∈ N .

In order to design relevant allocation rules, we rely on principles of environmental law.

The most famous one is the Polluter-pays principle (see Directorate, 1974, for instance),

which makes the party responsible for producing pollution responsible for paying for the

damage done to the natural environment. In our NPS pollution cost sharing problem, there

is some uncertainty about who exactly contributes to the pollution beyond the possible

liabilities summarized by the graph. Therefore, a natural interpretation of the Polluter-

pays principle is that firms should equally share the pollution costs for which they can be

responsible. The resulting Polluter pays-allocation rule is denoted by PP . Formally,

for each problem (c,L) ∈ CSN and each firm i ∈ N ,

PPi(c,L) = ∑
j∈L+i

cj∣L+j ∣ .
An alternative to the Polluter-pays principle is the so-called Beneficiary-pays principle,

according to which

“The burdens involved [in addressing climate change] should be distributed

amongst states according to the amount of benefit that each state has derived

from past and present activities that contribute to climate change.”(Page, 2012)

A plausible interpretation of this principle is that each firm should pay the full cost of

cleaning up pollution on its own site. This is because cleaning up a firm’s site will only

benefit that firm and not others, or indeed to a significantly lesser extent. This gives rise

to the Beneficiary-pays allocation rule denoted by BP , which assigns to each problem(c,L) ∈ CSN and each firm ∈ N the cost share BPi(c,L) = ci.
Example 1. The set of firms is N = {1, ...,9}. The area of pollution influence of each firm

and their cost are given by Table 1. It easy to see that there are three industrial districts.
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1 2 3

4

5

6 7

8

9

Firm i 1 2 3 4 5 6 7 8 9

L+i {1,2,4} {1,2,3,4} {2,3} {1,2,4} {5,6,7} {5,6,7} {5,6,7} {8,9} {8,9}
ci 12 24 6 12 24 24 12 6 6

Table 1: Area of pollution influence and costs

The Beneficiary-pays allocation rule charges ci to each firm. The Polluter-pays allocation

rule gives the following cost share to firm 1:

PP1(c,L) = c1∣{1,2,4}∣ + c2∣{1,2,3,4}∣ + c4∣{1,2,4}∣ = 12

3
+ 24

4
+ 12

3
= 14.

The cost shares going to the other firms according to the Polluter-pays allocation rule are

given by Table 2. ◻
Firm i 1 2 3 4 5 6 7 8 9

PPi(c,L) 14 17 9 14 20 20 20 6 6

Table 2: The PP allocation

3. A normative approach

In this section, we first present several axioms that are pertinent to the allocation of

the costs associated with the remediation of pollution. The first three axioms are classical

in the cost sharing literature, while most of the other axioms axioms highlight the way in

which responsibilities are interpreted and taken into account in the allocation process. Then,

we invoke these axioms to provide axiomatic characterizations of the two allocation rules

introduced in Section 2.
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3.1. Axioms

We start by the classical axiom of Cost efficiency, which requires that the set of partici-

pating firms should cover the total cost.

Cost efficiency (CE). For each (c,L) ∈ CSN , it holds that ∑i∈N fi(c,L) = ∑i∈N ci.

A stronger condition than Cost efficiency is to require that each industrial district redis-

tributes its total cost among the member firms.

District cost efficiency (DCE). For each district S ∈ N/L, it holds that ∑i∈S fi(c,L) =∑i∈S ci.

This axiom makes sense for at least two reasons: (a) it imposes the cost efficiency condi-

tion on the whole industry (any allocation rule satisfying component District cost efficiency

also satisfies Cost efficiency, while the converse is not true) and (b) the allocation to firms of

a given district should not be influenced by remote firms whose activities cannot contribute

to pollution in the district area. We also invoke the classical axiom of additivity in costs

(see Moulin and Laigret, 2011, for instance).

Additivity in costs (ADD). For each pair of cost sharing problems (c,L), (c′, L) ∈ CSN ,

it holds that f(c + c′, L) = f(c,L) + f(c′, L).
For our NPS pollution cost sharing problem, we can provide the following interpretation.

NPS pollution can, by definition, harm several parts of environment: soil, air and water.

Imagine that the cost of cleaning up NPS pollution consists in the cost of cleaning up water

pollution and the cost of cleaning up air pollution. Additivity in costs says that there is no

difference whether the firms share the two types of cost separately or together.

The next axioms highlight the importance of firms that are liable to each other. As

for District cost efficiency, the next axiom is inspired by the work of Myerson (1977) on

cooperative games with a communication structure. Consider two firms whose activities

potentially pollute each other’s production sites. Consider the counterfactual scenario in

which measures are taken to prove that pollution emissions from one firm can no longer pol-

lute the other, and vice versa. The axiom requires equal changes in each firm’s share of costs.

Fairness (F). For each pair of firms ij ∈ L, it holds that fi(c,L) − fi(c,L/ij) = fj(c,L) −
fj(c,L/ij).
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This axiom encourages firms to jointly invest in technologies to limit the spread of their

pollution. Thus, they can limit their area of pollution influence and reduce their share of

the cost.

The next axiom, called No liability, focuses on a situation in which the production site

of the firm and those of the firms that could have been affected by its activities are free from

pollution. It makes sense that this firm pays no cost since its production site is not involved

in the pollution of other production sites.

No liability (NL). For each firm i ∈ N such that ci = 0 and cj = 0 for each j ∈ Li, it holds

that fi(c,L) = 0.
A stronger version of the previous axiom requires that a firm should not bear any cost

if its own production site is not polluted.

Strong no liability (NL+). For each i ∈ N such that ci = 0, it holds that fi(c,L) = 0.
Through these two axioms, we consider two cases in which a firm is considered non-liable

for NPS pollution. The No liability axiom deals with extensive non-liability, i.e. the firm is

not liable for NPS pollution that its activity cannot impact, while Strong no liability deals

with a local non-liability, i.e. the firm is not liable for NPS pollution that occurs outside the

boundaries of its own site. These axioms interpret the no liability rule in tort law in two

distinct ways: if no liability is established, then the firm does not bear any cost.

The next axiom, emphasizing the role of liable firms, considers a situation in which the

responsibilities of two firms can be compared. More specifically, suppose that the area of

pollution influence of two firms contains a unique common polluted production site. This

means that the two considered firm can only be held responsible for the pollution of this

production site since their respective areas of influence are everywhere else free from pollu-

tion. In such a case, the following axiom imposes an identical allocation for the two firms.

Equal allocation under equal liabilities (EAEL). For each pair of firms i, j ∈ N such

that {q ∈ L+i ∶ cq > 0} = {k} = {q ∈ L+j ∶ cq > 0} for some k ∈ N , it holds that fi(c,L) = fj(c,L).
The previous axiom can be strenghtened by relaxing the fact that the area of pollution

influence of two firms contains a unique common polluted production site.

Strong equal allocation under equal liabilities (EAEL+). For each pair of firms

i, j ∈ N such that {q ∈ L+i ∶ cq > 0} = {q ∈ L+j ∶ cq > 0}, it holds that fi(c,L) = fj(c,L).
It is also possible to link these axioms to a rule of tort law. The per capita rule, if the

10



firms polluted a production site with the same intensity then they share equally the associ-

ated cost. Obviously, Strong equal allocation under equal liabilities implies Equal allocation

under equal liabilities, while the converse implication does not hold. The final axiom im-

poses that if the costs within the area of influence of a given firm weakly increase, then the

cost share allocated to this firm should weakly increase as well.

Area of influence monotonicity (AIM). For each pair of problems (c,L), (c′, L) ∈ CSN

and each firm i ∈ N such that c′j ≥ cj for each j ∈ L+i , it holds that fi(c′, L) ≥ fi(c,L).
3.2. Axiomatic characterizations

We begin with two characterizations of the Polluter-pays allocation rules.

Proposition 1. The unique allocation rule on CSN that satisfies Cost efficiency (CE),

Additivity in costs (ADD), No liability (NL) and Equal allocation under equal liabilities

(EAEL) is the Polluter-pays allocation rule.

Proof. Existence. For each (c,L) ∈ CSN , we have

∑
i∈N PPi(c,L) =∑

i∈N ∑j∈L+i
cj∣L+j ∣ = ∑j∈N ∑i∈L+j

cj∣L+j ∣ = ∑j∈N ∣L+j ∣
cj∣L+j ∣ = ∑j∈N cj,

which proves that PP satisfies (CE). By definition, PP also satisfies (ADD) and (NL).

Regarding (EAEL), consider a problem (c,L) ∈ CSN and two firms i, j ∈ N such that {q ∈
L+i ∶ cq > 0} = {k} = {q ∈ L+j ∶ cq > 0} for some k ∈ N . Then, PPi(c,L) = ck/∣L+k ∣ = PPj(c,L),
as desired.

Uniqueness. Consider any allocation rule f on CSN that satisfies all axioms. For any(c,L), it is clear that c = ∑i∈N ci. Hence (ADD) implies that

f(c,L) =∑
i∈N f(ci, L). (1)

Let us show that f(ci, L) is uniquely determined for each i ∈ N . Pick j ∈ N/L+i and remark

that cij = 0 and cik = 0 for each k ∈ L+j . Therefore, from (NL), we get

fj(ci, L) = 0 (2)

for each j ∈ N/L+i . Moreover, for each j, k ∈ L+i , it holds that {q ∈ L+j ∶ cq > 0} = {i} = {q ∈
L+k ∶ cq > 0}. Thus, (EAEL) yields

fj(ci, L) = fk(ci, L) (3)
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for each j, k ∈ L+i . Combining (2), (3) and (CE), we obtain

fj(ci, L) = cii∣L+i ∣ =
ci∣L+i ∣ (4)

for each j ∈ L+i . With (2), (4) and (1), the proof is complete ∎
The second characterization does not involve the axiom of Additivity in costs.

Proposition 2. The unique allocation rule on CSN that satisfies Cost efficiency (CE),

Strong equal allocation under equal liabilities (EAEL+) and Area of influence monotonicity

(AIM) is the Polluter-pays allocation rule.

Proof. Since it is obvious that PP satisfies the three axioms on CSN , we only prove the

uniqueness part. So consider any allocation rule f on CSN that satisfies the three axioms.

We proceed by induction on the number γ(c) of positive coordinates in vector c.

Initialization. If γ(c) = 0, i.e., if (c,L) = 0, L), then fi(0, L) ≥ 0 for each i ∈ N and∑j∈N fj(0, L) = 0 from the definition of an allocation rule and (CE), which yields fi(c,L) = 0
for each i ∈ N . If γ(c) = 1, then there is i ∈ N such that ci > 0 and (c,L) = (ci, L). By

(AIM), we obtain that fj(ci, L) = fj(0, L) = 0 for each j ∈ N/L+i . By (EAEL+), it holds that
fj(ci, L) = fk(ci, L) for each j, k ∈ L+i , so that (CE) yields fj(ci, L) = ci/∣L+i ∣ for each j ∈ L+i .
Induction hypothesis. Assume that f(c,L) is uniquely determined for each (c,L) ∈ CSN

such that γ(c) ≤ q for some integer q such that 0 ≤ q < n.
Induction step. Consider any (c,L) ∈ CSN such that γ(c) = q +1. Let R = {i ∈ N ∶ ci > 0}
be the coalition of firms with a positive cost. Let P = ∩i∈TL+i . We distinguish two cases.

If P = ∅, then polluted sites are not neighbors in (N,L). For each i ∈ R and each

j ∈ L+i , from AIM and the Initialization, we get fj(c,L) = fj(ci, L) = ci/∣L+i ∣ and for each

j ∈ N/(∪i∈RL+i ), fj(c,L) = fj(0, L) = 0.
If P ≠ ∅, consider first any i ∈ N/P . Then, there is at least of firm j ∈ N/L+i such that

cj > 0. Now, consider the problem (c′, L) such that c′k = ck for each k ∈ N/{j} and c′j = 0.
Since γ(c′) = q, by the Induction hypothesis, we have that f(c′, L) is uniquely determined.

Moreover, an application of (AIM) to (c,L) and (c′, L) yields fi(c,L) = fi(c′, L) and we

conclude that fi(c,L) is uniquely determined for each i ∈ N/P . Now, consider any i ∈ P .

If ∣P ∣ = 1, then fi(c,L) is uniquely determined by (CE). So assume that ∣P ∣ > 1. Note that

(EAEL+) can be applied to each pair of firms i, j ∈ P to obtain fi(c,L) = fj(c,L). The

previous cost shares are uniquely determined by (CE). This conclude the proof. ∎
The axioms invoked in Propositions 1 and 2 are logically independent:
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• The null allocation rule such that for each (c,L) ∈ CSN and each i ∈ N , fi(c,L) = 0
satisfies (ADD), (NL), (EAEL), (AIM) and (EAEL+) but not (CE).

• The allocation rule f such that for each (c,L) ∈ CSN and each i ∈ N ,

fi(c,L) = { ∑j∈N cj/n if cj > 0 for each j ∈ N
PPi(c,L) otherwise,

satisfies (CE), (NL) and (EAEL) but not (ADD).

• The allocation rule f such that for each (c,L) ∈ CSN and each i ∈ N , fi(c,L) =∑j∈N cj/n satisfies (CE), (ADD), (EAEL) and (EAEL+) but not (NL) and (AIM).

• Beneficiary-pays allocation rule BP satisfies (CE), (ADD), (NL) and (AIM) but not

(EAEL) and (EAEL+).
In the rest of this section, we present three characterizations of the Beneficiary-pays

allocation rule.

Proposition 3. The unique allocation rule on CSN that satisfies District cost efficiency

(DCE) and Fairness (F) is the Beneficiary-pays allocation rule.

Proof. Fix any finite player set N . It is obvious that the Beneficiary-pays allocation rule

BP satisfies (DCE) on CSN . It also satisfies (F) since BP does not depend on L. Next,

consider any allocation rule f satisfying the two axioms. This part of the proof mimics

Myerson (1977) and is given for completeness. For each fixed cost vector c, we show that

there is at most one such allocation rule. By contradiction, assume that f and g are two

such allocation rules. Let L be a minimal set of links such that f(c,L) ≠ g(c,L). It must be

that L ≠ ∅ since (DCE) implies that fi(c,∅) = gi(c,∅) = ci for each i ∈ N . Now, consider any

district S ∈ N/L and any link ij ∈ L(S). By minimality of L, f(c,L/{ij}) = g(c,L/{ij}), so
that (F) implies

fi(c,L)−fj(c,L) = fi(c,L/{ij})−fj(c,L/{ij}) = gi(c,L/{ij})−gj(c,L/{ij}) = gi(c,L)−gj(c,L)
or equivalently

fi(c,L) − gi(c,L) = fj(c,L) − gj(c,L).
Therefore, there is a constant a(S,L) ∈ R such that fi(c,L)−gi(c,L) = a(S,L) for each i ∈ S.
Since (DCE) also implies that ∑i∈S fi(c,L) = ∑i∈S ci = ∑i∈S gi(c,L), we get

0 =∑
i∈S (fi(c,L) − gi(c,L)) = ∣S∣a(S,L)

and thus a(S,L) = 0, which implies that fi(c,L) = gi(c,L) for each i ∈ S and each S ∈ N/L,
a contradiction proving the result. ∎
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Proposition 4. The unique allocation rule on CSN that satisfies Cost efficiency (CE),

Strong no liability (NL+) and either Additivity in costs (ADD) or Area of influence mono-

tonicity (AIM) is the Beneficiary-pays allocation rule.

Proof. It is not necessary to prove that the BP allocation satisfies the four axioms.

Regarding the uniqueness parts, consider firstly an allocation rule f on CSN that satisfies

(CE), (NL+) and (ADD). Pick any (c,L) ∈ CSN . Using the decomposition (1), it is enough

to prove that f(ci, L) is uniquely determined for each i ∈ N . So choose any i ∈ N . For

each j ∈ N/{i}, (NL+) yields fj(ci, L) = 0 so that (CE) implies that fi(ci, L) = cii = ci. This

complete the first uniqueness part.

Secondly, consider an allocation rule f on CSN that satisfies (CE), (NL+) and (AIM).

Obviously, (NL+) yields fi(0, L) for each i ∈ N . As before, combining (CE) and (NL+) yields
that fi(ci, L) = ci for each i ∈ N . Now, (AIM) implies that fi(c,L) ≥ fi(ci, L) for each i ∈ N .

Applying (CE) in (c,L), we get

∑
i∈N fi(c,L) =∑

i∈N ci =∑
i∈N fi(ci, L),

which forces fi(c,L) = ci for each i ∈ N and completes the second uniqueness part. ∎
The axioms invoked in Proposition 3 and 4 are logically independent:

• The Polluter-pays allocation rule PP satisfies (DCE), (CE), (ADD) and (AIM) but

not (F) and (NL+).
• The allocation rule f such that for each (c,L) ∈ CSN and each i ∈ N , fi(c,L) =∑j∈N cj/n satisfies (F), (CE) and (ADD) but not (DC), (NL+) and (AIM).

• The null allocation rule satisfies (NL+), (AIM), (F) and (ADD) but not (DCE) and

(CE).

• The allocation rule f such that for each (c,L) ∈ CSN and each i ∈ N ,

fi(c,L) = { ∑j∈N cj/n if cj > 0 for each j ∈ N
BPi(c,L) otherwise,

satisfies (CE) and (NL+) but not (ADD), (F), (DCE) and (AIM).

3.3. Consistency

In this section, we provide an alternative axiomatic approach by means of a consistency

principle (see Thomson, 2011, for a review of the abundant use of the consistency principle

in game theory, economics and political science). In our context, for each problem under
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consideration and each cost allocation, a reduced problem can be constructed by considering

the departure of an arbitrary firm after paying its cost share according to this allocation and

reassessing the options open to the remaining firms. Then, an allocation rule is consistent

if it selects the same the cost shares for the remaining firms in the original problem and in

this reduced problem.

In order to design our consistency principle, it is necessary to consider a cost sharing

problem for which the payoffs given by a cost allocation can be associated to the clean up of

a given site without any ambiguity. This can be achieved in a problem (N, c,L) if there is a
single firm i ∈ N such that ci ≠ 0, which we call unambiguous problem. In such a case, what

the firms pay is necessarily used to clean up the only polluted site. Hence, any unambiguous

problem can be written as (N, ci, L) for some cost vector c and some firm i ∈ N . From

any unambiguous problem (N, ci, L), any firm j ∈ N/{i} and any allocation x ∈ RN+ , we can

construct the reduced game induced from (N, ci, L) by the leave of j after paying its cost

share xj. Its is denoted by (N/{j}, (ci)j,x, L(N/{j})), where for each k ∈ N/{j},
(ci)j,xk = { max{0; ci − xj} if k = i,

0 if k ∈ N/{i, j},
and L(N/{j}) is the usual restriction of L to N/{j}. Moreover, the use of a consistency

principle imposes to consider a class of problems with variable sets of firms. Therefore, in

this section only, we consider the set CS of all problems with a finite firm set and we denote

an element of it by a triple (N, c,L) so that we can clearly identify the set of firms under

consideration.

Unambiguous consistency (UC). For each unambiguous (N, ci, L) ∈ CS and each j ∈
N/{i}, it holds that for each k ∈ N/{j},

fk(N, ci, L) = fk(N/{j}, (ci)j,f(N,ci,L), L(N/{j})).
In words, the axiom says that if a firm pays its cost share and leaves (i.e. it can no

longer be held responsible for the pollution on site i) and the other firms reevaluate their

opportunities by sharing the rest of the pollution cost, then the cost share of each remaining

firm is unaffected. While Unambiguous consistency is satisfied by the PP and BP rules,

the next results shows how it can help to characterize the PP rule.

Proposition 5. The unique allocation rule on CS that satisfies district cost efficiency

(DCE), Additivity in costs (ADD), Unambiguous consistency (UC) and either Equal al-

location under equal liabilities (EAEL) or Strong equal allocation under equal liabilities

(EAEL+) is the Polluter-pays allocation rule.
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Proof. Existence. From the previous results in section 3.2, it is enough to show that

PP satisfies (UC) on CS. So pick unambiguous (N, ci, L) ∈ CS, any j ∈ N/{i} and any

k ∈ N/{j}. We distinguish two cases according to whether firm j is in Li or not. First, If

j ∈ N/Li, since j ≠ i, we have PPj(N, ci, L) = 0. Hence (ci)j,PP (N,ci,L)
i = ci − 0 = ci, which

immediately implies that

PPk(N, ci, L) = PPk(N/{j}, (ci)j,PP (N,ci,L), L(N/{j})) = ci∣L+i ∣
for each k ∈ L+i . Now, for each k ∈ N/(L+i ∪ {j}), we have

PPk(N, ci, L) = PPk(N/{j}, (ci)j,PP (N,ci,L), L(N/{j})) = 0. (5)

Second, if j ∈ Li, then (5) holds for each k ∈ N/L+i . Now, for each k ∈ L+i /{j}, we have:

PPk(N/{j}, (ci)j,PP (N,ci,L), L(N/{j})) = (ci)j,PP (N,ci,L)
i∣L+i ∣ − 1= ci − PPj(N, ci, L)∣L+i ∣ − 1= ci − ci/∣L+i ∣∣L+i ∣ − 1= ci∣L+i ∣= PPk(N, ci, L).

Uniqueness. Consider any f on CS that satisfies the four axioms. Pick any (N, c,L) ∈
CS. From (ADD), it is enough to show that f is uniquely determined for all (N, ci, L), i ∈ N .

Denote by S the district in N/L containing firm i. From (DCE), we get fk(N, ci, L) = 0 for

each k ∈ N/S. Regarding the firms in S, we distinguish two cases.

Case (a). Assume that S = L+i . Then combining (DCE) and either (EAEL) or (EAEL+)
yields immediately fk(N, ci, L) = ci/∣L+i ∣ for each k ∈ S.

Case (b). Assume that L+i ⊊ S. Consider any ordering (i1, . . . , i∣Li∣) of the firms in Li

(which is nonempty by assumption). We consider ∣Li∣ successive applications of (UC) to the

firms in Li. To save on notation, for each q ∈ {1, . . . , ∣Li∣}, we denote by (N q, (ci)q,f , Lq) the
reduced problem obtained from (N, ci, L) after the successive applications of UC to i1, ...,

iq−1. Then, for each k ∈ S/L+i , we have

fk(N, ci, L) = fk(N1, (ci)1,f , L1) = ⋯ = fk(N ∣Li∣−1, (ci)∣Li∣−1,f , L∣Li∣−1) = fk(N ∣Li∣, (ci)∣Li∣,f , L∣Li∣).
(6)

In the problem (N ∣Li∣, (ci)∣Li∣,f , L∣Li∣), note that each firm k ∈ S/L+i now belongs to a district

different from the one of firm i and that this district is by construction free of pollution.

16



Therefore, (DCE) implies that

fk(N ∣Li∣, (ci)∣Li∣,f , L∣Li∣) = 0,
so that we get fk(N, ci, L) = 0 for each k ∈ S/Li from (6). Finally, combining the previous

equality with (DCE) and either (EAEL) or (EAEL+) yields that fk(N, ci, L) = ci/∣L+i ∣ for
each k ∈ L+i , concluding the proof. ∎

The axioms invoked in Proposition 5 are logically independent:

• The null allocation rule satisfies all axioms except (DCE);

• The BP allocation rule satisfies all axioms except (EAEL) or (EAEL+);
• The allocation rule f such that f(N, c,L) = BP (N, c,L) if cj > 0 for each j ∈ N and

f(N, c,L) = PP (N, c,L) otherwise satisfies all axioms except (ADD);

• The allocation rule f such that f(N, c,L) = BP (N, c,L) if ∣N ∣ > 10 for each j ∈ N and

f(N, c,L) = PP (N, c,L) if ∣N ∣ ≤ 10 satisfies all axioms except (UC).

4. A cooperative game approach

Let N be a nonempty and finite set of players. Each subset S ∈ 2N is referred to a

coalition of cooperating players. The grand coalition N represents a situation in which all

players cooperate. Coalition ∅ represents a situation in which no player cooperates, it is

called the empty coalition.

A transferable utility game, or simply a TU-game, is a couple (N,v) consisting of a finite

players set N and a characteristic function v ∶ 2N → R, with the convention that v(∅) = 0.
The real number v(S) can be interpreted as the worth the players in S generate when they

cooperate. This worth can be perceived by the players as desirable (like profits) or, on the

contrary, undesirable (like costs). We will focus on the second case: the players share costs.

Thus, from now on, the game (N,v) is interpreted as a cost game. For ease of writing the

game (N,v) will be designated by its characteristic function v when N is fixed.

The basic issue in the theory of cooperative games is to divide fairly the cost of the grand

coalition among its members. This issue may be addressed using allocations for TU-games.

An allocation x ∈ R∣N ∣ is a ∣N ∣-dimensional vector that assigns a share of the cost xi ∈ R to

each player i ∈ N .

An efficient allocation shares exactly v(N) among the players and it is called coalitionally

rational if no coalition would be better off by splitting from the grand coalition and paying

its cost. The core (Shapley, 1955) of a game v is the set Core(v) of efficient and coalitionally

rational allocations:

Core(v) = {x ∈ RN ∶∑
i∈N xi = v(N) and for each S ⊆ N,∑

i∈S xi ⩽ v(S)}.
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In the context of cost sharing, an allocation in the core cannot be dominated by an

alternative allocation in which some player or coalition of players can have their cost shares

reduced. Thus, no coalition of players has the incentive to not cooperate in the grand

coalition, which can be described as the fact that the allocation is stable. Shapley (1971)

demonstrates that the core of a concave game is nonempty. Formally, a game v on N is

concave if

v(S ∪ {i}) − v(S) ≥ v(T ∪ {i}) − v(T ), ∀S ⊆ T ⊆ N/{i}.
The core can contain several allocations from which it can be difficult to choose one and

only one. Shapley (1971) proves that the Shapley value of a concave game lies in its core.

The Shapley value (Shapley, 1953) assigns to each game v a unique allocation Sh(v) such
that for each i ∈ N :

Shi(v) = ∑
S⊆N/{i}

∣S∣!(∣N ∣ − ∣S∣ − 1)!∣N ∣! (v(S ∪ {i}) − v(S)).
The Shapley value of a player can be seen as an average of the additional cost incurred

by the player to each coalition not already containing her.

In the rest of this section, we prove that the Polluter-pays allocation rule coincides

with the allocation prescribes by the Shapley value of a suitable cooperative game. More

specifically, to each problem (c,L) ∈ CSN we associate the Polluters game vc,L on N such

that, for each coalition S ⊆ N ,

vc,L(S) = ∑
i∈L+S

ci

where L+S = ∪j∈SL+j . The Polluters game vc,L is a global approach of pollution. The cost

vc,L(S) can be interpreted as the cost of cleaning up the pollution that can be caused by

the members of coalition S. Example 2 illustrates this game.

Example 2. The set of firms is N = {1,2,3}, the area of pollution influences are given by

L+1 = {1,2}, L+2 = {1,2,3} and L+3 = {2,3}. The costs of cleaning up NPS pollution are the

following c1 = 4, c2 = 3 and c3 = 2.

5

6 7
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S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
vc,L(S) 7 9 5 9 9 9 9

◻
Proposition 6. For each problem (c,L), the Polluter-pays allocation rule PP (c,L) is the
Shapley value of the game vc,L.

Proof. We show that the allocation rule f on CSN such that for each (c,L) ∈ CSN ,

f∗(c,L) = Sh(vc,L) satisfies the four axioms invoked in Proposition 1.

Since the Shapley value is an efficient allocation rule, for each problem (c,L) ∈ CSN , we

have that ∑
i∈N f∗i (c,L) =∑

i∈N Shi(vc,L) = vc,L(N) = ∑
i∈L+N

ci =∑
i∈N ci,

proving that f∗ satisfies (CE).
Next, consider any two problem (c,L), (c,L′) ∈ CSN . Then,

vc+c′,L(S) = ∑
i∈L+S
(c + c′)i = ∑

i∈L+S
ci + ∑

i∈L+S
c′i = vc,L(S) + vc′,L(S)

for each S ⊆ N . From the additivity of the Shapley value, we get that

f∗(c + c′, L) = Sh(vc+c′,L) = Sh(vc,L) + Sh(vc′,L) = f∗(c,L) + f∗(c′, L),
proving that f∗ satisfies (AC).

Now, consider any problem (c,L) ∈ CSN and any firm i ∈ N such that ci = 0 and cj = 0
for each j ∈ Li. Pick any coalition S ⊆ N/{i}. Then

vc,L(S ∪ {i}) = ∑
j∈LS∪{i}+

cj = ∑
j∈L+S

cj + ∑
j∈L+i /L+S

= ∑
j∈L+S

cj = vc,L(S).
This means that firm i is a null player in the Polluters game vc,L. Since the Shapley value

satisfies the Null player axiom, it follows that f∗i (c,L) = Shi(vc,L) = 0, proving that f∗
satisfies (NL).

Finally, consider a problem (c,L) ∈ CSN and two firms i, j ∈ N such that {q ∈ L+i ∶ cq >
0} = {k} = {q ∈ L+j ∶ cq > 0} for some k ∈ N . Pick any coalition S ⊆ N/i, j. If k ∈ L+S, then

vc,L(S ∪ {i}) = ∑
q∈L+

S∪{i}
cq = ∑

q∈L+S
cq = vc,L(S ∪ {j}).
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If k ∈ N/L+S, then
vc,L(S ∪ {i}) = ∑

q∈L+
S∪{i}

cq = ∑
q∈L+S

cq + ck = vc,L(S ∪ {j}).
Combining the previous two cases, we have that i and j are equal players in the Polluters

game vc,L. Since the Shapley value satisfies the axiom of Equal treatment of equal players,

we obtain that f∗i (c,L) = Shi(vc,L) = Shj(vc,L) = f∗j (c,L), proving that f∗ satisfies (EAEL).
We proved that f∗ satisfies the four axioms invoked in Proposition 1. Since there is a unique

allocation rule satisfying this set of axioms, we conclude that f∗ = PP as desired. ∎
Proposition 7. The Polluters game vc,L is concave and thus its core contains the alloca-

tion prescribed by the Polluter-pays allocation rule. Moreover, the core contains also the

allocation prescribed by the Beneficiary-pays allocation rule.

Proof. Consider any problem (c,L) ∈ CSN and the associated Polluters game vc,L. Pick

any firm i ∈ N and a pair of coalitions S,T ⊆ N such that S ⊆ T ⊆ N/{i}. Obviously, we

have L+S ⊆ L+T . Using this inclusion, we can write that

vc,L(S ∪ {i}) − vc,L(S) = ∑
j∈LS∪{i}+

cj − ∑
j∈L+S

cj

= ∑
j∈L+i /L+S

cj

≥ ∑
j∈L+i /L+T

cj

= ∑
j∈LT∪{i}+

cj − ∑
j∈L+T

cj

= vc,L(T ∪ {i}) − vc,L(T ),
which proves that vc,L is concave.

The BP is obviously an efficient allocation in any problem (c,L). Moreover, for each

S ⊆ N , we have ∑
i∈SBPi(c,L) =∑

i∈S ci ≤ ∑
j∈∪i∈SL+i

cj = ∑
j∈L+S

cj,

where the inequality comes from the fact that S ⊆ ∪i∈SL+i for each nonempty coalition S ⊆ N .

Hence, BP (c,L) is coalitionnaly rational as well, proving that BP (c,L) lies in the core of

the Polluters game vc,L. ∎
5. Conclusion

We conclude with a recap chart in which a “+” means that an axiom is satisfied by the

corresponding allocation rule and a “−” has the converse meaning. Superscript numbers

indicate the propositions in which the axioms are invoked for a characterisation.
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(CE) (DCE) (ADD) (F ) (NL) (NL+) (EAEL) (EAEL+) (AIM) (UC)
PP +1,2 +5 +1,5 − +1 − +1,5 +2,5 +2 +5
BP +4 +3 +4 +3 + +4 − − +4 +
References
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