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Abstract In single-winner elections and individuals expressing linear orderings,
an alternative has first-order stochastic dominance if the cumulative standing for
this alternative at each rank is higher than that of the other alternatives. It is well
known that this criterion may fail in ranking the competing alternatives since the
first-order stochastic dominance winner may not exist in some situations. Making
an adaptation of a centrality measure from network theory, we introduce in this
note a rule, called the almost first-order stochastic dominance rule, which selects
the alternative having first-order stochastic dominance if such an alternative
exists, otherwise it selects the alternative which is close to achieve first-order
stochastic dominance. It turns out that this rule is equivalent to the well-studied
Borda rule. This result highlights an unknown property of the Borda rule.

Keywords: Network, centrality, centrality measures, rankings, first-order
stochastic dominance, scoring rules, Borda’s rule.
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1 Introduction

Voting theory is full of a multitude of voting rules that can allow groups of indi-
viduals to make collective decisions. In practice, the rules differ from one group to
another and the choice of a rule often depends on criteria which may be specific to
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the group and to the objectives pursued. Most of the popular voting rules belong
to the family of the so-called scoring rules. With scoring rules, points (weights) are
given to the alternatives in the running according to the position they occupy in
the preferences (rankings) of the individuals taking part in the collective decision-
making process; the winner is the alternative with the highest total number of
points.

It should nevertheless be noted that given a preference profile, that is a list of
preferences of a group of individuals over a set of alternatives, varying the vot-
ing rule (the points) can also vary the outcome (Saari, 1992, 1999). According to
Stein et al. (1999), it is important to investigate how changing the assignment of
point values will affect the outcome of the aggregation process and one way to
do this is to use stochastic dominance. This concept has been originally developed
in the traditional expected utility framework, and is now widely used in many
other fields including economics, finance, mathematics, insurance, etc.1 Given a
preference profile, if for each rank, the cumulative standings (frequencies) of an
alternative a are greater or equal to those of alternative b, then a is said to have a
first-order stochastic dominance over b. The cumulative standings of a given alterna-
tive represent the number of individuals that rank this alternative over a certain
rank. According to Stein et al. (1999), stochastic dominance finds all its importance
in situations in which we are not able to point out exactly which system of points
is the right one to use; if an alternative a has first-order stochastic dominance over
an alternative b, then a will get a higher score than b for any possible scoring rule.
In other words, an alternative with first-order stochastic dominance over each of
its opponents, when it exists for a preference profile, would win using any scoring
rule. In such a case, we may say (with no ambiguity) that this profile exhibits a
first-order stochastic dominance consensus since all the scoring rules agree; there-
fore, the choice of the points system does not matter in terms of “the right one to
use”.

Note that the existence of an alternative with first-order stochastic dominance
over each of its opponents is not always guaranteed. Furthermore, for some prefer-
ence profiles, it may happen that first-order stochastic dominance does not allow
two alternatives to be ranked. Indeed, we can find situations in which most in-
dividuals rank an alternative a before an alternative b but there is no stochastic
dominance between the two alternatives (Leshno and Levy, 2002). In such rather
specific situations, Leshno and Levy (2002) argue that some relaxations may pro-
vide advantages over of stochastic dominance in several contexts. In this sense,
they proposed, especially for research in finance, the almost stochastic dominance
concept as a subsidiary approach to the stochastic dominance (see also Tzeng et
al., 2013). According to Leshno and Levy (2002), with almost stochastic dominance
rules, it is possible that the distribution of standings on two prospects under com-
parison do not obey any stochastic dominance but, with a small change made in
the cumulative standings, stochastic dominance rules will reveal a preference. It
should be noted that if an alternative stochastically dominates another, the almost
stochastic domination is also established. In this note, our objective is to reclaim
the idea of almost first-order stochastic dominance in the context of the aggrega-

1 See for instance Levy (2006) for a review.
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tion of individual preferences in order to propose a “relaxation” of the classical
stochastic dominance as developed in this context.

So, in this spirit, in the absence of an alternative having the first-order stochas-
tic dominance, we could construct a rule which would choose the alternative(s)
requiring the least number of transformations in individual preferences in order
to achieve first-order stochastic dominance. With such a rule, we will see that de-
termining the least number of transformations in individual preferences requires
the use of metrics. However, it is well-known that the use of metrics comes up
against a computational problem whose complexity can increase with the number
of alternatives in the running. We may well achieve the same result as the rule
that we have just described while circumventing this complexity by resorting to
the Almost first-order Stochastic Dominance Rule (ASDR) that we introduce in this
note. ASDR is based on an adaptation, from network theory to voting theory, of
a generic measure of centrality which sums the differences between each vertex’s
centrality score and that of the most central vertex. In network theory or graph
theory, centrality measures the extent of inequality among vertex centrality scores
and it usually describes the network positions of vertices. Without being exhaus-
tive, the reader may refer to Freeman (1979), Golbeck (2015, 2013) and Marsden
(2015) for an overview of the centrality measures. In this note, we show that our
almost first-order stochastic dominance rule is simply equivalent to the Borda rule.
This result thus highlights an unknown property of the Borda rule.

The rest of the paper is organized as follows: Section 2 is devoted to basic
definitions; in Section 3, we introduce our almost first-order stochastic dominance
rule and we provide our main result. Section 4 concludes.

2 Notation and definitions

Let A = {a, b, . . .} be a set of K alternatives and N = {1, 2, . . . , n} a finite set of n
individuals (K, n ≥ 2). Every individual i ∈ N is assumed to have a linear order
�i on A; this means that each individual ranks the alternatives from the most
desirable one to the least desirable one. Let L(A) be the set of all linear orders
on A and we refer to the elements of L(A) as preference relations. We denote by
π = (�1, . . . ,�n) a preference profile which gives the preference relations of all of
the n individuals. We denote by P = L(A)n the set all possible preference profiles.
For any preference relation �i∈ L(A) and for any alternative a ∈ A, the rank of a
in �i is defined by rank�i(a) = K− |{b ∈ A : a �i b, b 6= a}|.

A social choice rule is a function that assigns a nonempty subset of alternatives
in A to each preference profile π ∈ P. A special class of social choice rules consists
of scoring rules. A scoring rule is characterized by a K-tuple w = (w1, w2, . . . , wK)
of non-negative scores (weights) with w1 ≥ w2 ≥ . . . ≥ wK and w1 > wK. Given a
preference profile π, each individual i assigns wk points to an alternative ranked
k-th in her preference relation, for k = 1, 2, . . . , K. That is, each individual assigns
w1 points to her most preferred alternative, w2 points to the second best alter-
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native and so on. The scoring rule associated with the scores in w chooses the
alternative(s) with the maximum total score.

Given the set A and a preference profile π, it is well known that the scoring
rule defined by w and the one defined by αw + β are equivalent, for any α > 0 and
β ∈ R. Therefore, we will restrict our attention throughout the paper to the vector
w = (w1, w2, . . . , wK) where wK = 0.

For every preference profile π ∈ P, let us introduce the quantity f a
π(k) to define

the number of individuals ranking alternative a at the position k ∈ [1, K]:

f a
π(k) = |{i ∈ N : rank(a) = k}| (1)

Using (1), the total score of an alternative a under the scoring rule w is given
by

Sw(π, a) =
K−1

∑
k=1

wk f a
π(k) (2)

and the first-order cumulative standings (frequencies) for a is given by

Fa
π(k) = |{i ∈ N : rank(a) ≤ k}| (3)

=
k

∑
j=1

f a
π(j)

Many well-known scoring rules have received a considerable amount of atten-
tion in the social choice literature due to their intuitive appeal and we can define
these rules using the first-order cumulative standings. For instance, the Plurality
rule (PR) is the voting rule associated with the scoring vector (1, 0, . . . , 0); it easily
comes that the score of alternative a under PR denoted (with no ambiguity) by
SPR(π, a) is given by SPR(π, a) = Fa

π(1). The Negative Plurality rule (NPR) is associ-
ated with the vector (1, 1, . . . , 1, 0) and SNPR(π, a) = Fa

π(K− 1). The Borda rule (BR)
is associated with the vector (K − 1, K − 2, . . . , 1, 0) and SBR(π, a) = ∑K−1

k=1 Fa
π(k).

Finally, for 1 ≤ t ≤ K − 1, the t-approval voting rule (t-AV) is associated with the
vector (1, . . . , 1︸ ︷︷ ︸

t

, 0, . . . , 0) and St−AV(π, a) = Fa
π(t). Note that Saari (1999) showed

that alternative a is chosen by all the scoring rules if and only if it is chosen by all
the t-approval voting rules for t = 1, 2, . . . , K− 1.

We now introduce the definition of first-order stochastic dominance as already
given in Stein et al. (1999).2

Definition 1. For a, b ∈ A and a given preference profile π ∈ P, alternative a has
first-order stochastic dominance over alternative b, denoted by a �FOSD b, if Fa

π(k) ≥
Fb

π(k) for all 1 ≤ k ≤ K− 1 with a strict inequality for at least one k.

We will then say that alternative a exhibits first-order stochastic dominance (or
alternative a is the first-order stochastic dominance winner) if a �FOSD b, for all b ∈
A \ {a}. Such an alternative should be unique if it exists.

2 See also Kondratyev (2018).
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It should be noted that for a given preference profile π, if a �FOSD b, this
implies Sw(π, a) > Sw(π, b) for all w (Stein et al., 1999). More, if a exhibits first-
order stochastic dominance, then it is the winner for all scoring vectors w. In other
words, first-order stochastic dominance for a given alternative also means scoring
consensus for this alternative since all the scoring rules will agree on it as the same
winner.

3 From centrality to first-order stochastic dominance

Stochastic dominance seems to be very attractive from a theoretical viewpoint.
However, some issues can be addressed for its practical application. Indeed, it
is easy to find examples of preference profiles where stochastic dominance can-
not rank the competing alternatives. In this sense, stochastic dominance might be
too rigid in practice. Worse still, for some preference profiles, an alternative with
first-order stochastic dominance may not exist. This reminds us of the concept of
Condorcet winner, for instance, which is very popular in the social choice litera-
ture. A Condorcet winner is an alternative which is preferred to each of the other
competing alternatives by a simple majority of individuals. Such an alternative
does not always exist and it should be unique if it exists. A voting rule is called
Condorcet consistent if it always chooses the Condorcet winner when one exists.
Many voting rules have been introduced in the literature in order to implement
the idea of selecting the closest alternative to the Condorcet winner when one does
not exist.

In accordance with the spirit of Condorcet’s analysis, one extension of the first-
order stochastic dominance might be to define a voting rule which always selects
the alternative having first-order stochastic dominance if such an alternative exists,
otherwise it selects the alternative which needs the minimal amount of changes in
the preference profile in order to achieve first-order stochastic dominance. More
exactly, given a preference profile π ∈ P, we can define a rule (denoted by G) as
follows:

G(π) = arg min
a∈A

d(a)

With d(a) = min
π′∈H(a)

d(π, π′) and H(a) = {π′ ∈ P : a �FOSD b, ∀b ∈ A \ {a}}.
The quantity d(π, π′) defines a metric and π′ is a new preference profile (obtained
from π) defined such that an alternative having first-order stochastic dominance
exists. The two commonly used metrics are the following:3

– The inversion metric where d(π, π′) is the minimum number of pairwise adja-
cent transpositions needed to obtain π′ from π. Alternatively, it is the number
of pairs of alternatives in A that are ranked differently by π and π′. This metric
is also known as the Kemeny’s metric (Kemeny, 1959, Kemeny and Snell, 1962).

3 A review of distance-based rules can be found in Truchon (2007).
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– The edge metric where d(π, π′) is the minimum number of pairwise transposi-
tions (not necessarily adjacent) needed to obtain π′ from π.4

Note that in some preference profiles with a large K, it is well-known in the
literature of social choice theory that it may be difficult to find the winner un-
der these possibilities since the Kemeny and the edge metrics suffer from a high
computational costs (Bartholdi et al., 1989, Brandes, 2001, Hemaspaandra et al.,
2005). Therefore, we define a “substitute rule” which we call the almost first-order
stochastic dominance rule in accordance with the spirit of this appellation in the
literature.

Definition 2. Given a preference profile π ∈ P, the Almost first-order Stochastic
Dominance Rule (ASDR) is defined as follows:

ASDR(π) = arg min
a∈A

d̃(a)

where, d̃(a) =
K−1
∑

k=1

[(
max
x∈A

Fx
π(k)

)
− Fa

π(k)
]

.

The rational behind d̃(a) is to sum the differences between the first-order cu-
mulative standings of alternative a and that of the most first-order cumulative
standing for every rank k. The winning alternative under ASDR is then the one
minimizing this sum. As noticed before, d̃(a) is a function adapted from a generic
measure of centrality which sums the differences between each vertex’s centrality
score and that of the most central vertex (see for instance Freeman, 1979, Golbeck,
2015, 2013, Marsden, 2015). In network theory or graph theory, centrality measures
the extent of inequality among vertex centrality scores and it usually describes the
network positions of vertices. A measure of centrality is one of the core princi-
ples of network analysis and it measures how central or important a node is in
the network, i.e., this is used as an estimate of its importance in the network. So,
based on this generic measure, our ASDR is a relaxation of stochastic dominance,
which allows small changes of the stochastic dominance principle to avoid situ-
ations where most individuals rank one alternative ahead another but stochastic
dominance cannot rank them. With ASDR, we are now able to rank otherwise
unrankable alternatives.

Note that ASDR also selects the alternative which has first-order stochastic
dominance when it exists. This is simple to show: if a given alternative a has first-
order stochastic dominance, we get max

x∈A
Fx

π(k) = Fa
π(k) for all 1 ≤ k ≤ K− 1, then

d̃(a) = 0. Let us consider an example in order to illustrate how ASDR operates.

Example 1. Consider the following profile of n = 206 individuals on K = 4 alter-
natives a, b, c, and d.

4 Extending betweenness centrality for nodes, the edge metric relies on the computation of short-
est paths in a network (Brandes, 2001). The betweenness centrality captures how much a given node
is in-between others. It is measured with the number of shortest paths between any couple of nodes
in the graphs that passes through the target node (Golbeck, 2015, 2013).
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1 6 18 7 6 6 13 9 6 3 7 11 6 4 11 1 3 22 7 2 43 1 8 5
a a a a a a b b b b b b c c c c c c d d d d d d
b b c c d d a a c c d d a a b b d d a a b b c c
c d b d b c c d a d a c b d a d a b b c a c a b
d c d b c b d c d a c a d b d a b a c b c a b a

We report the values of the function Fx
π(k) for each alternative as follows:

x Fx
π(1) Fx

π(2) Fx
π(3) Fx

π(4)
a 44 85 163 206
b 49 112 176 206
c 47 94 128 206
d 66 121 151 206
max Fx

π(k) 66 121 176 206

Note first that Fd
π(k) is maximal when k = 1 and k = 2, while it is not in the only

case of k = 3, and naturally Fd
π(k) = 206 as for the other alternatives. However, we

get b �FOSD a, b �FOSD c, d �FOSD c and there is no other domination relation in
the sense of first-order stochastic dominance. It follows that there is no alternative
which has first-order stochastic dominance. We then compute,

d̃(a) = (66− 44) + (121− 85) + (176− 163) = 71
d̃(b) = (66− 49) + (121− 112) + (176− 176) = 26
d̃(c) = (66− 47) + (121− 94) + (176− 128) = 94
d̃(d) = (66− 66) + (121− 121) + (176− 151) = 25

So, ASDR(π) = {d}.

The reader can easily check that BR(π) = {d} since SBR(π, a) = 292,
SBR(π, b) = 337, SBR(π, c) = 269 and SBR(π, d) = 338.

Our main result in this note is given in Theorem 1 and states that our almost
first-order stochastic dominance rule is equivalent to the well-known Borda rule.

Theorem 1. ASDR(π) = BR(π).

Proof Let us assume a given preference profile π ∈ P in which ASDR(π) = x.
This means that for all y ∈ A \ {x}, we get d̃(x) − d̃(y) < 0. Knowing that
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maxa∈A Fa
π(K) = Fx

π(K) = Fy
π(K), let us compute d̃(x)− d̃(y).

d̃(x)− d̃(y) =

(
K−1

∑
k=1

[
max
a∈A

Fa
π(k)− Fx

π(k)
]
)
−
(

K−1

∑
k=1

[
max
a∈A

Fa
π(k)− Fy

π(k)
]
)

=

(
K−1

∑
k=1

max
a∈A

Fa
π(k)

)
−
(

K−1

∑
k=1

Fx
π(k)

)
−
(

K−1

∑
k=1

max
a∈A

Fa
π(k)

)
−
(

K−1

∑
k=1

Fy
π(k)

)

=

(
K−1

∑
k=1

Fy
π(k)

)
−
(

K−1

∑
k=1

Fx
π(k)

)

= SBR(π, y)− SBR(π, x)

It follows that d̃(x)− d̃(y) < 0 ⇔ SBR(y) < SBR(x). So, ASDR(π) = BR(π).

4 Conclusion

In this note, we have managed to highlight a new property of the Borda rule. As
the stochastic dominance approach may fail as a ranking criterion in some situa-
tions, we have first showed that we may introduce a rule which always picks an
alternative with first-order stochastic dominance when it exists and, otherwise, the
alternative which needs a small number of changes in the individual preferences
to reach first-order stochastic dominance. This rule may be difficult to handle due
to the high computational costs of the metrics on which the rule is built. As a
consequence and following one of the centrality measures, we have introduced an
almost first-order stochastic dominance rule as a substitute and we have showed
that it is exactly equivalent to the well-known Borda rule. To summarize, if the
decision maker wants to follow the recommendations of the aforementioned mea-
sure of centrality to implement the principle of stochastic dominance in the context
of preference aggregation, then she can use the Borda rule.
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