
HAL Id: hal-04543626
https://univ-fcomte.hal.science/hal-04543626

Preprint submitted on 12 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Manipulable outcomes within the class of scoring voting
rules

Mostapha Diss, Boris Tsvelikhovskiy

To cite this version:
Mostapha Diss, Boris Tsvelikhovskiy. Manipulable outcomes within the class of scoring voting rules.
2024. �hal-04543626�

https://univ-fcomte.hal.science/hal-04543626
https://hal.archives-ouvertes.fr


Working paper No. 2020 – 08

C
R

E
S

E 30, avenue de l’Observatoire
25009 Besançon
France
http://crese.univ-fcomte.fr/

The views expressed are those of the authors
and do not necessarily reflect those of CRESE.

Manipulable outcomes within the class of
scoring voting rules

Mostapha Diss, Boris Tsvelikhovskiy

November 2020



Manipulable outcomes within the class of scoring
voting rules*

Mostapha Diss† Boris Tsvelikhovskiy‡

November 9, 2020

Abstract

Coalitional manipulation in voting is considered to be any scenario in which a group
of voters decide to misrepresent their vote in order to secure an outcome they all prefer
to the first outcome of the election when they vote honestly. The present paper is de-
voted to study coalitional manipulability within the class of scoring voting rules. For
any such rule and any number of alternatives, we introduce a new approach allowing to
characterize all the outcomes that can be manipulable by a coalition of voters. This gives
us the possibility to find the probability of manipulable outcomes for some well-studied
scoring voting rules in the case of small number of alternatives and large electorates
under a well-known assumption on individual preference profiles.
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1 Introduction

Since the seminal papers of Gibbard (1973) and Satterthwaite (1975) who proved that every
non-dictatorial social choice rule can be manipulated in the presence of at least three alterna-
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tives, the problem of coalitional manipulation has received a lot of attention in recent decades
in social choice theory. Broadly speaking, a given social choice rule is called coalitionally
manipulable if there exists a given list of voting preferences and a coalition of voters,1 such
that the preferences of all the voters outside the coalition remain the same, while the prefer-
ences of voters within the coalition can be altered in such a way that the winner changes and
each of the voters from the coalition is ‘happy about the change’.

Scoring voting rules, also called positional voting rules, have attracted a considerable
amount of attention in the literature dealing with manipulation. This class of voting rules
can be defined as follows: each voter’s preference must be a vector that gives a number of
points that the voter assigns to each alternative according to his or her position in the voter’s
preference. The points assigned by all voters are summed, and the winning alternative has the
highest number of points. A number of studies has been conducted on the evaluation of the
degree of manipulability of various social choice rules, i.e., the extent to which social choice
rules are manipulable by a coalition of voters or by an individual voter. The reader may
refer, for instance, to Aleskerov and Kurbanov (1999), Chamberlin (1985), Diss (2015), El
Ouafdi et al. (2020a), El Ouafdi et al. (2020b), Favardin and Lepelley (2006), Favardin et al.
(2002), Gehrlein et al. (2013), Kamwa and Moyouwou (2020), Kelly (1993), Kim and Roush
(1996),Lepelley and Mbih (1994),Lepelley et al. (2008),Moyouwou and Tchantcho (2017),
Nitzan (1985), Peleg (1979), Pritchard and Wilson (2007a), Pritchard and Wilson (2007b),
Saari (1990), and Schürmann (2013). The methodology used in this literature consists first
in characterizing the specific conditions that must be required for a given voting rule to
be manipulable by a coalition of voters. The final step consists in the evaluation of the
(theoretical) probability of this situation under various assumptions on voters’ preferences.
For more details on those probabilistic assumptions and their use in social choice theory,
the reader can refer to Diss and Merlin (2020), Gehrlein and Lepelley (2017), Gehrlein and
Lepelley (2011).

However, as pointed out in a recent paper by El Ouafdi et al. (2020a), with some notable
exceptions the results appearing in the literature only deal with three-alternative elections,
not because it is the most interesting case, but due to the difficulties arising when considering
more than three alternatives. The main goal of this paper is to provide a significant improve-
ment in this direction. This is achieved via presenting systems of linear inequalities, which
determine manipulable profiles, that is the lists defining the vote of all voters taking part in
the decision process, for the whole class of scoring voting rules independently on the number
of alternatives. More precisely, we focus on a detailed exposition of the new approach for
obtaining the list of linear inequalities a profile satisfies if and only if it is manipulable in the
case ofm ≥ 3 alternatives for all scoring rules.

The paper is organized as follows. Section 2 describes the basic framework. The core
of the paper is Section 3, where the main results are presented. We start off with provid-
ing a simplified illustration of how our methodology works in the case of three-alternative
elections. Then, the precise list of inequalities for the whole class of scoring rules is pre-

1A coalition is defined as any non-empty subset of voters.
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sented. Attention will be focused on the limiting case where the number of voters tends
to infinity. This will enable us to complete the existing literature dealing with the proba-
bility of manipulable outcomes by providing in Section 4 the corresponding values for the
three most studied scoring rules in this literature which are Plurality, Antiplurality and Borda
rules in the presence of m = 4 and m = 5 alternatives under the well-known Impartial and
Anonymous Culture assumption (defined later). The results are approximate since they are
obtained by Monte-Carlo simulations, but with a high degree of precision, since we used
profiles of cardinality 8 · 106 for m = 4 and 8 · 105 for m = 5 alternatives. To the best of
our knowledge none of those results have appeared in the literature, with the exception of the
Plurality rule andm = 4 (see El Ouafdi et al. (2020a)). The new results clearly indicate that
among the three positional rules under consideration Antiplurality has a much lesser degree
of manipulability (see Tables 5, 6, and 7). The last section presents our conclusions.

2 Preliminary definitions

Let us assume that the number of voters/individuals is denoted by n and the number of
alternatives/candidates bym. The voters’ preferences are assumed to be linear orders which
means that voters rank alternatives from most preferred to least preferred and indifference is
not allowed. An anonymous preference profile, hereafter simply called a profile, is an m!-
tuple of non-negative integer numbers (n1, n2, . . . , nm!) such that ni ≥ 0 for allm! ≥ i ≥ 1
and

m!∑
i=1

ni = n.2 Each ni is equal to the number of voters with preferences of type i. In the

limit as n → ∞, we consider the normalized profile vectors of the form p = (p1, . . . , pm!)

with each pi = ni
n
≥ 0 and

m!∑
i=1

pi = 1. Throughout the paper, the alternatives will be called

A1, A2, . . . , Am and the types of possible preference rankings of the alternatives will always
be listed following an increasing order of j in the notation Aj. In addition, the proportion
of individuals having each possible preference ranking will be denoted accordingly. For
instance, in the case of m = 3 alternatives, the possible preference rankings are denoted
by (A1, A2, A3) p1, (A1, A3, A2) p2, (A2, A1, A3) p3, (A2, A3, A1) p4, (A3, A1, A2) p5 and
(A3, A2, A1) p6. The notation (A1, A2, A3) p1, for instance, means that a fraction p1 of
individuals have preferences with A1 being most preferred, A3 being least preferred and
with A2 being ranked between them.

In the case of m alternatives and individual preferences expressed as linear orders, we
can define the class of scoring voting rules as follows:

Definition 2.1. In the case of linear orders on m alternatives, every scoring voting rule can
be defined by the weight vector w = (w1, w2, . . . , wm) such thatw1 ≥ w2 ≥ . . . ≥ wm and
w1 > wm. It means that every time an alternative is ranked r-th by one voter it obtains wr
points; afterwards we select the alternative(s) obtaining the greatest aggregated score.

2This is also known as a voting situation in the literature.
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Given this definition, we are now ready to describe three well-known scoring voting
rules. Under Plurality rule each voter has one vote which he/she can cast for any one of the
m alternatives, i.e., w = (1, 0, . . . , 0). Under Borda rule, we select the alternative with the
highest Borda score such that each first-place vote is worthm− 1 points, each second-place
vote is worthm− 2 points, and so on until 0 points are assigned to each last-place vote, i.e.,
w = (m − 1,m − 2, . . . , 1, 0). Under Antiplurality rule, we return the alternative with the
highest aggregated score such that each voter assigns one point for any one of them−1 best
ranked alternatives, i.e., w = (1, 1, . . . , 1, 0).

Note that in the presence of three alternatives A1, A2, and A3, we see that any general
scoring rule w = (w1, w2, w3) is equivalent to the normalized scoring vector (1, λ, 0) with
0 ≤ λ ≤ 1. This is obtained by subtracting w3 and dividing by w1 −w3 any component of
w. The well-known scoring rules become the Plurality rule with λ = 0, the Borda rule with
λ = 0.5, and the Antiplurality rule with λ = 1.

As already mentioned, we focus in this paper on the coalitional manipulation which can
be defined as follows:

Definition 2.2. The outcome of an election is said to be coalitionally manipulable if there
exists an alternative such that all members of the electorate for whom she is preferable over
the winning alternative can change their preferences in such a way that this alternative wins
the election. The preferences of the rest of the electorate remain the same.

We mainly focus in this paper on the manipulation by coalitions of maximal sizes but
we will also show that the approach that we consider can be adapted when manipulation by
coalitions of smaller sizes of the electorate is considered.

We say that the initial arrangement is (A1, A2, . . . , Am) if the collective ranking of the
alternatives before manipulation is: A1 first, A2 second and so on until alternative Am which
is ranked last. Let us consider an example in order to highlight the notion of manipulation.

Example 2.3. Let m = 3 and the scoring rule be Borda rule, i.e., w = (2, 1, 0). To show a
manipulable outcome, we set p1 = 5/9, p3 = 4/9, and pj = 0 for j 6= 1, 3. By the definition
of Borda rule, the initial arrangement is (A1, A2, A3) since alternativeA1 wins and gets 14/9
points, A2 gets 13/9 points, and finallyA3 gets 0 points. But, if voters having the preference
(A2, A3, A1) chose to vote (A2, A1, A3) instead, then the final result would be in favor of
alternative A2 since A1 gets 10/9 points, A2 gets 13/9 points, and A3 gets 4/9 points.

With a given initial arrangement, m − 1 different coalitions can be formed. This is due
to the fact that for each alternative, who has not won the election, there may be a group of
voters who rank it higher than the winner. As any coalition is determined by the alternative it
would prefer to have as the winner of the election, the alternatives’ names will be used for the
notations of the coalitions hereafter. Alternative Ai will be called unifying for the coalition
denoted by CoalAi that would prefer to have Ai as the winner and let us denote by CAi the
proportion of individuals in this coalition. In the case of m = 3 alternatives, for instance,
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two coalitions can be formed since the unifying alternative can be any alternative except the
winner. In this case, when the winner is alternative A1, we have that alternative A2 is unify-
ing for the coalition CoalA2 formed by voters with preferences (A2, A1, A3), (A2, A3, A1)
and (A3, A2, A1) and alternative A3 is unifying for the coalition CoalA3 formed by voters
with preferences (A3, A1, A2), (A3, A2, A1) and (A2, A3, A1). It is clear that the preferences
(A2, A3, A1) and (A3, A2, A1) participate in both coalitions CoalA2 and CoalA3 .

We introduce now the concept of intermediate preferences.

Definition 2.4. Intermediate preferences are preferences of the form (∗, ∗, . . . , ∗) with each
"∗" symbol being either an alternative’s name or the "?" mark, the latter represents the fact
that its corresponding rank has yet to be assigned by the voter.

Typical examples of intermediate preferences in three-alternative elections are (?, ?, ?)
where the concerned voter is undecided on all of the three positions and (A1, ?, ?) where
the concerned voter ranks alternative A1 at the first position and he/she is undecided on the
second and third positions in his/her preference.

Let us now introduce d(Ak, Ai), with i 6= k, which denotes the difference in points
between the unifying alternative Ak and alternative Ai prior to the coalition participants’
arrangement of all the places except the first. In the case of three alternatives, when the
winner is alternative A1 for instance, individuals of CoalA2 (of proportion CA2 = p3 +
p4 + p6) vote for alternative A2, i.e., the unifying alternative of that coalition. In addition,
those individuals only assign weight 1 to their first preferred alternative and zero weight to
the other alternatives prior to the coalition participants’ arrangement of the second and third
places. In other words, those individuals have an intermediate preference of type (A2, ?, ?).
Note that the other individuals (of proportion p1 + p2 + p5) assign all their points and vote
sincerely when we focus on the manipulation in favor of A2. As a consequence, the score of
alternative A2 is λp1 + p3 + p4 + p6 and the score of alternative A1 is p1 + p2 + λp5. This
leads to d(A2, A1) = p3 + p4 + p6 − p2 + (λ− 1)p1 − p5.

3 Conditions describing manipulability

In this section we show that for every coalition there exists a system of inequalities which
characterize the set of all the profiles that are manipulable by it. In order to make a simplified
illustration of the general case that we will provide in Theorem 3.1, let us start first by the
case of three-alternative elections. Let again the alternatives be referred to as A1, A2, and
A3 and consider the representation w = (1, λ, 0), with 0 ≤ λ ≤ 1, that defines all possible
scoring rules with three alternatives. Using all the above definitions, we are ready to provide
the list of inequalities which characterizes the set of all the profiles p = (p1, . . . , p6) that
are manipulable by a coalition of voters for three alternatives. The first system indicates
the conditions under which the manipulation is in favour of A2; the second system concerns
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manipulation in favour of A3.




pi ≥ 0, i ∈ {1, 2, . . . , 6}

p1 + p2 + p3 + p4 + p5 + p6 = 1

(1− λ)p1 + p2 + (λ− 1)p3 − p4 + λp5 − λp6 > 0, A1 beats A2

λp1 − λp2 + p3 + (1− λ)p4 − p5 + (λ− 1)p6 > 0, A2 beats A3

p3 + p4 + p6 − p2 + (λ− 1)p1 − λp5 > 0, d(A2, A1) > 0

(2− λ)(p3 + p4 + p6) + (2λ− 1)p1 − (1+ λ)p2 − (1+ λ)p5 > 0, d(A2, A1) + d(A2, A3) > λCA2



pi ≥ 0, i ∈ {1, 2, . . . , 6}

p1 + p2 + p3 + p4 + p5 + p6 = 1

(1− λ)p1 + p2 + (λ− 1)p3 − p4 + λp5 − λp6 > 0, A1 beats A2

λp1 − λp2 + p3 + (1− λ)p4 − p5 + (λ− 1)p6 > 0, A2 beats A3

p4 + p5 + p6 − p1 + (λ− 1)p2 − λp3 > 0, d(A3, A1) > 0

p4 + p5 + p6 − p3 + λp2 − λp1 > 0, d(A3, A2) > 0

(2− λ)(p4 + p5 + p6) − (1+ λ)p1 + (2λ− 1)p2 − (1+ λ)p3 > 0, d(A3, A1) + d(A3, A2) > λCA3 .

(3.1)

Without loss of generality we assume that the initial arrangement is (A1, A2, A3). This
means that A1 has more total points than A2 who in turn has more total points than A3. This
explains the two first inequalities of each system. Recall that when the winner is alternative
A1 we have that alternative A2 is unifying for the coalition CoalA2 formed by voters with
preferences (A2, A1, A3),(A2, A3, A1), and (A3, A2, A1). If we count the number of points
for each alternative prior to the coalition participants’ arrangement of all the places except
the first which is given to the unifying alternative Ak (i.e., having intermediate preferences
of the form (Ak, ?, ?)), the unifying alternative Ak must have the largest number of points.
Thus, the two inequalities d(Ak, Ai) > 0, i 6= k are necessary with k = 2 and k =
3 for the first and the second systems, respectively. Note that the inequality called ‘A2
beats A3’ in the first system leads to d(A2, A3) > 0. The next step is to understand when
individuals of the coalition unified by an alternative can successfully manipulate the election.
Actually, all the freedom they possess at this point is to give λ points from each participant
of the coalition (by assigning the second place) to one of the remaining two alternatives
without violating the condition that their alternative has more points. This can be done if
and only if the sum of the differences in points between the unifying alternative and each
of the remaining two, prior to the coalition members’ making a choice of their second most
preferable alternative, is greater than λ times the number of people in the coalition. This
is equivalent to d(A2, A1) + d(A2, A3) > λCA2 and d(A3, A1) + d(A3, A2) > λCA3 in
the first and the second systems, respectively. Recalling that we consider a manipulation by
coalitions of maximal sizes (i.e., CA2 = p3 + p4 + p6 and CA3 = p4 + p5 + p6), this leads
to the last inequality of every system. That analysis gives first insights on the validity of our
approach since the systems described above are exactly the same as the ones already obtained
by Moyouwou and Tchantcho (2017) who determined necessary and sufficient conditions
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for a given profile to be coalitionally manipulable under a general scoring rule with three
alternatives.

We consider now the general case of m alternatives. Recall that the unifying alternative
can be any alternative except the winner so thatm− 1 coalitions can be formed. Here again
we consider the coalitions of maximal sizes, i.e., each coalition consists of all voters with
the unifying alternative ranked higher than the winner in their preferences. The set of such
preferences has cardinality m!

2
.

Theorem 3.1. Let m ≥ 3 and suppose that the initial arrangement is (A1, A2, . . . , Am)
under the positional voting rule having weight vector w = (w1, w2, . . . , wm). A profile
p = (p1, . . . , pm!) is manipulable by the coalition with unifying alternative Ak if and only if
p satisfies the following system of inequalities:





Preliminary Inequalities (PI)



m!∑
i=1

pi = 1

pi ≥ 0
The initial arrangement is (A1, A2, . . . , Am)

Strategic Inequalities (SI)



∑
i6=k
d(Ak, Ai) > (w2 + . . .+wm−1 +wm)CAk

∑
i6=k
d(Ak, Ai) −M1 > (w3 + . . .+wm−1 +wm)CAk

. . .
∑
i6=k
d(Ak, Ai) −

m−4∑
j=1

Mj > (wm−2 +wm−1 +wm)CAk

∑
i6=k
d(Ak, Ai) −

m−3∑
j=1

Mj > (wm−1 +wm)CAk

Mm−1 > wmCAk ,

(3.2)

where M1 = max{d(Ak, Ai) | i 6= k},M2 = max2{d(Ak, Ai) | i 6= k}, . . . ,Mm−1 =
maxm−1{d(Ak, Ai) | i 6= k}. The notation maxs{d(Ak, Ai) | i 6= k} stands for the sth largest
value in {d(Ak, Ai) | i 6= k}.

Proof. First let us show that the SI inequalities in (3.2) are necessary. This will be checked
by induction on m, the base being m = 3. Notice that it is clearly reasonable for all the
members of the coalition to start filling their profiles by updating their intermediate prefer-
ences to (Ak, ?, . . . , ?). The first inequality in the SI system simply guarantees that after that
update the coalition participants can distribute the remaining votes they have to give without
violating the fact that Ak has more points than any other alternatives with no restrictions on
the distribution of the votes. The second to last inequalities of the SI system can be seen to
be those for the positional rule with w ′ = (w1, w3, . . . , wm−1, wm) and m − 1 alternatives
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(alternative As withM1 = d(Ak, As) is eliminated). The statement follows.

Now we establish the sufficiency of inequalities (3.2). We argue by induction on the number
of alternatives m, the base being m = 3. The sufficiency of inequalities (3.2) is estab-
lished via the step by step procedure of updating the intermediate preferences of coalition
participants presented below.

Step 1. All the members of the coalition start filling their preferences by puttingAk as the most
preferrable alternative. At this point the preferences of all participants of CoalAk are
identical and equal to (Ak, ?, . . . , ?), where the question marks stand for the places yet
to be assigned.

Step 2. Let As be the alternative with d(Ak, As) = M1. We will distinguish between two
cases:

case (a) M1 > w2CAk . Then all participants of CoalAk update their intermediate pref-
erences to (Ak, As, ?, . . . , ?) and the list of inequalities in the SI system of (3.2)
without the second one from the top is easily seen to be the one for the positional
rule withm− 1 alternatives and weight vector (w1, w3, . . . , wm);

case (b) wσCAk < M1 < wσ−1CAk for some 2 < σ ≤ m. We would like to point out
that the case M1 < wmCAk can never occur as it would imply

∑
i 6=k
d(Ak, Ai) <

(m−1)wmCAk < (w2+. . .+wm−1+wm)CAk and violate the first (SI) inequality.

Let ε > 0 be an arbitrary small positive constant, satisfying

(?) ε does not exceed the smallest difference between the left-hand side and
right-hand side of the SI inequalities of (3.2).

It will serve as the remaining difference in points between Ak and As after the
update of preferences described below. Set t :=

M1−wσCAk
wσ−1−wσ

− ε and let t ‘par-
ticipants’ update their intermediate preferences to (Ak, ?, . . . , ?, As

σ−1
, ?, . . . , ?) and

the remaining CAk − t to (Ak, ?, . . . , ?, As
σ
, ?, . . . , ?). Introduce the weight

wσ−1,σ :=
(CAk − t)wσ−1 + twσ

CAk
(3.3)

and set
w ′ = (w1, . . . , wσ−2, wσ−1,σ, wσ+1, . . . , wm). (3.4)

After updates of coalition participants’ intermediate preferences and elimination
of alternative As, the system of SI inequalities in (3.2) becomes the one for the
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positional rule withm− 1 alternatives and weight vector w ′:




∑
i 6=k,s

d(Ak, Ai) > (w2 + . . .+wσ−1,σ + . . .+wm)CAk
∑
i 6=k,s

d(Ak, Ai) −M2 > (w3 + . . .+wσ−1,σ + . . .+wm)CAk

. . .
∑
i 6=k,s

d(Ak, Ai) −
σ−2∑
j=2

Mj > (wσ−1,σ + . . .+wm)CAk

∑
i 6=k,s

d(Ak, Ai) −
σ−1∑
j=2

Mj > (wσ+1 + . . .+wm)CAk

. . .
∑
i 6=k,s

d(Ak, Ai) −
m−4∑
j=2

Mj > (wm−2 +wm−1 +wm)CAk

∑
i 6=k,s

d(Ak, Ai) −
m−3∑
j=2

Mj > (wm−1 +wm)CAk

Mm−1 > wmCAk ,

(3.5)

which, using thatM1 = d(Ak, As) = (wσ−1+wσ−wσ−1,σ)CAk , can be rewritten
as





∑
i6=k
d(Ak, Ai) > (w2 + . . .+wσ−1 +wσ + . . .+wm)CAk + ε

∑
i6=k
d(Ak, Ai) −M2 > (w3 + . . .+wσ−1 +wσ + . . .+wm)CAk + ε

. . .
∑
i6=k
d(Ak, Ai) −

σ−2∑
j=2

Mj > (wσ−1 +wσ + . . .+wm)CAk + ε

∑
i6=k
d(Ak, Ai) −

σ−1∑
j=2

Mj > (wσ+1 + . . .+wm)CAk

. . .
∑
i6=k
d(Ak, Ai) −

m−4∑
j=1

Mj > (wm−2 +wm−1 +wm)CAk

∑
i6=k
d(Ak, Ai) −

m−3∑
j=1

Mj > (wm−1 +wm)CAk

Mm−1 > wmCAk
(3.6)

Recalling that M1 is greater than any other Mi by definition and using the (?)
assumption on ε, we see that each of the inequalities in (3.6) follows from the
corresponding SI inequality in (3.2).
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Let us now illustrate the results of this theorem using an example.

Example 3.2. Consider the Borda rule with weight vector w = (3, 2, 1, 0) for m = 4

alternativesA1,A2,A3, andA4 and the voting profile given in Table 1 below. In this example,
the initial arrangement is (A1, A2, A3, A4) as it is shown in the last row. We would like
to determine if the chosen profile is vulnerable to manipulability by the largest possible
coalition with unifying alternativeA2, i.e., CoalA2 of cardinality CA2 = p7+p8+p15 = 5/9.

Table 1: Voting profile and corresponding point distribution

Preference Fraction A1 A2 A3 A4
(A2, A1, A3, A4) p7 = 2/9 4/9 6/9 2/9 0

(A2, A1, A4, A3) p8 = 2/9 4/9 6/9 0 2/9

(A3, A1, A4, A2) p14 = 1/9 2/9 0 3/9 1/9

(A3, A2, A1, A4) p15 = 1/9 1/9 2/9 3/9 0

(A3, A4, A1, A2) p17 = 1/9 1/9 0 3/9 2/9

(A4, A1, A3, A2) p20 = 2/9 4/9 0 2/9 6/9

Other pi = 0 0 0 0 0∑
1 16/9 14/9 13/9 11/9

In order to answer this question, we will adhere to the step by step procedure given in the
proof of Theorem 3.1 above. The intermediate preferences of the participants in the coalition
after the first update are presented in Table 2.

Table 2: Step 1 intermediate preferences and corresponding point distribution

Preference Fraction A1 A2 A3 A4
(A2, ?, ?, ?) CA2 = 5/9 0 15/9 0 0

(A3, A1, A4, A2) p14 = 1/9 2/9 0 3/9 1/9

(A3, A4, A1, A2) p17 = 1/9 1/9 0 3/9 2/9

(A4, A1, A3, A2) p20 = 2/9 4/9 0 2/9 6/9

Other pi = 0 0 0 0 0∑
1 7/9 15/9 8/9 1

This allows to evaluate d(A2, Ai) for every i 6= 2:

d(A2, A1) = 15/9− 7/9 = 8/9

d(A2, A3) = 15/9− 8/9 = 7/9

d(A2, A4) = 15/9− 1 = 6/9
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From here we deduce that M1 = max{d(A2, Ai) | i 6= k} = d(A2, A1) = 8/9 and since
w3CA2 = 5/9 < 8/9 < 10/9 = w2CA2 , we are in case (b) of Step (2) above. The next step
is to compute

t =
8/9− 1 · 5/9

2− 1
− ε = 3/9− ε

and update the intermediate profiles accordingly (see Table 3). At this point we have reduced
the problem to the case of three alternatives (A2, A3, and A4) and positional rule determined
by the weight vector (3,w2,3, 0), where

w2,3 =
(2/9+ ε) · 1+ (3/9− ε) · 2

5/9
= 8/5− 9ε/5 = 1.6− 9ε/5.

Table 3: Step 2 intermediate preferences and corresponding point distribution

Preference Fraction A1 A2 A3 A4
(A2, A1, ?, ?) t = 3/9− ε 6/9− 2ε 1− 3ε 0 0

(A2, ?, A1, ?) 2/9+ ε 2/9+ ε 6/9+ 3ε 0 0

(A3, A1, A4, A2) p14 = 1/9 2/9 0 3/9 1/9

(A3, A4, A1, A2) p17 = 1/9 1/9 0 3/9 2/9

(A4, A1, A3, A2) p20 = 2/9 4/9 0 2/9 6/9

Other pi = 0 0 0 0 0∑
1 15/9− ε 15/9 8/9 1

At this stage the question of manipulability is resolved according to whether or not the
inequality

d(A2, A3) + d(A2, A4) > w2,3CA2

is satisfied. Plugging in the corresponding values we obtain

7/9+ 6/9 = 13/9 > 8/9− ε = 5/9(1.6− 9ε/5),

securing the affirmative answer.

One possible arrangement of the complete profiles is presented in Table 4 and this con-
cludes our example.
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Table 4: Complete strategic profile and resulting point distribution

Preference Fraction A1 A2 A3 A4
(A2, A1, A3, A4) (3/9− ε) · 3/5 18/45− 6ε/5 27/45− 9ε/5 9/45− 3ε/5 0

(A2, A3, A1, A4) (2/9+ ε) · 3/5 6/45+ 3ε/5 18/45+ 9ε/5 12/45+ 6ε/5 0

(A2, A1, A4, A3) (3/9− ε) · 2/5 12/45− 4ε/5 18/45− 6ε/5 0 6/45− 2ε/5
(A2, A4, A1, A3) (2/9+ ε) · 2/5 4/45+ 2ε/5 12/45+ 6ε/5 0 8/45+ 4ε/5
(A3, A1, A4, A2) p14 = 1/9 2/9 0 3/9 1/9

(A3, A4, A1, A2) p17 = 1/9 1/9 0 3/9 2/9

(A4, A1, A3, A2) p20 = 2/9 4/9 0 2/9 6/9

Else pi = 0 0 0 0 0∑
1 75/45− ε 75/45 61/45+ 3ε/5 59/45+ 2ε/5

Since w2 = w3 = . . . = wm = 0 under the Plurality rule, the SI inequalities reduce to
d(Ak, Ai) > 0 for i ∈ {1, . . . ,m | i 6= k}. Then the following corollary can be deduced from
Theorem 3.2.

Corollary 3.3. Consider the Plurality voting rule with m ≥ 3 alternatives. A profile p =
(p1, . . . , pm!) is manipulable by a coalition with unifying alternative Ak if and only if p
satisfies the following system of inequalities:





m!∑
i=1

pi = 1

pi ≥ 0
The initial arrangement is (A1, A2, . . . , Am)
d(Ak, Ai) > 0 for i ∈ {1, . . . ,m | i 6= k} (SI).

(3.7)

We would like to bring the reader’s attention to the fact that the SI inequalities in (3.7)
are the same as inequalities (2) in Theorem 1 of Lepelley and Mbih (1987), where the char-
acterization of coalitional manipulable profiles under Plurality rule was first derived. We also
bring the reader’s attention to the fact that Lepelley and Valognes (2003) and Favardin et al.
(2002) deal with the coalitional manipulation of the Antiplurality rule (λ = 1) and the Borda
rule (λ = 2), respectively, in the case of three-alternative elections. The approach that we
use in this paper to derive our list of inequalities is different from those used by Lepelley and
Valognes (2003) and Favardin et al. (2002). This explains why the systems given in these
papers (Lemma 2 in Lepelley and Valognes (2003) and Lemma 4 in Favardin et al. (2002))
are not a direct consequence of the systems given in Theorem 3.1. However, our results in
Section 4 for the case of three alternatives allow us to show that the two characterizations are
equivalent.

As already noticed, the approach that we consider in the main result of the paper can
be adapted when only manipulation by small coalitions is considered. Indeed, under some
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profiles a small coalition may reverse the relative ranking of two alternatives as it is shown
in the following example.

Example 3.4. Let m = 3 and the scoring rule be Borda rule having w = (2, 1, 0). As in
Example 2.3, we set p1 = 5/9, p3 = 4/9, and pj = 0 for j 6= 1, 3. The initial arrangement
is (A1, A2, A3) since alternative A1 wins and gets 14/9 points, A2 gets 13/9 points, and
finally A3 gets 0 points. But, if a fraction p = 2/9 of voters chose (A2, A3, A1) instead of
(A2, A1, A3), and the others kept their preferences unchanged, then the final result would be
in favor of alternative A2 since A1 gets 12/9 points, A2 gets 13/9 points, and A3 gets 2/9
points. In other words, a manipulation in favor of A2 is also possible with a coalition of
voters smaller than the maximal size (see Example 2.3 for a manipulation by a coalition of a
maximal size).

Corollary 3.5. Let m ≥ 3 and suppose that the initial arrangement is (A1, A2, . . . , Am)
under the positional voting rule having weight vector w = (w1, w2, . . . , wm). A profile
p = (p1, . . . , pm!) is manipulable by some coalition not exceeding a proportion 0 < p ≤ 1
of the electorate with unifying alternative Ak if and only if p satisfies the following system of
inequalities:





Preliminary Inequalities (PI)



m!∑
i=1

pi = 1

pi ≥ 0
0 ≤ p̃j ≤ pj for j, s.t. A1 ≺j Ak∑
A1≺jAk

p̃j = p

The initial arrangement is (A1, A2, . . . , Am)

Strategic Inequalities (SI)



∑
i6=k
d(Ak, Ai) > (w2 + . . .+wm−1 +wm)p

∑
i6=k
d(Ak, Ai) −M1 > (w3 + . . .+wm−1 +wm)p

. . .
∑
i6=k
d(Ak, Ai) −

m−4∑
j=1

Mj > (wm−2 +wm−1 +wm)p

∑
i6=k
d(Ak, Ai) −

m−3∑
j=1

Mj > (wm−1 +wm)p

Mm−1 > wmp,

(3.8)

where by A1 ≺j Ak we understand that Ak has a higher ranking than A1 in preference of
type j and p̃j denotes the share of ‘participants’ with preference of this type. The added
PI inequalities correspond to the fact that each p̃j can not exceed pj. As it is sufficient to
consider coalitions of the largest allowed proportion, we add the equality

∑
A1≺jAk

p̃j = p.
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The next remark concerns the case where the number of voters is small.

Remark 3.6. Theorem 3.1 does not hold true in the case of finite number of voters. Consider
the case of m = 3 alternatives A1, A2 and A3 and the scoring rule with weight vector w =
(1, 0.9, 0). Let there be n = 21 voters and the profile p = (6, 7, 8, 0, 0, 0). Then initially
A1 gets 20.2 points, A2 gets 13.4 points and A3 gets 6.3 points satisfying the arrangement
assumptions. Next we show that the remaining two inequalities in the system, responsible
for the possibility of manipulation by CoalA2 , hold true for the profile p as well. Indeed,
d(A2, A1) = 0.4 > 0 and d(A2, A1) + d(A2, A3) = 7.5 > 7.2 = λCA2 . However, if
a single member of the coalition updated his/her profile to (A2, A1, A3) then λ = 0.9 >

0.4 = d(A2, A1) would lead to alternative A1 getting ahead of A2. On the other hand it
is not possible for all 8 people in CoalA2 to update their profiles to (A2, A3, A1) either, as
d(A2, A3) = 7.1 < 7.2 = λCA2 . Hence, the profile is not manipulable by CoalA2 .

We finish this part with a remark on the manipulability of the Antiplurality rule.

Remark 3.7. Suppose that the initial arrangement is (A1, A2, . . . , Am). The group of vot-
ers having the last alternative prior in their preferences (CoalAm) can never manipulate an
election under Antiplurality rule whichever the number of alternatives m is. Otherwise, as
after such a manipulation the last alternative Am would have the same number of points (his
number of points is not influenced by the manipulation) all the other alternatives would have
to undergo a simultaneous loss of points. That is clearly impossible, because the number of
rearranged points equals to the number of points initially arranged between the alternatives
A1, . . . , Am−1.

4 Some numerical results

The aim of this section is to compute the share of manipulable profiles for three well-studied
scoring rules under the assumption of Impartial and Anonymous Culture (IAC) in the limit
case as n → ∞. We consider this hypothesis because it has been widely used in many
papers that we cite in the introduction. When n → ∞, this assumption indicates that all

profile vectors of the form p = (p1, . . . , pm!), with each pi ≥ 0 and
m!∑
i=1

pi = 1, are equally

likely to occur. This probability distribution was first introduced by Fishburn and Gehrlein
(1976). For more details on the IAC condition and others, we refer the reader to Diss and
Merlin (2020), Gehrlein and Lepelley (2011), Gehrlein and Lepelley (2017).

It is well-known that the limiting probability of every voting event (here the manipulation
of voting outcomes) under IAC can be simply reduced to volume computations. Since the

normalized profile vectors are of the form p = (p1, . . . , pm!) with each pi ≥ 0 and
m!∑
i=1

pi = 1,

the polytope that describes all possible profile vectors defines the standard simplex4 ⊂ Rm!.
The volume of 4 ⊂ Rd is equal to 1

(d−1)!
, which, since in our case d = m!, becomes
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1
m!−1

. What remains to compute is the volumes of the polytopes PAk (with k = 1, . . . ,m)
cutting out the regions of profiles manipulable byCoalAk inside the standard simplex4. For
instance, in the case of three alternatives, the volumes of the polytopes PA2 and PA3 cutting
out the regions of profiles manipulable by CoalA2 and CoalA3 (see systems in (3.1)) inside
the standard simplex 4 are required. Then the total volume of the region of manipulable
profiles is given by Vol(PA2)+Vol(PA3)−Vol(PA2∩PA3). Afterwards the result is divided
by the volume of the standard simplex and multiplied by 6 (all possible final arrangements of
alternatives) to produce the final answer. The approach described in Cervone et al. (2005)3

tells us an effective way to tackle this problem for three-alternative elections. When we have
more than three alternatives, however, those methods become too complicated in practice.
Indeed, due to dimension reasons, the precise probabilities seem to be difficult to obtain for
m = 4 and it is impossible to compute form ≥ 5 at this stage using the existing algorithms.

In case the precise volume cannot be found, it is natural to obtain a sufficiently good ap-
proximation of it. One of the most commonly used procedures for this purpose is the Monte
Carlo volume estimation. The share of manipulable outcomes for Plurality, Antiplurality and
Borda rule in the case ofm = 3, 4, 5 alternatives are presented in Table 5 (exact results), and
Tables 6 and 7 (simulated results).

Table 5: Share of manipulable outcomes withm = 3 alternatives

Rule Manipulable by CoalA2 by CoalA3
Plurality 29.17% 24.65% 15.63%

Antiplurality 51.85% 51.85% 0%
Borda 50.25% 47.71% 9.71%

Table 6: Share of manipulable outcomes withm = 4 alternatives

Rule Manipulable by CoalA2 by CoalA3 by CoalA4
Plurality 87.38% 83.65% 73.87% 63.53%

Antiplurality 87.13% 86.47% 22.83% 0%
Borda 95.65% 95.03% 79.16% 43.38%

Table 7: Share of manipulable outcomes withm = 5 alternatives

Rule Manipulable by CoalA2 by CoalA3 by CoalA4 by CoalA5
Plurality 99.51% 99.37% 99.05% 98.57% 98.04%

Antiplurality 97.15% 96.79% 54.78% 6.52% 0%
Borda 99.76% 99.23% 98.95% 98.18% 97.83%

3See also Moyouwou and Tchantcho (2017).
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Our numerical results allow us to conclude that (i) moving from three to four and five
alternatives very significantly increases the vulnerability to coalitional manipulation under
all the scoring rules that we consider and (ii) the hierarchy of the scoring rules with respect
to the susceptibility to coalitional manipulability changes when the number of alternatives
increases: The Antiplurality rule seems to be the most performing when the number of al-
ternatives is four and five, whereas it is the most prone to manipulation in the case of three
alternatives.

Recall that Moyouwou and Tchantcho (2017) determined necessary and sufficient con-
ditions for a given profile to be coalitionally manipulable under a general scoring rule with
three alternatives. The share of manipulable profiles has also been given in this paper under
the IAC condition. Our results for Table 5 coincide with their results which were already
obtained in the literature as in Lepelley and Mbih (1987), Lepelley and Mbih (1994), and
Pritchard and Wilson (2007a). The case m = 4 for the Plurality rule was studied in El
Ouafdi et al. (2020a). The precise value of 87.28% for general manipulability was obtained
(this corresponds to 87.38% appearing in the top left corner of Table 6). In other words,
our approximation differs by 0.1%. Note also that the zero value in the last column of the
Antiplurality rule is consistent with Remark 3.7.

Finally, the Python code for carrying out the computation of the share of manipulable
outcomes in the case of Borda rule with m = 4 alternatives is provided in Appendix A. A
detailed outline on the execution complimentary to the comments inside the code is given.
The recipe for finding the corresponding results for other scoring voting rules with more than
m ≥ 4 alternatives is provided.

5 Conclusion

At least three main extensions can emerge from the present study. First, it would be in-
teresting to investigate other voting rules not yet considered, especially in the class of the
so-called iterative scoring rules, also known as multi-stage or sequential elimination scoring
rules. This class of multi-round procedures is based on the same scoring principle previously
defined but proceed by eliminating one or more alternatives at each round, until there is only
one alternative left who is considered as the winner. Second, taking into account the possibil-
ity of reactions of voters outside the coalition that manipulates the vote may also be a good
extension of this study. This appears to have a considerable impact on the manipulability
shares and on the induced hierarchy of voting rules when analyzing strategic voting (see for
instance Favardin and Lepelley (2006)). Third, our probabilistic investigations may also be
extended to the framework with small sizes of manipulating coalitions using Corollary 3.8.
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Appendix A: Python code used for computations in the case of Borda
count withm = 4 alternatives

In this section we present the code (written in Python) used for carrying out the algorithm for
finding the share of manipulable outcomes in the case of Borda rule withm = 4 alternatives.
With a few modifications to the code provided one can perform analogous computations for
scoring voting rules with different weights.

Step 1. Create the array of possible preferences with the alternatives corresponding to numbers
0 to 3 arranged in increasing order. This array has 24 elements. Each element of the
preferences’ array is an array of its own with 4 elements (see lines 14−25 in the code).

preferences[0] = {[0], [1], [2], [3]},

preferences[1] = {[0], [1], [3], [2]},

. . .

preferences[23] = {[3], [2], [1], [0]}.

After this the point distribution array is created, i.e., the element (i, j) (here 0 ≤ i ≤ 23
and 0 ≤ j ≤ 3) is the number of points alternative j gets from preference i (lines
27− 37.)

Step 2. Now we are in position to store the inequalities responsible for the initial arrangement
of alternatives. As usual we assume that this arrangement is (0, 1, 2, 3) and the 3 PI
inequalities responsible for that are obtained (lines 3− 8 and 38− 41).

Step 3. Next generate a sample of n (‘trials’ in the code) random points in the simplex 4.
For this choose 24 random numbers on the closed interval [0; 1], arrange them in a
nondecreasing order and take the subsequent differences. The points created this way
have a uniform distribution in the simplex4 (see Chapter V.2 in Devroye (1986)). The
corresponding lines of the code are 43− 54.

Step 4. The coalition arrays are established. These are 3 arrays of 24 elements, each element
equal to 1 or 0, depending on whether preference i belongs to the coalition or not (lines
55− 66).

Step 5. The difference arrays are generated (lines 67− 105).

Step 6. The remaining part of the code stores the SI inequalities (3.2) responsible for the profile
being manipulable by each of the coalitions separately (recall that inequalities (3.2) are
written in terms of the elements of difference arrays established on the previous step)
and then checks for all sample points to determine how many of them satisfy the initial
arrangement conditions and are manipulable by at least one coalition.
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1 import random
2

3 InitArrangement = 3 * [0]
4

5 for i in range(0, 3):
6 InitArrangement[i] = []
7 for j in range(0, 24):
8 InitArrangement[i].append(0)
9 # generating array of profiles

10 preferences = []
11 for i in range(1, 25):
12 preferences.append(i)
13 counter = 0
14 for i in range(0, 4):
15 for j in range(0, 4):
16 for k in range(0, 4):
17 for l in range(0, 4):
18 if (i != j and i != k and i != l
19 and j != k and j != l and k != l):
20 preferences[counter] = []
21 preferences[counter].append(i)
22 preferences[counter].append(j)
23 preferences[counter].append(k)
24 preferences[counter].append(l)
25 counter += 1
26 # generating array of points distribution according to profiles
27 PointDistArr = []
28 for i in range(0, 4):
29 PointDistArr.append(i)
30 for i in range(0, 4):
31 PointDistArr[i] = []
32 for j in range(0, 24):
33 PointDistArr[i].append(0)
34 for i in range(0, 24):
35 for j in range(0, 4):
36 s = preferences[i][j]
37 PointDistArr[s][i] = 3 - j
38 for j in range(0, 24): # Initial arrangement is A>B>C>D
39 InitArrangement[0][j] = PointDistArr[0][j] - PointDistArr[1][j]
40 InitArrangement[1][j] = PointDistArr[1][j] - PointDistArr[2][j]
41 InitArrangement[2][j] = PointDistArr[2][j] - PointDistArr[3][j]
42

43 trials = 8000000 # number of points in the sample
44 TrialPts = trials * [0]
45 S = 24 * [0]
46 # creating random sample of points in the simplex
47 for i in range(0, trials):
48 TrialPts[i] = []
49 for j in range(0, 23):
50 S[j] = random.uniform(0, 1)
51 S[23]=1
52 TrialPts[i] = sorted(S)
53 for k in range(1, 24):
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54 TrialPts[i][24 - k] -= TrialPts[i][23 - k]
55 # initiating coalition members arrays (1 if the preference
56 # belongs to the coalition and 0 otherwise)
57 CoalB = 24 * [0]
58 CoalC = 24 * [0]
59 CoalD = 24 * [0]
60 for j in range(0, 24):
61 if PointDistArr[0][j] < PointDistArr[1][j]:
62 CoalB[j] = 1
63 if PointDistArr[0][j] < PointDistArr[2][j]:
64 CoalC[j] = 1
65 if PointDistArr[0][j] < PointDistArr[3][j]:
66 CoalD[j] = 1
67 dBA = 24 * [0]
68 dBC = 24 * [0]
69 dBD = 24 * [0]
70 dCA = 24 * [0]
71 dCB = 24 * [0]
72 dCD = 24 * [0]
73 dDA = 24 * [0]
74 dDB = 24 * [0]
75 dDC = 24 * [0]
76 # computing d(B,A), d(B,C) and d(B,D)
77 for j in range(0, 24):
78 if CoalB[j] == 1:
79 dBA[j] = 3
80 dBC[j] = 3
81 dBD[j] = 3
82 else:
83 dBA[j] = PointDistArr[1][j] - PointDistArr[0][j]
84 dBC[j] = PointDistArr[1][j] - PointDistArr[2][j]
85 dBD[j] = PointDistArr[1][j] - PointDistArr[3][j]
86 # computing d(C,A), d(C,B) and d(C,D)
87 for j in range(0, 24):
88 if CoalC[j] == 1:
89 dCA[j] = 3
90 dCB[j] = 3
91 dCD[j] = 3
92 else:
93 dCA[j] = PointDistArr[2][j] - PointDistArr[0][j]
94 dCB[j] = PointDistArr[2][j] - PointDistArr[1][j]
95 dCD[j] = PointDistArr[2][j] - PointDistArr[3][j]
96 # computing d(D,A), d(D,B) and d(D,C)
97 for j in range(0, 24):
98 if CoalD[j] == 1:
99 dDA[j] = 3

100 dDB[j] = 3
101 dDC[j] = 3
102 else:
103 dDA[j] = PointDistArr[3][j] - PointDistArr[0][j]
104 dDB[j] = PointDistArr[3][j] - PointDistArr[1][j]
105 dDC[j] = PointDistArr[3][j] - PointDistArr[2][j]
106
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107 counter = 0
108 B = 3*[0]
109 C = 3*[0]
110 D = 3*[0]
111 Sb = trials*[0]
112 Sc = trials*[0]
113 Sd = trials*[0]
114 BmanipCheck = False
115 CmanipCheck = False
116 DmanipCheck = False
117 CoalBsize = 0
118 CoalCsize = 0
119 CoalDsize = 0
120 for i in range(0, trials):
121 check = False
122 CoalBsize = 0
123 CoalCsize = 0
124 CoalDsize = 0
125 Sb[i] = []
126 Sc[i] = []
127 Sd[i] = []
128 for j in range(0, 3):
129 s = 0
130 check = True
131 for k in range(0, 24):
132 s += TrialPts[i][k] * InitArrangement[j][k]
133 if s < 0:
134 check = False
135 break
136 if check is True:
137 BmanipCheck = False
138 CmanipCheck = False
139 DmanipCheck = False
140 for j in range(0, 3):
141 B[j] = 0
142 C[j] = 0
143 D[j] = 0
144 for k in range(0, 24):
145 CoalBsize += TrialPts[i][k] * CoalB[k]
146 CoalCsize += TrialPts[i][k] * CoalC[k]
147 CoalDsize += TrialPts[i][k] * CoalD[k]
148 B[0] += TrialPts[i][k] * dBA[k]
149 B[1] += TrialPts[i][k] * dBC[k]
150 B[2] += TrialPts[i][k] * dBD[k]
151 C[0] += TrialPts[i][k] * dCA[k]
152 C[1] += TrialPts[i][k] * dCB[k]
153 C[2] += TrialPts[i][k] * dCD[k]
154 D[0] += TrialPts[i][k] * dDA[k]
155 D[1] += TrialPts[i][k] * dDB[k]
156 D[2] += TrialPts[i][k] * dDC[k]
157 Sb[i] = sorted(B)
158 Sc[i] = sorted(C)
159 Sd[i] = sorted(D)
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160

161 if (Sb[i][0] > 0) and (Sb[i][0] + Sb[i][1] > CoalBsize) and (Sb[i][0]
+ Sb[i][1] + Sb[i][2] > 3 * CoalBsize):

162 BmanipCheck = True
163 if (Sc[i][0] > 0) and (Sc[i][0] + Sc[i][1] > CoalCsize) and (Sc[i][0]

+ Sc[i][1] + Sc[i][2] > 3 * CoalCsize):
164 CmanipCheck = True
165 if (Sd[i][0] > 0) and (Sd[i][0] + Sd[i][1] > CoalDsize) and (Sd[i][0]

+ Sd[i][1] + Sd[i][2] > 3 * CoalDsize):
166 DmanipCheck = True
167

168 if check is True and (BmanipCheck is True or CmanipCheck is True or
DmanipCheck is True):

169 counter += 1
170 ans = 0.0
171 ans = float(24 * counter / 10000)
172 print(str(ans) + ’%’)

References
Aleskerov, F. and Kurbanov, E. (1999) Degree of manipulability of social choice procedures. Current Trends
in Economics 8:13–27.

Chamberlin, J. (1985) An investigation into the relative manipulability of four voting systems. Behavioral
Science 30(4):195–203.

Cervone, D.P., Gehrlein, W.V. and Zwicker, W.S. (2005) What scoring rule maximizes Condorcet efficiency
under IAC. Theory and Decision 58:145–185.

Devroye, L. (1986) Nonuniform random variate generation, Springer-Verlag, New York

Diss, M. (2015) Strategic manipulability of self–selective social choice rules. Annals of Operations Research
229:347–376.

Diss, M. and Merlin, V. (2020) Evaluating voting systems with probability models, essays by and in honor of
William Gehrlein and Dominique Lepelley. Studies in Choice and Welfare - Springer.

Favardin, P. and Lepelley, D. (2006) Some further results on the manipulability of social choice rules. Social
Choice and Welfare 26:485–509.

Favardin, P., Lepelley, D. and Serais, J. (2002) Borda rule, Copeland method and strategic manipulation.
Review of Economic Design 7(2):213–228.

Fishburn, P.C. and Gehrlein, W.V. (1976) Condorcet’s paradox and anonymous preference profiles. Public
Choice 26:1–18.

Gehrlein, W.V. and Lepelley, D. (2011) Voting paradoxes and group coherence. Studies in Choice and Welfare
- Springer.

Gehrlein, W.V. and Lepelley, D. (2017) Elections, Voting Rules and Paradoxical Outcomes. Studies in Choice
and Welfare - Springer.

Gehrlein, W.V., Moyouwou, I. and Lepelley, D. (2013) The impact of voters’ preference diversity on the
probability of some electoral outcomes. Mathematical Social Sciences 66:352–365.

Gibbard, A. (1973) Manipulation of voting schemes: a general result. Econometrica 41:587–601.

21



El Ouafdi, A., Lepelley, D. and Smaoui, H. (2020a) Probabilities of electoral outcomes: from three-alternative
to four-alternative elections. Theory and Decision 88:205-229.

El Ouafdi, A., Lepelley, D., Smaoui, H. and Serais, J. (2020b) Sur la manipulabilité coalitionnelle du vote par
note à trois niveaux. Working paper.

Kamwa, E. and Moyouwou, I. (2020) Susceptibility to manipulation by sincere truncation: the case of scoring
rules and scoring runoff systems. In Evaluating Voting Systems with Probability Models, Essays by and in
honor of William Gehrlein and Dominique Lepelley. Diss, M. and Merlin, V. (editors). Springer, Berlin.

Kelly, J.S. (1993) Almost all social choice rules are highly manipulable, but a few aren’t. Social Choice and
Welfare 10:161–175.

Kim, K.H. and Roush, F.W. (1996) Statistical manipulability of social choice functions. Group Decision and
Negotiation 5:263–282.

Lepelley, D., Louichi, A. and Smaoui, H. (2008) On Ehrhart polynomials and probability calculations in
voting theory. Social Choice and Welfare 30(3):363–383.

Lepelley, D. and Mbih, B. (1987) The proportion of coalitionally unstable situations under the Plurality rule.
Economics Letters 24(4):311–315.

Lepelley, D. and Mbih, B. (1994) The vulnerability of four social choice functions to coalitional manipulation
of preferences. Social Choice and Welfare 11(3):253–265.

Lepelley, D. and Valognes, F. (2003) Voting rules, manipulability and social homogeneity. Public Choice
116(1/2):165–184.

Moyouwou, I. and Tchantcho, H. (2017) Asymptotic vulnerability of positional voting rules to coalitional
manipulation. Mathematical Social Sciences 89:70–82.

Nitzan, S. (1985) The vulnerability of point-voting schemes to preference variation and strategic manipula-
tion, Public Choice 47:349–370.

Peleg, B. (1979) A note on manipulability of large voting schemes. Theory and Decision 11:401–412.

Pritchard, G. and Wilson, M. (2007a) Exact results on manipulability of positional voting rules. Social Choice
and Welfare 29(3):487–513.

Pritchard, G. and Wilson, M. (2007b) Probability calculations under the IAC hypothesis. Mathematical Social
Sciences 54(3):244–256.

Saari, D. (1990) Susceptibility to manipulation. Public Choice 64:21–41.

Satterthwaite, M.A. (1975) Strategy-proofness and Arrow’s conditions: Existence and correspondence theo-
rems for voting procedures and social welfare functions. Journal of Economic Theory 10(2):187–217.

Schürmann, A. (2013) Exploiting polyhedral symmetries in social choice. Social Choice and Welfare
40(4):1097–1110.

22


