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Abstract

We address the problem of selecting a committee of a specified size from a given set

of candidates, where individuals are requested to provide their preferences in the form of

linear rankings of the candidates. In this framework, the selection of a committee depends

on the multiwinner voting rule, also known as the committee selection rule. In this paper,

we assume that the candidates possess an official attribute, namely the gender identity.

Additionally, the linear ordering of voters should meet some diversity requirements (such

as alternating males and females positions, ranking a certain number/percentage of males

and females in the top half of the linear ranking, etc.) in order to be considered as

admissible for the voting process. The objective of this paper is to assess the cost incurred

by implementing diversity restrictions on the preferences of voters. We present a measure

for assessing the cost of diversity and calculate the maximum cost, or upper bound, for

a commonly used family of multiwinner voting methods known as (weakly) separable

committee scoring rules.

Key-words: Voting, multiwinner elections, (weakly) separable committee scoring rules,

diversity constraints, price of diversity.

JEL Codes: D71, D72.

1. Introduction

Many countries have been faced with the scarcity of females in the political sphere, certain

positions of responsibility, and various areas of activity, including sport, engineering,

army, and hard sciences. To address this issue, some countries have implemented public
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policies aimed at reducing gender inequality and discrimination. For instance, in the

political sphere (including local, regional, senatorial, and parliamentary elections), several

countries have implemented gender quotas. The UN WOMEN [2023] review presents a

comprehensive list of countries detailing their electoral systems, gender quota regulations,

and sanctions for non-compliance. The majority of countries mentioned in this review

employ either proportional representation or a combination of majority/plurality systems

for their electoral processes. The gender quota imposed to each candidate (or party) list

include the candidate quota, the candidate quota with a ranking rule, and the candidate

quota with a partial ranking rule. Concerning the countries that use the candidate quota,

the legislator impose a minimal (or a maximal) percentage of males and females on a

candidate list. For instance, Croatia, Greece, and Norway impose that each candidate list

must be composed of at least 40% of the candidates of each gender.1 For the countries

that use the candidate quota with a ranking rule, the legislator first imposes a quota

for each gender on the candidate list, and then a ranking rule for the candidates of the

list. There are many ranking rules and the well-known ranking rule is the alternation by

gender (female-male or male-female) in such a way that two people of the same gender

cannot be consecutively on the list. Many countries such as Belgium, Bolivia, Costa Rica,

Ecuador, France (for elections concerning regions, departments, and municipalities of over

than 1000 inhabitants), Senegal and Tunisia impose the principle of parity between males

and females, and the application of the alternation mechanism. There are some countries

that apply the candidate quota with a partial ranking rule. In Spain for instance, each

political party must propose at least 40% of males and 40% of females in the list for the

municipalities of more than 3000 inhabitants; and moreover this quota is also applied

to every top-five-positions (at least 2 males and 2 females among the top-five-positions).

In Slovenia, each candidates list must be made up of at least 40% of each gender, and

candidates in the first half of the list must alternate between men and women.2

While the gender quota has been welcomed and implemented in numerous countries,

it remains a topic of political contention. For example, certain political parties can not

participate in an election due to a lack of male or female candidates meeting the required

minimum quota. In addition, political parties may need to replace highly influential

members with less influential ones to meet diversity requirements. In other words, gender

quotas have a price/cost. For instance, Bagues and Campa (2021) studied the effects of

gender quotas in candidate lists using evidence from local elections in Spain. They found

that gender quotas in candidate lists do not remove the barriers that prevent females

from playing an influential role in politics, as gender quotas do not seem to increase the

likelihood of females reaching powerful positions. In this article, we examine the issue

1Many other countries such as Andorra, Argentina, Brazil, Columbia, Mongolia, Panama, and Poland
also apply the candidate quota.

2For more details regarding other gender quotas used by other countries, we refer the reader to the
UN WOMEN [2023] review.
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of the price of gender quotas, that we call the price of diversity, within the framework

of multi-winner elections when we impose some diversity constraints on the ranking of

voters. To address this question one can retain some key elements from the literature on

multiwinner elections.

A multiwinner election, also called committee voting, is an electoral system in which

a collection of voters aims to elect multiple candidates, called a committee, from a larger

set of available candidates. The number of candidates elected is usually fixed in advance

and it is denoted by the symbol k. Voter preferences can take different forms but we

are interested here in the case where each voter proposes a linear ranking over the set of

candidates, i.e., without the possibility of ties between candidates. Many rules are defined

in order to aggregate these rankings. The most commonly rules used in the literature are

those that are based on scoring functions and called the committee scoring rules. This

class of rules, introduced by Elkind et al. (2017), is adapted from the well-known class of

single-winner scoring rules. Roughly speaking, and similarly to the single-winner setting,

under a committee scoring rule each voter assigns a predefined score to each committee

based on the positions of the committee members in the considered voter’s ranking and, at

the end, the winning committee is the one with the maximum total score computed as the

sum of the scores received from all voters to every candidate.3 The well-known examples

of committee scoring rules are the k-plurality rule, the k-antiplurality rule, the Bloc rule,

the k-Borda rule, the Chamberlin-Courant rule (Chamberlin and Courant, 1983) and the

proportional approval voting rule (Kilgour, 2010). Among these rules, Elkind et al. (2017)

defined a family of committee scoring rules that are (weakly) separable. These rules select

the committee(s) containing the k-best candidates in terms of aggregated scores received

from the voters. In other words, under those rules we compute a separate aggregated

score for each candidate (using a single-winner scoring rule) taking into account all of

the voters and then we pick k candidates with the top aggregated scores, possibly using

a tie-breaking rule. The aforementioned first four committee scoring rules are (weakly)

separable. Many other families of committee scoring rules have been introduced in the

literature and to further explore these we refer the reader to Faliszewski et al. (2016, 2018)

and Skowron et al. (2016, 2019), among others.

Choosing a committee can sometimes be limited by various standards and objectives

that need to be accomplished. Our paper is concerned with the question of diversity.

The literature devoted to the framework of diverse committee selection is rich and recent.

It mainly concerns the computational complexity of managing such a problem based on

different ideas and goals and furthermore provides some properties that should be satisfied

in this framework. To the best of our knowledge, this literature can be categorized into two

groups. The first group regards the multi-attribute structure, which supposes that each

candidate is portrayed by a single label for each attribute. In this framework, Bredereck

3Note that Skowron et al. (2019) provided an axiomatic characterization of committee scoring rules.
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et al. (2017), Celis et al. (2018), and Lang and Skowron (2018), among others, consider

that the selected committee must contain at least a predefined quota of candidates from

each attribute. The second group assumes that candidates are sorted into multiple classes

based on a single specific attribute. We can cite the work of Aziz (2019) who considered

that the set of candidates is structured into several non-disjoint classes according to a

specific attribute, and defined a diversity constraint as a vector of integers specifying the

lowest number of candidates to be selected from each class. We also refer the reader to

Ianovski (2022), Kagita et al. (2021), and Relia (2021), among others.4

In this paper, we consider a multiwinner election in which the candidates are subdi-

vided into two groups according to only two gender identities: males and females. Each

voter is required to propose a ranking over the set of all candidates which satisfies some

diversity constraints. More precisely, our paper introduces a novel approach that takes

into account diversity constraints on the input, i.e., on individual preferences. We propose

three natural diversity constraints that can be imposed on the individual preferences. The

first constraint imposes to each voter to rank the candidates by alternating males and fe-

males up to the last candidate if possible. The second constraint imposes to each voter

a quota of each gender group among the top-k-positions of each linear ranking. The last

type of constraint imposes that the first half of the ranking of each voter must contain 50%

of candidates of each group. We believe that this approach makes it possible to account

for the changes that diversity constraints can implicitly induce in the mental process that

voters use to adjust the representation of their preferences. Using the method of Bred-

ereck et al. (2017), we introduce a measure of the price of diversity and we determine the

highest price of diversity to pay for the family of (weakly) separable committee scoring

rules. We classify the well-known (weakly) separable committee scoring rules in terms of

the maximal price of diversity to pay. Finally, we propose a second boundary of the price

of diversity specific to each diversity constraint and then we deduce a classification of

these diversity constraints considering again the family of (weakly) separable committee

scoring rules.

Our paper is structured as follows. Section 2 presents some basic definitions. Section 3

presents the diversity constraints that we consider. Section 4 studies the price of diversity

and Section 5 concludes.

4Diversity constraints ha ve also been introduced in the context of matching problems (Benabbou et al.,
2020; Echenique and Yenmez, 2015; Ehlers et al., 2014). For instance, Benabbou et al. (2020) consider the
matching problems between a finite set of individuals and a finite set of houses. They suppose that the
houses are partitioned into different categories; and the individuals are partitioned into different groups
or types (e.g., ethnicity groups). They also assume that there are a utility function which measures the
satisfaction of each individual over the set of houses. They impose a quota (minimal number) of each
category of houses to each group of individuals. They measure the price of diversity (measure of the loss
in welfare incurred by imposing diversity constraints) and proposed two upper bounds of this price.
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2. Preliminaries

For any integer r ∈ N∗, for simplicity we denote by [r] the set {1, . . . , r}. An election is a

pair (N,A) where N = [n] is a finite set of voters with |N | = n ≥ 2, and A = {a1, . . . , am}
is a finite set of candidates (or alternatives) with |A| = m ≥ 3. Candidates can also be

denoted by a, b, c, etc. We assume that A is partitioned into two groups according to the

gender identity, i.e., A = A1

⋃
A2 where A1 is the set of males and A2 is the set of females.

Any subset W ⊆ A of candidates of size k < m is called a committee. We denote by 2Ak
the set of possible committees with cardinality k.

We assume that individual preferences are strict (or linear), which means that ties are

not possible. For any voter i ∈ N , the notation ≻i denotes the (linear) preference or the

ranking of voter i over the set A so that a ≻i bmeans that voter i strictly prefers a to b. We

will sometimes use the notation ab instead of a ≻i b. The n-tuple ≻:= (≻1,≻2, . . . ,≻n)

is called a preference profile or simply a profile. We denote by Pn the set of all possible

profiles with n voters. In this paper, we consider voters’ preferences to be sincere, meaning

that each voter votes according to his/her true preference. The rank of a candidate a ∈ A

in preference ≻i is denoted by rank(a,≻i) and it is given by

rank(a,≻i) := |
{
b ∈ A : b ≻i a}|+ 1 = m− |{b ∈ A : a ≻i b

}
|. (1)

Similarly, the rank of a committee W ∈ 2Ak in ≻i is denoted by rank(W,≻i) and it is given

by

rank(W,≻i) := (i1, i2, . . . , ik) (2)

where (i1, i2, . . . , ik) is an increasing sequence of ranks of W members according to the

ranking given by ≻i. In order words, position i1 represents the rank of W ’s highest-ranked

candidate in ≻i, i2 is the rank of W ’s second-highest-ranked candidate in ≻i, and so on

up to ik, which is the rank of W ’s worse candidate in ≻i. We denote by [m]k the set of

all length-k increasing sequences of numbers from [m].

A scoring vector is a vector s = (s1, s2, . . . , sm) ∈ Rm
+ such that s1 ≥ s2 ≥ · · · ≥ sm and

s1 > sm. A single-winner scoring function for m candidates is a non-increasing function

γ : [m] −→ R+ that assigns a given score value to each rank in each preference order.

The most commonly-used scoring function is the Borda scoring function denoted by βm

and given by βm(r) = m − r, where r = rank(a,≻i). The second most commonly-used

scoring function is the t-approval scoring function αt (with t ∈ [m]) defined by αt(r) = 1

if r ≤ t, and 0 otherwise. In particular, α1 is the plurality scoring function, and αm−1 is

the antiplurality scoring function. The score of a candidate a ∈ A in a profile ≻ following

the scoring vector s is denoted by Sc(a, s,≻) and it is given by

Sc(a, s,≻) =
∑

i∈N
srank(a,≻i). (3)
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Let I = (i1, . . . , ik) and J = (j1, . . . , jk) be two sequences from [m]k. We will say that

the sequence I (weakly) dominates J , if iσ ≤ jσ holds for all σ ∈ [k]. Following Elkind

et al. (2017), and Faliszewski et al. (2016), a committee scoring function for m candidates

and a fixed committee size k is a function fm,k : [m]k −→ R+ such that for any two

sequences I, J ∈ [m]k, fm,k(I) ≥ fm,k(J) holds if I (weakly) dominates J . Given that m

and k are fixed in advance, we will simply write f instead of fm,k.

The score of a committee W ∈ 2Ak in a profile ≻ is denoted by Sc(W, f,≻) and it is

given by

Sc(W, f,≻) =
∑

i∈N
f(rank(W,≻i)). (4)

A committee scoring rule associated to a committee scoring function f is a function

that assigns to each profile ≻∈ Pn the winning committee(s) of size k (or the set of

committees of size k that tied as winners) with the highest score. In other words, the

committee scoring rule outputs the committee(s) that belong(s) to argmaxW∈2Ak Sc(W, f,≻
). Recently, Elkind et al. (2017) introduced a particular family of committee scoring rules

called (weakly) separable committee scoring rules. This family is commonly used in

the literature of multiwinner elections and has been adapted from the well-known family

of single-winner scoring rules.

A committee scoring function f is said to be (weakly) separable if there exists a scoring

vector s such that for any sequence (i1, i2, . . . , ik) ∈ [m]k, we have f(i1, i2, . . . , ik) =∑
r∈[k] sir . In other words, f is (weakly) separable if the score a voter assigns to any

committee is simply the sum of the scores he/she assigns to each candidate belonging

to that committee. If the scoring vector does not depend on k then we say that f is

separable. A committee scoring rule is (weakly) separable if the associated committee

scoring function is (weakly) separable.

Among the well-known (weakly) separable committee scoring rules, we can mention

the following:

k-plurality rule:5 Each voter gives 1 point to the top-ranked candidate and 0 to the

others, i.e., s = (1, 0, . . . , 0). The k candidates with the highest aggregated scores

are selected.

k-antiplurality rule: Each voter gives 1 point to each candidate in his/her ranking

except the last candidate who obtains 0, i.e., s = (1, 1, . . . , 1, 0). The k candidates

with the highest aggregated scores are selected.

k-Borda rule: Each voter gives to each candidate (m− r) points where r ∈ [m] is the

rank of the candidate, i.e., s = (m− 1,m− 2, . . . , 1, 0). The k candidates with the

highest aggregated scores are selected.

5Also known as Single Non-Transferable Vote (SNTV).
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Bloc rule: Each voter gives 1 point to the candidates ranked at the top-k-positions

and 0 point to the others, i.e., s = ( 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0). The k candidates with the

highest aggregated scores are selected.

Clearly, the k-antiplurality rule, the k-plurality rule, and the k-Borda rule are separa-

ble. In addition, the Bloc rule is weakly separable.

Note that Bredereck et al. (2017) define the price that can be paid in terms of scores in

the case of imposing predefined constraints on the composition of the selected committee

(i.e., they impose the diversity constraints on the output). The price of diversity, denoted

by pod(f,≻), is defined for a given profile ≻ and a given committee scoring function f as

follows:

pod(f,≻) =

max
W∈2Ak

Sc(W, f,≻)

max
W∈D

Sc(W, f,≻)
(5)

where D =
{
W ∈ 2Ak : W satisfies the predefined diversity constraints on the output},

max
W∈2Ak

Sc(W, f,≻) is the score of the selected committee without considering diversity con-

straints, and max
W∈D

Sc(W, f,≻) is the score of the selected committee when the diversity

constraints are taken into account.

Bredereck et al. (2017) show that if the family of committee scoring functions (fm,k′)k′≤m

is submodular6 and monotone7 then the price of diversity is at most 2 when we enforce

the constraint of balanced committees.8 In other words, the constraint consisting at bal-

anced committees may reduce the score of the selected committee by up to 50% when

(fm,k′)k′≤m is submodular and monotone.

We enforce the diversity constraints on the input, i.e., on voters preferences. In other

words, we consider a framework in which each voter holds a sincere preference, but he/she

may revise it if it fails to satisfy the requirements enforced for promoting diversity. For

instance, we can enforce each voter to rank the candidates by alternating the positions

of males and females. In this case, we obtain a new profile when the original one does

not meet the alternation principle. This means that for a given voting rule and a given

preference profile, due to the diversity constraints on the preferences, we may select a

new committee different from the one obtained through the original profile. We will then

be interested in the price of diversity in that framework. Before answering this question,

we start by presenting some diversity constraints that can be imposed on individual

preferences.

6A family of committee scoring functions (fm,k′)k′≤m is submodular if ∀S, S′ ⊆ A with S ⊆ S′ and
∀a ∈ A\S′, we have Sc(S ∪ a, fm,|S∪a|,≻)− Sc(S, fm,|S|,≻) ≥ Sc(S′ ∪ a, fm,|S′∪a|,≻)− Sc(S′, fm,|S′|,≻)
for any ≻∈ Pn.

7A family of committee scoring functions (fm,k′)k′≤m is monotone if ∀S, S′ ⊆ A with S ⊆ S′, we have
Sc(S, fm,|S|,≻) ≤ Sc(S′, fm,|S′|,≻) for any ≻∈ Pn.

8A balanced committee is a committee (with an even number of candidates) containing the same
number of males and females.
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3. Some diversity constraints on admissible preferences

We introduce three natural diversity constraints that can be imposed on individual pref-

erences.

Alternation of males and females

In this case, voters are required to rank the candidates by placing them in alternate po-

sitions (i.e., male, female, male, female,. . . ; or female, male, female, male,. . . ). From

the original preference profile ≻, we can construct a new profile denoted by ≻̃alt
=

(≻̃alt
1 , ≻̃alt

2 , . . . , ≻̃alt
n ) where every ≻̃alt

i satisfies the alternation principle as follows:

• The original preference ≻i of any voter i induces a ranking of candidates within

each group.

• If voter i’s preferred candidate is male (respectively, female), he/she should propose

a new ranking consisting of the top male and female candidates (respectively, fe-

male and male) according to ≻i, followed by the second highest male and female

candidates (respectively, female and male) according to ≻i, and so on.

• During the process, when the candidates in one group are all ranked, the remaining

candidates in the other group are added to the current ranking in accordance with

their order given by ≻i.

Constraints on the top-k-positions on individual preferences

In this case, we consider a vector of natural numbers q := (q1, q2) ̸= (0, 0), where q1 and q2

are respectively the minimal numbers of males and females occupying the top-k-positions

in each voter’s ranking and satisfying the following conditions: q1 ≤ |A1|, q2 ≤ |A2|, and
q1 + q2 ≤ k. In other words, we require each voter to propose a ranking such that the

top-k-positions contain at least q1 males and q2 females.

Let ≻ be the original preference profile. If we impose the constraints on the top-k-

positions then we can construct a new profile denoted by ≻̃top-k
. The original preference

of a voter i induces a ranking of candidates within each group. The top-k-candidates

who will occupy the top-k-positions of the preference ≻̃top-k
i are presented as follows: we

first consider the increasing sequence of candidates according to their order given by ≻i,

and containing the top-q1-males and the top-q2-females. From the remaining candidates,

we select those ranked higher by ≻i and add them to the end of this sequence in order

to complete the size of this sequence at k (since q1 + q2 ≤ k). Candidates occupying

top-k-positions of ≻̃top-k
i correspond to this sequence. From position k+1 to m in ≻̃top-k

i ,

we rank the remaining candidates according to the order induced by ≻i, and we obtain

the new preference ≻̃top-k
i .
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Constraints on the first half of the ranking

We impose here to each voter to rank the candidates in such a way that the first half of

his/her ranking (i.e., the ⌈ |A1|
2
⌉ + ⌈ |A2|

2
⌉ first positions within the ranking) must contain

at least 50 % of candidates of each group (i.e., ⌈ |A1|
2
⌉ males and ⌈ |A2|

2
⌉ females). From a

preference profile ≻, we can construct a new preference profile denoted by ≻̃half
satisfying

the constraints on the top half of the ranking. The original preference ≻i of each voter

i induces the ranking of the candidates within each group, and we can then select the

top-⌈ |Aj |
2
⌉-candidates for each group. The new preference ≻̃half

i of voter i is described as

follows:

• On the top-⌈ |A1|
2
⌉ + ⌈ |A2|

2
⌉-positions of voter i’s new ranking, we rank all his/her

top-⌈ |Aj |
2
⌉-candidates (with j ∈ [2]) from the order induced by ≻i.

• From position ⌈ |A1|
2
⌉+ ⌈ |A2|

2
⌉+ 1 to m, we rank the rest of the candidates using the

order induced by ≻i.

Let us consider an example in order to illustrate the different constraints that we

consider.

Example 3.1. We consider an election where we have 8 candidates such that the set of

males is A1 = {a1, a2, a3, a4} and the set of females is A2 = {b1, b2, b3, b4}. We assume

that we have 6 voters with the following profile: ≻= (a3a2b2b1a1b3a4b4, b2a1a2b1a3b3b4a4,

b1a3a1a2b2b3b4a4, a3a1b2a2b1b3a4b4, a1a3a2b2b1b3a4b4, a1b2b1a3a2b3a4b4). We obtain a new

preference profile for each diversity constraint.

• The alternation of males and females

The new profile is ≻̃alt
= (a3b2a2b1a1b3a4b4, b2a1b1a2b3a3b4a4, b1a3b2a1b3a2b4a4,

a3b2a1b1a2b3a4b4, a1b2a3b1a2b3a4b4, a1b2a3b1a2b3a4b4).

• The constraints on the top-2-positions with q1 = q2 = 1

The new profile is: ≻̃top-k
= (a3b2a2b1a1b3a4b4, b2a1a2b1a3b3b4a4, b1a3a1a2b2b3b4a4,

a3b2a1a2b1b3a4b4, a1b2a3a2b1b3a4b4, a1b2b1a3a2b3a4b4).

• The constraints on the first half of the ranking

The new profile is: ≻̃half
= (a3a2b2b1a1b3a4b4, b2a1a2b1a3b3b4a4, b1a3a1b2a2b3b4a4,

a3a1b2b1a2b3a4b4, a1a3b2b1a2b3a4b4, a1b2b1a3a2b3a4b4).

In the next section, we will study the price of diversity constraints imposed on indi-

vidual preferences. For each diversity constraint introduced in this paper, we will also

exhibit a profile that reaches the boundary of the price of diversity.
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4. The price of diversity constraints on admissible pref-

erences

Let ≻ be a given preference profile. Using a committee scoring rule with the associated

committee scoring function f , we can determine an optimal committee W ∈ 2Ak such

that W ∈ argmax
C∈2Ak

Sc(C, f,≻). Now, if we impose some diversity constraints on the

preferences, we can construct from the profile ≻ a new profile ≻̃ satisfying the chosen

diversity constraints. From this new profile, we can determine an optimal committee

W̃ ∈ 2Ak , i.e., W̃ ∈ argmax
C∈2Ak

Sc(C, f, ≻̃). We are interested in the price that could be paid

if we select the committee W̃ instead of the committee W . Using the approach proposed

by Bredereck et al. (2017), we define a new measure that quantifies the cost of diversity

constraints enforced on individual preferences. This measure is denoted by pod1 and it is

given by the following definition.

Definition 1. Let ≻∈ Pn be a profile and f be a committee scoring function associated

to a given committee scoring rule. If we impose some diversity constraints on individual

preferences and select the committee of size k with profile ≻̃ instead of ≻, then the price

of diversity is given by:

pod1(f,≻) =

max
W∈2Ak

Sc(W, f,≻)

min
W̃∈ argmax

C∈2Ak
Sc(C, f, ≻̃)

Sc(W̃ , f,≻)
. (6)

In Equation (6),

max
W∈2Ak

Sc(W, f,≻)

is the score of the committee selected without considering diversity constraints on prefer-

ences,

arg max
C∈2Ak

Sc(C, f, ≻̃)

is the set of all winning committees in the new profile ≻̃, and

min
W̃∈ arg max

C∈2Ak
Sc(C, f, ≻̃)

Sc(W̃ , f,≻)

is the lowest score of the selected committee when diversity constraints are taken into

account. Note that Equation (6) may be normalized as follows:
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pod1(f,≻) = 1−

min
W̃∈ arg max

C∈2Ak
Sc(C, f, ≻̃)

Sc(W̃ , f,≻)

max
W∈2Ak

Sc(W, f,≻)
.

Let us now consider the following example.

Example 4.1 (Example 3.1 continued). Let us find the price of diversity when we enforce

the diversity constraints introduced in Section 3. We assume that the objective is to select a

committee of size k = 2 using the k-Borda rule. The candidates have the following scores:

Sc(a1, s,≻) = 34, Sc(a2, s,≻) = 27, Sc(a3, s,≻) = 33, Sc(a4, s,≻) = 4, Sc(b1, s,≻) = 26,

Sc(b2, s,≻) = 30, Sc(b3, s,≻) = 12, and Sc(b4, s,≻) = 2. The elected committee for the

profile ≻ is {a1, a3} with a score of 67.

• If we impose alternation on the gender position, we obtain the new profile ≻̃alt

described in Example 3.1 and the selected committees are {a1, b2} and {a3, b2}. Thus,

pod1(f,≻) =
Sc({a1, a3}, s,≻)

Sc({a3, b2}, s,≻)
=

67

63
.

The diversity constraints on the preferences reduce the score of the selected committee

by 1-63/67=5.97%.

• If we impose the constraints on the top-2-positions with q1 = q2 = 1 then we obtain

the new profile ≻̃top-k
and the selected committee is {a1, b2}. So,

pod1(f,≻) =
Sc({a1, a3}, s,≻)

Sc({a1, b2}, s,≻)
=

67

64
.

The diversity constraints on the preferences reduce the score of the selected committee

by 1-64/67=4.48%.

• If we impose the constraints on the first half of the ranking then the new profile is

≻̃half
and the elected committee is {a1, a3}. Thus,

pod1(f,≻) =
Sc({a1, a3}, s,≻)

Sc({a1, a3}, s,≻)
= 1.

In this particular case, diversity constraints on preferences do not affect the compo-

sition of the selected committee.

4.1. Boundary of the price of diversity and classification of the

well-known committee scoring rules

For any preference profile, any diversity constraint on preferences and any committee scor-

ing rule, we determine the boundary of the price of diversity for the family of (weakly)
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separable committee scoring rules. Through some examples and using the diversity con-

straints given in the previous section, we show that the boundary is reached.

Proposition 1. Let f be a (weakly) separable committee scoring function and s a scor-

ing vector of f . For any profile ≻∈ Pn, when we enforce the diversity constraints on

preferences, then 1 ≤ pod1(f,≻) ≤
∑k

σ=1 sσ∑k
σ=1 sm−k+σ

if sm−k+1 > 0 and pod1(f,≻) ≤ +∞
otherwise.

Proof of Proposition 1. If the preference profile ≻ satisfies the diversity constraints

then pod1(f,≻) = 1. Let W be the selected committee obtained without considering

diversity constraints on preferences and W̃ the selected committee obtained when the

diversity constraints on preferences are taken into account. The following two polar

cases are possible:

• In the profile ≻, each voter ranks the members of W in the top-k-positions (from

position 1 to position k), i.e., each voter assigns the highest score
∑k

σ=1 sσ to the

committee W .

• In the profile ≻, each voter ranks the members of W̃ in the last-k-positions (from

position m − k + 1 to position m), i.e., each voter assigns the smallest score∑k
σ=1 sm−k+σ to the committee W̃ .

When diversity constraints are taken into account (alternating males and females

positions, constraints on the top k-positions, etc.), the committee W̃ can be selected in

the new profile ≻̃. So,

pod1(f,≻) ≤ n.
∑k

σ=1 sσ

n.
∑k

σ=1 sm−k+σ

if
∑k

σ=1 sm−k+σ ̸= 0 and pod1(f,≻) ≤ +∞ otherwise. If sm−k+1 > 0 then
∑k

σ=1 sm−k+σ ̸=
0. 2

For any diversity constraint on preferences, Proposition 1 gives the highest price of di-

versity to pay. It is important to exhibit a profile that reaches the upper bound. Examples

4.2 and 4.3 given below are useful to show that the upper bound defined in Proposition

1 is reached when we impose the diversity constraints described in Section 3.

Example 4.2. We consider an election where we have 4 voters and 6 candidates such

that the set of males is A1 = {a1, a2, a3, a4} and the set of females A2 = {b1, b2}. We

assume that the original preference profile is ≻=
(
a1a2a3a4b1b2, a1a2a3a4b1b2, a2a1a3a4b2b1,

a2a1a3a4b2b1
)
and the size of the selected committee is k = 2.

• If the committee scoring rule is the k-antiplurality rule then the committee elected

for the preference profile ≻ is {a1, a2} (i.e., the committee occupying the top-2-

positions for each voter) with a score Sc({a1, a2}, f,≻) = 8. Note that, the com-

mittee occupying the last-2-positions for each voter in the profile ≻ is {b1, b2} and
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its score is Sc({b1, b2}, f,≻) = 4. Now, if we impose alternating position for

males and females on preferences then the new profile will be as follows: ≻̃alt
=(

a1b1a2b2a3a4, a1b1a2b2a3a4, a2b2a1b1a3a4, a2b2a1b1a3a4
)
. The committee {b1, b2} is

one of the committees elected in the profile ≻̃alt
. Finally, pod1(f,≻) =

Sc({a1, a2}, f,≻)

Sc({b1, b2}, f,≻)

=
8

4
= 2. These constraints reduce the score of the selected committee by 1-1/2=50%.

• If we consider a separable committee scoring rule where the scoring vector is s =

(1, 1, 0.5, 0.5, 0.5, 0.5) then the selected committee in the preference profile ≻ remains

{a1, a2} with a score of 8. If we impose the constraints on the top-2-positions (with

q1 = q2 = 1) then the new profile will be ≻̃top-k
=

(
a1b1a2a3a4b2, a1b1a2a3a4b2,

a2b2a1a3a4b1, a2b2a1a3a4b1
)
. Moreover, the committee {b1, b2} is one of the commit-

tees elected in the profile ≻̃top-k
. Finally, pod1(f,≻) =

Sc({a1, a2}, f,≻)

Sc({b1, b2}, f,≻)
=

8

4
= 2.

Example 4.3. We consider an election where we have 4 candidates such that A1 =

{a1, a2} and A2 = {b1, b2}. We assume that we have 2 voters with the following profile:

≻=
(
a1a2b1b2, a2a1b2b1

)
. We also assume that k = 2 and that the committee scoring rule

is a separable rule with the scoring vector s = (1, 1, 0.5, 0.5). The committee selected in

profile ≻ is {a1, a2}. If we impose the constraints on the first half of the ranking then we

obtain the following profile: ≻̃half
=

(
a1b1a2b2, a2b2a1b1

)
. The committee {b1, b2} is one of

the committees elected in the profile ≻̃half
. Thus, pod1(f,≻) =

Sc({a1, a2}, f,≻)

Sc({b1, b2}, f,≻)
=

4

2
= 2.

The boundary of the price of diversity given by the Proposition 1 is too large for

some well-known (weakly) separable committee scoring rules. The diversity constraints

on preferences defined in this paper have no impact on the first ranking position of each

voter. Thus, pod1(f,≻) = 1 for the k-plurality rule. For any ≻∈ Pn, we respectively

denote by pod1alt(f,≻), pod1top-k(f,≻) and pod1half(f,≻) the price to pay when diversity

constraints on preferences are alternating males and females positions (alt), constraints

on the top-k positions (top-k) and constraints on the first half of the ranking (half).

The next result suggests the right boundaries of the price of diversity for the well-known

committee scoring rules defined above when the constraints on preferences are alternating

males and females positions.

Corollary 1. If we enforce alternating males and females positions on preferences then

the boundaries of the price of diversity for the well-known (weakly) separable committee

scoring rules can be summarized in Table 1.
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Table 1: Boundary of pod1alt for the well-known (weakly) separable committee scoring rules

Committee scoring rule Upper bound of pod1alt(f,≻)
k-plurality 1

k-antiplurality
k

k − 1

k-Borda
2m− k − 1− (4/(nk))

k − 1

Bloc





k if k ≥ m+1
2

+∞ otherwise

Proof of Corollary 1.

i) As mentioned above in the case of k-plurality rule, pod1alt(f,≻) = 1 since the diversity

constraints do not affect the position of the top ranked candidate in the original

preferences.

ii) The upper boundary of the k-antiplurality rule and the Bloc rule follows directly

from Proposition 1.

iii) Let us consider the k-Borda rule. Note that, the highest score attributed by voters

to a committee is n.
∑k

σ=1 sσ (this is the score of the committee ranked at the top-

k-positions by all voters), the second highest score is (n.
∑k

σ=1 sσ)−1 and the third

highest score is (n.
∑k

σ=1 sσ)−2. Moreover, the smallest score attributed by voters

to a committee is n.
∑k

σ=1 sm−k+σ (this is the score of the committee ranked at the

last-k-positions by all voters) and the previous lowest score is (n.
∑k

σ=1 sm−k+σ)+1.

The highest boundary of the price of diversity is therefore

n.
∑k

σ=1 sσ

n.
∑k

σ=1 sm−k+σ

=
2m− k − 1

k − 1
.

The second boundary of the price of diversity could be
(n.

∑k
σ=1 sσ)− 1

n.
∑k

σ=1 sm−k+σ

if the first

one is too large. If the first and the second boundaries of the price of diversity are

too large then the boundary of the price of diversity could be





(n.
∑k

σ=1 sσ)− 2

n.
∑k

σ=1 sm−k+σ

if 2m ≥ 3k,

n.
∑k

σ=1 sσ

(n.
∑k

σ=1 sm−k+σ) + 1
otherwise
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because the inequality

(n.
∑k

σ=1 sσ)− 2

n.
∑k

σ=1 sm−k+σ

≥ n.
∑k

σ=1 sσ

(n.
∑k

σ=1 sm−k+σ) + 1

holds when 2m ≥ 3k
(
respectively,

(n.
∑k

σ=1 sσ)− 2

n.
∑k

σ=1 sm−k+σ

<
n.

∑k
σ=1 sσ

(n.
∑k

σ=1 sm−k+σ) + 1

when 2m < 3k
)
.

Without loss of generality, we assume that k ≤ |A2| ≤ |A1|. We obtain the highest

price of diversity when all voters rank all males before females in the profile ≻. Let

us assume that in the profile ≻, all voters rank the members of W ⊆ A1 at the top-

k-positions, and also rank the members of W̃ ⊆ A2 at the last-k-positions. For any

voter i ∈ N , the increasing sequence I = (i1, i2, . . . , ik) of the ranks of W members

in ≻̃alt
i dominates the increasing sequence J = (j1, j2, . . . , jk) of the ranks of W̃

members in ≻̃alt
i . Moreover, the committee W beats the committee W̃ with at

least 4 points in the new profile ≻̃alt
since, in the new profile, W members occupy

the odd positions 1, 3, etc. and W̃ members occupy the even positions 2, 4, etc.

Thus, the first and second boundaries are too large since there is no profile ≻∈ Pn

such that the committee W with a score Sc(W, f,≻) ≥ (n.
∑k

σ=1 sσ)−1 is selected

and the committee W̃ with a score Sc(W̃ , f,≻) = n.
∑k

σ=1 sm−k+σ is also selected

in the new profile ≻̃alt
. If one voter moves a member of W̃ up (That is, when the

voter improves his rank) in the profile ≻ such that the score of W̃ in ≻ adds by

1 point then the committee W will still beat the committee W̃ in the profile ≻̃alt
.

That is, there is no profile ≻∈ Pn such that W has n.
∑k

σ=1 sσ points in ≻ and W̃

has (n.
∑k

σ=1 sm−k+σ)+1 points in ≻. If voters rankW members so that their score

decreases by at least 2 then after constraints the score of W will also decrease by at

least 4 in the new profile ≻̃alt
(W and W̃ could have the same score in ≻̃alt

, and W̃

could be selected in ≻̃alt
). In order to reach the boundary, some voters must move

down some members of W in the profile ≻ such that the score of W decreases by at

least 2 points. Finally, pod1alt(f,≻) ≤ (n.
∑k

σ=1 sσ)− 2

n.
∑k

σ=1 sm−k+σ

=
2m− k − 1− (4/(nk))

k − 1
.

2

We will now propose an example in order to show that we reach the boundaries given in

Table 1.

Example 4.4. i) By using the k-antiplurality rule, we show in Example 4.2 that we reach

the boundary of the price of diversity.

ii) • Let us assume that the set of males is A1 = {a1, a2, a3}, the set of females is A2 =

{b1, b2}, k = 3, and the committee scoring rule is Bloc rule. If ≻= (a1a2a3b1b2,
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a2a3a1b2b1), then ≻̃alt
= (a1b1a2b2a3, a2b2a3b1a1). Moreover, W = {a1, a2, a3}

with a score Sc(W, f,≻) = 6, and W̃ = {a2, b1, b2} with a score Sc(W̃ , f,≻) =

2 = Sc({a3, b1, b2}, f,≻) = Sc({a1, b1, b2}, f,≻). Thus, pod1alt(f,≻) ≤ 6
2
= 3.

• Let us assume that A1 = {a1, a2}, A2 = {b1, b2}, k = 2, and the com-

mittee scoring rule is Bloc rule. If ≻= (a1a2b1b2, a2a1b2b1), then ≻̃alt
=

(a1b1a2b2, a2b2a1b1). Moreover, W = {a1, a2} with a score Sc(W, f,≻) = 4,

and W̃ = {b1, b2} with a score Sc(W̃ , f,≻) = 0. Thus, pod1alt(f,≻) = +∞.

iii) Let us assume that A1 = {a1, a2, a3, a4}, A2 = {b1, b2}, k = 2, and the committee

scoring rule is the k-Borda rule. If ≻= (a1a2a3a4b1b2, a4a2a1a3b2b1), then ≻̃alt
=

(a1b1a2b2a3a4, a4b2a2b1a1a3). Moreover, W = {a1, a2} is selected in ≻ with a score

Sc(W, f,≻) = 16, and W̃ = {b1, b2} is selected in ≻̃alt
and its score in the original

profile ≻ is Sc(W̃ , f,≻) = 2. Thus, pod1alt(f,≻) ≤ 16
2
= 8 = 2∗6−2−1−4/4

2−1
.

We respectively denote by fPlu, fAnt, fBloc and fBorda the committee scoring functions

associated to the k-plurality rule, the k-antiplurality rule, the Bloc rule and the k-Borda

rule. Using Table 1, we distinguish the well-known committee scoring rules in terms of

the highest price of diversity to pay as shown in the remark below.

Remark 1.

i) If m = 3, then

max≻∈Pn pod1alt(f
Plu,≻) ≤ max≻∈Pn pod1alt(f

Ant,≻) ≤ max≻∈Pn pod1alt(f
Bloc,≻) ≤

max≻∈Pn pod1alt(f
Borda,≻).

ii) If m ≥ 4, then

max≻∈Pn pod1alt(f
Plu,≻) ≤ max≻∈Pn pod1alt(f

Ant,≻) ≤ max≻∈Pn pod1alt(f
Borda,≻) ≤

max≻∈Pn pod1alt(f
Bloc,≻).

For a given election, Remark 1 classifies the various well-known (weakly) separable

committee scoring rules according to the highest price of diversity to pay when the di-

versity constraints are alternating males and females positions on individual preferences.

Now, using (weakly) separable committee scoring rules and diversity constraints on the

top-k-positions of each preference, we also propose the right boundaries of the price of

diversity as shown below.

Corollary 2. If we enforce the diversity constraints on the top-k-positions of individ-

ual preferences then the boundaries of the price of diversity for the well-known (weakly)

separable committee scoring rules can be summarized in Table 2:
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Table 2: Boundary of pod1top-k for well-known (weakly) separable committee scoring rules

Committee scoring rule Upper bound of pod1top-k(f,≻)

k-plurality 1

k-antiplurality
k

k − 1

Bloc





k if k ≥ m+1
2

+∞ otherwise

k-Borda
2m− k − 1

k − 1

Proof of Corollary 2. The upper boundary of the k-antiplurality rule, the k-Borda rule

and the Bloc rule are respectively given by Proposition 1. 2

Through the following example, we show that we reach the boundaries given in Table 2.

Example 4.5. i) Let us assume that A1 = {a1, a2}, A2 = {b1}, k = 2, q1 = q2 = 1, and

the committee scoring rule is the k-antiplurality rule. If ≻= (a1a2b1, a2a1b1), then

≻̃top-k
= (a1b1a2, a2b1a1). Moreover, W = {a1, a2} with a score Sc(W, f,≻) = 4, and

W̃ = {a1, b1} with a score Sc(W̃ , f,≻) = 2. Thus, pod1top-k(f,≻) ≤ 4
2
= 2 = 2

2−1
.

ii) • Let us assume that A1 = {a1, a2, a3}, A2 = {b1, b2}, k = 3, q = 1, q2 = 2, and

the committee scoring rule is the Bloc rule. If ≻= (a1a2a3b1b2, a2a3a1b2b1,

a3a1a2b1b2), then ≻̃top-k
= (a1b1b2a2a3, a2b2b1a3a1, a3b1b2a1a2). Moreover,

W = {a1, a2, a3} with a score Sc(W, f,≻) = 9, and W̃ = {a2, b1, b2} with a

score Sc(W̃ , f,≻) = 3 = Sc({a3, b1, b2}, f,≻) = Sc({a1, b1, b2}, f,≻). Thus,

pod1top-k(f,≻) ≤ 9
3
= 3.

• Let us assume that A1 = {a1, a2}, A2 = {b1, b2}, k = 2, q1 = q2 = 1, and

the committee scoring rule is the Bloc rule. If ≻= (a1a2b1b2, a2a1b2b1), then

≻̃top-k
= (a1b1a2b2, a2b2a1b1). Moreover, W = {a1, a2} with a score Sc(W, f,≻

) = 4, and W̃ = {b1, b2} with a score Sc(W̃ , f,≻) = 0. Thus, pod1top-k(f,≻) =

+∞.

iii) Let us assume that A1 = {a1, a2, a3, a4}, A2 = {b1, b2, b3, b4}, k = 4, q1 = 1,

q2 = 3, and the committee scoring rule is the k-Borda rule. If ≻= (a1a2a3a4b1b2b3b4,

a2a3a4a1b2b3b4b1, a3a4a1a2b3b4b1b2, a4a1a2a3b4b1b2b3), then ≻̃top-k
= (a1b1b2b3a2a3a4b4,

a2b2b3b4a3a4a1b1, a3b3b4b1a4a1a2b2, a4b4b1b2a1a2a3b3). Moreover, W = {a1, a2, a3, a4}
with a score Sc(W, f,≻) = 88, and W̃ = {b1, b2, b3, b4} with a score Sc(W̃ , f,≻) =

24. Thus, pod1top-k(f,≻) ≤ 88
24

= 11
3
= 2∗8−4−1

4−1
.

Note that, Remark 1 also classifies the different well-known (weakly) separable com-

mittee scoring rules in terms of the highest price of diversity to pay when the diversity

constraints are the constraints on the top-k-positions of individual preferences.
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In the next corollary, we consider the diversity constraints on the first half of the

ranking.

Corollary 3. If we enforce the diversity constraints on the first half of the ranking then

the boundaries of the price of diversity for the well-known (weakly) separable committee

scoring rules can be summarized in Table 3:

Table 3: Boundary of pod1half for well-known (weakly) separable committee scoring rules

Committee scoring rule Upper bound of pod1half(f,≻)
k-plurality 1

k-antiplurality 1

Bloc





k if k ≥ m+1
2

+∞ otherwise

k-Borda
2m− k − 1− 4/(nk)

k − 1

Proof of Corollary 3.

i) When we use the k-antiplurality rule, the diversity constraints on the first half of the

ranking do not affect the candidates occupying the last positions. So, the elected

committee in both profiles (the original profile and the new profile) remains the

same.

ii) The proof of Proposition 1 for the Bloc rule and the k-Borda rule remains valid

here.

2

Through the following example, we show that the boundaries given in Table 3 are

reached.

Example 4.6. i) • Let us assume that A1 = {a1, a2, a3}, A2 = {b1, b2}, k = 3, and

the committee scoring rule is the Bloc rule. If ≻= (a1a2a3b1b2, a3a2a1b2b1),

then ≻̃half
= (a1b1a2a3b2, a3b2a2a1b1). Moreover, W = {a1, a2, a3} with a

score Sc(W, f,≻) = 6 and W̃ = {a2, b1, b2} with a score Sc(W̃ , f,≻) = 2 =

Sc({a3, b1, b2}, f,≻) = Sc({a1, b1, b2}, f,≻). Thus, pod1half(f,≻) ≤ 6
2
= 3.

• Let us assume that A1 = {a1, a2}, A2 = {b1, b2}, and the committee scoring rule

is the Bloc rule. If ≻= (a1a2b1b2, a2a1b2b1), then ≻̃half
= (a1b1a2b2, a2b2a1b1).

Moreover, W = {a1, a2} with a score Sc(W, f,≻) = 4 and W̃ = {b1, b2} with a

score Sc(W̃ , f,≻) = 0. Thus, pod1half(f,≻) = +∞.
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ii) Let us assume that A1 = {a}, A2 = {b1, b2}, k = 2, and the committee scoring rule

is the k-Borda rule. If ≻= (b1b2a, b2b1a), then ≻̃top-k
= (b1ab2, b2ab1). Moreover,

W = {b1, b2} with a score Sc(W, f,≻) = 6, and W̃ ∈
{
{b1, a}, {b2, a}

}
with a score

Sc(W̃ , f,≻) = 3. Thus, pod1top-k(f,≻) ≤ 6
3
= 2 = 2∗3−2−1−4/(2∗2)

2−1
.

Remark 1 also classifies the different well-known (weakly) separable committee scoring

rules in terms of the highest price of diversity to pay when we require the diversity

constraints on the first half of the ranking.

4.2. Boundary of the price of diversity and classification of di-

versity constraints

Proposition 1 does not depend on the constraints imposed on individual preferences. In

other words, the three diversity constraints introduced in this paper have the same upper

bound in terms of the price of diversity when we apply Proposition 1. From Corollaries 1,

2 and 3, we can remark that some well-known (weakly) separable committee scoring rules

do not have the same upper bound of the price of diversity when the diversity constraints

on preferences change. It is therefore necessary to propose an alternative boundary of the

price of diversity depending on the diversity constraints so that we can exhibit a domain

for distinguishing these constraints.

4.2.1. The alternation of males and females positions

In the following result, we propose a second boundary of the price of diversity for the

family of (weakly) separable committee scoring rules when the diversity constraints on

preferences are alternating males and females positions.

Proposition 2. Let f be a (weakly) separable committee scoring function and s a scoring

vector of f . For any profile ≻∈ Pn,

1 ≤ pod1alt(f,≻) ≤
∑k

σ=1 sσ
k
∑m

σ=1 sσ
m

−∑k
σ=1

(
sσ+1 − sm−k+σ

)

if

k
∑m

σ=1 sσ
m

−
k∑

σ=1

(
sσ+1 − sm−k+σ

)
> 0,

and pod1(f,≻) ≤ +∞, otherwise.

Proof of Proposition 2. Let f be a (weakly) separable committee scoring function and

s a scoring vector of f . Let W be the selected committee in profile ≻∈ Pn without

considering diversity constraints on preferences, and W̃ the committee selected in profile

≻̃alt
when alternating males and females positions on individual preferences are taken
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into account. Let ξ = minσ∈[m−1]

(
sσ − sσ+1

)
be the smallest score lost by a candidate

when a voter move that candidate down on his/her ranking. Also, let µi (respectively,

νi) be the number of members of W̃ who move down9 (respectively, up10) in the new

preference ≻̃alt
i of voter i. Let ϱi be the number of W̃ members whose their positions

do not change when voter i votes according to ≻̃alt
i instead of ≻i.

The variation of the score of W̃ in the two profiles is given by

∆f (W̃ , ≻̃alt
,≻) := Sc(W̃ , f, ≻̃alt

)− Sc(W̃ , f,≻) ≤
∑

i∈N

νi∑

σ=1

(
sσ+1 − sm−νi+σ

)
− ξ

∑

i∈N
µi.

That is,

Sc(W̃ , f,≻) ≥ Sc(W̃ , f, ≻̃alt
) + ξ

∑

i∈N
µi −

∑

i∈N

νi∑

σ=1

(
sσ+1 − sm−νi+σ

)
.

Note that, the variation of the score of the ”ϱi candidates”
11 for each voter i is 0 since

their positions do not change. We obtain the boundary of ∆f (W̃ , ≻̃alt
,≻) by assuming

that for each voter i, the ”νi candidates”
12 occupy the last νi-positions in ≻i and then

occupy at most position 2, 4, . . . , and 2νi in ≻̃alt
i (with 2νi < m). The score of the

candidates occupying positions 2, 4, . . . , and 2νi in ≻̃alt
i can be equal to the score of

the candidates occupying position 2 to position νi + 1 in ≻̃alt
i .

Since W̃ is the winning committee in ≻̃alt
, we have Sc(W̃ , f, ≻̃alt

) ≥ nk
∑m

σ=1 sσ
m

. In

fact, let us assume by contradiction that Sc(W̃ , f, ≻̃alt
) <

nk
∑m

σ=1 sσ
m

. There exists a

candidate a0 ∈ W̃ such that Sc(a0, s, ≻̃alt
) <

n
∑m

σ=1 sσ
m

. Moreover, Sc(A\W̃ , f, ≻̃alt
) >

nk
∑m

σ=1 sσ
m

. This implies that there exists a candidate b ∈ A\W̃ such that Sc(b, s, ≻̃alt
) >

n
∑m

σ=1 sσ
m

. This is absurd since Sc(b, s, ≻̃alt
) > Sc(a0, s, ≻̃alt

), a0 ∈ W̃ , and b ∈ A\W̃ .

So, we have

Sc(W̃ , f,≻) ≥ nk
∑m

σ=1 sσ
m

+ ξ
∑

i∈N
µi −

∑

i∈N

νi∑

σ=1

(
sσ+1 − sm−νi+σ

)

≥ nk
∑m

σ=1 sσ
m

−
∑

i∈N

νi∑

σ=1

(
sσ+1 − sm−νi+σ

)
.

9That is, when their ranks decrease or when they are moved to the right in the voter’s ranking.
10That is, when their ranks improve or when they are moved to the left in the voter’s ranking.
11That is, those whose their positions do not change in ≻̃alt

i and ≻i.
12In other words, candidates whose ranking improves when voter i moves from ≻i to ≻̃alt

i .
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We obtain the lowest boundary of Sc(W̃ , f,≻) when νi = k for each voter i. Then,

Sc(W̃ , f,≻) ≥ nk
∑m

σ=1 sσ
m

− n

k∑

σ=1

(
sσ+1 − sm−k+σ

)
.

The members of W̃ occupy at most positions 2, 4, . . . , and 2k in the preference

≻̃alt
i (with 2k ≤ m). There are some (weakly) separable committee scoring rules such

that, the score of W̃ in ≻̃alt
i is equal to the score of the committee occupying position

2 to position k + 1 in ≻̃alt
i . Figure 1 presents the worst position of committee W̃ in

the preference ≻i of a voter i without considering diversity constraints and the best

position of the committee having the same score with W̃ in the preference ≻̃alt
i of voter

i when alternating males and females positions are taken into account.

Figure 1: Position of W̃ before and after the alternation constraints

Remember that Sc(W, f,≻) ≤ n
∑k

σ=1 sσ. We conclude that

pod1alt(f,≻) ≤
∑k

σ=1 sσ
k
∑m

σ=1 sσ
m

−∑k
σ=1

(
sσ+1 − sm−k+σ

)

if
k
∑m

σ=1 sσ
m

−
k∑

σ=1

(
sσ+1 − sm−k+σ

)
> 0,

and pod1(f,≻) ≤ +∞, otherwise. 2

The following example helps us to show that the boundary given by Proposition 2 is

reached when the committee scoring rule is (weakly) separable.

Example 4.7. We consider an election where we have 2 voters, 4 candidates such that

A1 = {a1, a2} and A2 = {b1, b2}. We assume that k = 2 and the selection rule is a

separable committee scoring rule with a scoring vector s = (1, 1, 0.5, 0.5). By using the

profile ≻= (a1a2b1b2, a2a1b2b1), the winning committee is W = {a1, a2}. In the profile

≻̃alt
= (a1b1a2b2, a2b2a1b1), the committee W̃ = {b1, b2} is among the winning commit-

tees. Thus, pod1alt(f,≻) = Sc(W,f,≻)

Sc(W̃ ,f,≻)
= 2∗2

2∗1 = 2 and

∑k
σ=1 sσ

k
∑m

σ=1 sσ
m

−∑k
σ=1

(
sσ+1 − sm−k+σ

) =

2
2∗3
4

− (1.5− 1)
= 2.
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4.2.2. The top-k-positions constraint

The next proposition gives the highest price of diversity for the family of (weakly) sepa-

rable committee scoring rules when we enforce the constraints on the top-k-positions on

preferences.

Proposition 3. Let f be a (weakly) separable committee scoring function and s a scoring

vector of f . For any profile ≻∈ Pn,

1 ≤ pod1top-k(f,≻) ≤
∑k

σ=1 sσ
k
∑m

σ=1 sσ
m

−∑k
σ=1+minj∈[2] qj

(
sσ − sm−k+σ

)

if

k
∑m

σ=1 sσ
m

−
k∑

σ=1+minj∈[2] qj

(
sσ − sm−k+σ

)
> 0,

and pod1(f,≻) ≤ +∞, otherwise.

Proof of Proposition 3. The approach remains the same as the one used in the proof of

Proposition 2. We obtain the boundary of ∆f (W̃ , ≻̃top-k
,≻) by assuming that for each

voter i, the ”νi candidates” occupy the last νi-positions in ≻i and then occupy at most

position 1 + minj∈[2] qj ≤ k − νi + 1 to position k in ≻̃top-k
i . The lowest boundary of

Sc(W̃ , f,≻) is obtained when νi = k −minj∈[2] qj. So, we have

Sc(W̃ , f,≻) ≥ k
∑m

σ=1 sσ
m

−
k∑

σ=1+minj∈[2] qj

(
sσ − sm−k+σ

)
.

Figure 2 presents the worst positions of W̃ members in ≻i and the best positions of

some W̃ members in ≻̃top-k
i (or the position of the committee/candidates equivalent to

W̃ in terms of scores given by voter i in the preference ≻i without considering diversity

constraints, and in the preference ≻̃top-k
i when the constraints on the top-k-positions

are taken into account).

Figure 2: Positions of W̃ members before and after the top-k-position constraint

2

In the next example, we show that the boundary given by Proposition 3 is reached for

the family of (weakly) separable committee scoring rules.
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Example 4.8. We consider an election with 5 voters and 10 candidates such that A1 =

{a1, a2, a3, a4, a5} and A2 = {b1, b2, b3, b4, b5}. We assume that k = 5, q1 = 2, q2 =

3, and the selection rule is a separable committee scoring rule with a scoring vector

s = (2, 1.5, 1.5, 1.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5). By using the profile ≻= (a1a2a3a4a5b1b2b3b4b5,

a2a3a4a5a1b2b3b4b5b1, a3a4a5a1a2b3b4b5b1b2, a4a5a1a2a3b4b5b1b2b3, a5a1a2a3a4b5b1b2b3b4), the

winning committee is W = {a1, a2, a3, a4, a5}. In the profile ≻̃top-k
= (a1a2b1b2b3a3a4a5b4b5,

a2a3b2b3b4a4a5a1b5b1, a3a4b3b4b5a5a1a2b1b2, a4a5b4b5b1a1a2a3b2b3, a5a1b5b1b2a2a3a1b3b1), the

winning committee is W̃ = {b1, b2, b3, b4, b5}. Thus, pod1alt(f,≻) = Sc(W,f,≻)

Sc(W̃ ,f,≻)
= 5∗7.5

5∗2.5 =
∑k

σ=1 sσ
k
∑m

σ=1 sσ
m

−∑k
σ=1+minj∈[2] qj

(
sσ − sm−k+σ

) =
7.5

5∗10
10

− (4− 1.5)
= 3.

4.2.3. The constraints on the first half of the ranking

Our next result gives the highest price of diversity for the family of (weakly) separable

committee scoring rules when we enforce the constraints on the top half of the ranking.

For a given size k, the maximal number of selected candidates in W̃ who can move

up when voter i changes his/her ranking ≻i to ≻̃half
i is minj∈[2]

⌈ |Aj |
2

⌉
. We denote by

θ :=
∑

j∈[2]
⌈ |Aj |

2

⌉
the position separating the ranking into two “equal” parts. This position

is either the median position or the median position plus one, depending on the number

of males and females.

Proposition 4. Let f be a (weakly) separable committee scoring function and s a scoring

vector of f . For any profile ≻∈ Pn,

i) When k ≤ minj∈[2]
⌈ |Aj |

2

⌉
, then we have

1 ≤ pod1half(f,≻) ≤
∑k

σ=1 sσ
k
∑m

σ=1 sσ
m

−∑k
σ=1

(
sθ−k+σ − sm−k+σ

) ,

if

k
∑m

σ=1 sσ
m

−
k∑

σ=1

(
sθ−k+σ − sm−k+σ

)
> 0,

and pod1(f,≻) ≤ +∞ otherwise.

ii) When k > minj∈[2]
⌈ |Aj |

2

⌉
, then we have

1 ≤ pod1half(f,≻) ≤
∑k

σ=1 sσ
k
∑m

σ=1 sσ
m

−∑θ

σ=maxj∈[2]

⌈ |Aj |
2

⌉
+1

(
sσ − sm−θ+σ

) ,

if

k
∑m

σ=1 sσ
m

−
θ∑

σ=maxj∈[2]

⌈ |Aj |
2

⌉
+1

(
sσ − sm−θ+σ

)
> 0,
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and pod1(f,≻) ≤ +∞ otherwise.

Proof of Proposition 4. The approach remains the same as the one used in the proof of

Proposition 2.

i) If k ≤ minj∈[2]
⌈ |Aj |

2

⌉
then Figure 3 describes the position of W̃ in the preference

≻i. The worst situation is the case where the committee W̃ is (or equivalent to)

the committee occupying the last-k-positions in terms of scores given by voter i

in ≻i.

Figure 3: Position of W̃ before and after the constraints on the first half of the ranking

So, the lowest boundary of Sc(W̃ , f,≻) is given by

Sc(W̃ , f,≻) ≥ k
∑m

σ=1 sσ
m

−
k∑

σ=1

(
sθ−k+σ − sm−k+σ

)
.

ii) If k > minj∈[2]
⌈ |Aj |

2

⌉
, then Figure 4 illustrates the worst positions of W̃ in the

preference ≻i of voter i. At most minj∈[2]
⌈ |Aj |

2

⌉
members of W̃ can move up by

voter i in his/her new preference ≻̃half
i . The score of W̃ in ≻i can be equal to the

score of the last-k-candidates in ≻i.

Figure 4: Position of W̃ before and after the constraints on the first half of the ranking

Thus, the lowest boundary of Sc(W̃ , f,≻) is given by

Sc(W̃ , f,≻) ≥ k
∑m

σ=1 sσ
m

−
θ∑

σ=maxj∈[2]

⌈ |Aj |
2

⌉
+1

(
sσ − sm−θ+σ

)
.

2

In the example below, we show that the boundary given by Proposition 4 is reached for

the family of (weakly) separable committee scoring rules.
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Example 4.9. We consider an election where we have 4 voters and 8 candidates such that

A1 = {a1, a2, a3, a4} and A2 = {b1, b2, b3, b4}. We assume that k = 4 and the selection rule

is a separable committee scoring rule with a scoring vector s = (1.5, 1.5, 1.5, 1.5, 0.5, 0.5, 0.5, 0.5).

By using the following profile ≻= (a1a2a3a4b1b2b3b4, a2a3a4a1b2b3b4b1, a3a4a1a2b3b4b1b2,

a4a1a2a3b4b1b2b3, a1a2a3a4b1b2b3b4), the selected committee is W = {a1, a2, a3, a4}. In

the profile ≻̃half
= (a1a2b1b2a3a4b3b4, a2a3b2b3a4a1b4b1, a3a4b3b4a1a2b1b2, a4a1b4b1a2a3b2b3,

a1a2b1b2a3a1b3b1), the selected committee is W̃ = {b1, b2, b3, b4}. Thus, pod1alt(f,≻) =

Sc(W,f,≻)

Sc(W̃ ,f,≻)
= 4∗6

4∗2 =

∑k
σ=1 sσ

k
∑m

σ=1 sσ
m

−∑θ

σ=maxj∈[2]

⌈ |Aj |
2

⌉
+1

(
sσ − sm−θ+σ

) =
6

4∗8
8

− (3− 1)
= 3.

By using Propositions 2, 3 and 4, we can distinguish the three diversity constraints as

follows:

Corollary 4. Let f be a (weakly) separable committee scoring function. The following

statements hold:

i) max≻∈Pn pod1alt(f,≻) ≥ max≻∈Pn pod1top-k(f,≻).

ii) max≻∈Pn pod1alt(f,≻) ≥ max≻∈Pn pod1half(f,≻).

iii) If k ≥ θ and maxj∈[2]
⌈ |Aj |

2

⌉
≥ minj∈[2] qj, then

max
≻∈Pn

pod1top-k(f,≻) ≥ max
≻∈Pn

pod1half(f,≻).

iv) If k ≤ θ and maxj∈[2]
⌈ |Aj |

2

⌉
≤ minj∈[2] qj, then

max
≻∈Pn

pod1half(f,≻) ≥ max
≻∈Pn

pod1top-k(f,≻).

Proof of Corollary 4. Let f be a (weakly) separable committee scoring function and s

a scoring vector of f .

i) By using Propositions 2 and 3, the relation

max
≻∈Pn

pod1alt(f,≻) ≥ max
≻∈Pn

pod1top-k(f,≻)

implies that

k∑

σ=1

(
sσ+1 − sm−k+σ

)
≥

k∑

σ=1+minj∈[2] qj

(
sσ − sm−k+σ

)
. (7)

Equation (7) is equivalent to

k∑

σ=1

sσ+1 −
k∑

σ=1+minj∈[2] qj

sσ ≥
k∑

σ=1

sm−k+σ −
k∑

σ=1+minj∈[2] qj

sm−k+σ. (8)
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The expression to the left of the symbol “ ≥′′ in Equation (8) is illustrated in

Figure 5 and corresponds to the variation of W̃ colored in gray (i.e., the score of

the candidates occupying the large gray brace minus the score of those occupying

the small gray brace). While, the expression to the right of the symbol “ ≥′′ in

Equation (8) corresponds to the variation of W̃ colored in black (i.e., the score of

the candidates occupying the large black brace minus the score of those occupying

the small black brace). It is clear that the first variation (in gray) is greater than

the second one (in black).

Figure 5: Alternation constraints and constraints on the top-k-positions

ii) By using the same reasoning given in i), we show that when k ≤ minj∈[2]
⌈ |Aj |

2

⌉
,

the inequality
∑k

σ=1

(
sσ+1 − sm−k+σ

)
≥ ∑k

σ=1

(
sθ−k+σ − sm−k+σ

)
holds. We can

illustrate this in Figure 6.

Figure 6: Alternation constraints and top half diversity constraints

Moreover, the following inequality also holds when k > minj∈[2]
⌈ |Aj |

2

⌉
,

k∑

σ=1

(
sσ+1 − sm−k+σ

)
≥

θ∑

σ=maxj∈[2]

⌈ |Aj |
2

⌉
+1

(
sσ − sm−θ+σ

)
.

This is illustrated in Figure 7.
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Figure 7: Alternation constraints and top half diversity constraints

iii) By using Figure 8 and the approach given above, we have the result for k ≥ θ and

maxj∈[2]
⌈ |Aj |

2

⌉
≥ minj∈[2] qj.

Figure 8: top-k and top half diversity constraints

iv) By analyzing Figure 9 for the case k ≤ θ and max
j∈[2]

⌈ |Aj|
2

⌉
≤ min

j∈[2]
qj, we have the

result.

Figure 9: top-k and top half diversity constraints

2

For a given election, Corollary 4 compares the diversity constraints (introduced in

this paper) in terms of the highest price to be paid for (weakly) separable committee

scoring rules. Note that, there are no conclusion to be made when we have k ≥ θ and

max
j∈[2]

⌈ |Aj|
2

⌉
< min

j∈[2]
qj. Indeed, there are quotas such that we have max

≻∈Pn
pod1top-k(f,≻) ≥

max
≻∈Pn

pod1half(f,≻), and there are also other quotas such that we have max
≻∈Pn

pod1top-k(f,≻) <

max
≻∈Pn

pod1half(f,≻). We make the same observation when we have k ≤ θ and max
j∈[2]

⌈ |Aj|
2

⌉
>

min
j∈[2]

qj.
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5. Conclusion

The aim of this paper is to measure the impact of imposing diversity constraints on indi-

vidual preferences. We propose a new measure of the price of diversity and we determine

the boundary of the price of diversity constraints for the family of (weakly) separable

committee scoring rules. Moreover, we present three diversity constraints on preferences

and for each diversity constraint, we propose the boundaries of the price of diversity for

the well-known (weakly) separable committee scoring rules. Through some examples, we

show that the boundaries proposed in this paper are reached. In our model, the set of

candidates A is partitioned according to one attribute which is the gender identity.

We conclude by suggesting a few research projects opened up by this article. Firstly, it

would be useful to extend our results to the class of all committee scoring rules. Secondly,

it is also possible to take into consideration the intersectionality (that is, the partition of

A according to some official attributes such as race, gender identity, qualification, etc.,

such that any candidate belongs to many different groups). Thirdly, extra measures of

the price of diversity can be introduced by regarding within each group (or within the set

A), the highest price to pay when we impose the diversity constraints on the preferences.

Fourthly, another important exercise to do will be to measure the price of diversity when

the rule is a party-list proportional representation.
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