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Cournot oligopoly:
a discrete time sticky-prices paradox

Pierre Bernhard > and Marc Deschamps >
January 5, 2024

Abstract

This article studies the issue of sticky prices in the context of a dynamic
Cournot oligopoly model in discrete time with n asymmetric firms, and with
costs and demand linear. We recover the somewhat surprising fact of the
related continuous time literature that the asymptotic price is lower than the
price of the repeated game. But contrary to the continuous time case, in
discrete time we find 1/ that the limit at vanishing viscosity coincides with the
non-sticky case, and, more surprisingly 2/ that the equlibrium price trajectory
oscillates around the asymptotic price.

Keywords : Sticky price, Cournot oligopoly, Dynamic game, Discrete time
JEL Classification : C61, C72

1 Introduction

Pricing is clearly at the heart of economic analysis. For a long time analyzed from
the viewpoint of price theory, which we now call microeconomics ([Stigler, 1946]),
the desire and need to better microfound macroeconomic models has also led
macroeconomists, at least since Keynes, to question this issue ([Gordon, 1981],
[De Vroey, 2016]). As [Mankiw, 1985] and [Romer, 1993] point out, the discus-
sions and oppositions between macroeconomists concerning money, inflation and
economic fluctuations are largely centred on the question of price determination by
agents.

For some macroeconomists, all nominal prices are perfectly flexible (i.e., all
prices correspond to their market equilibrium value), while for others, nominal
prices are often sticky (i.e., adjustment is gradual, so there is a difference between
the observed price and its theoretical value resulting from market equilibrium).
This generally leads the former group to consider that money is neutral in the short
term (i.e., there is a dichotomy between the real and monetary spheres), which
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means that an increase or decrease in the quantity of money has no impact on real
economic activity; whereas for the latter group, money is not neutral (i.e., money
affects the real economy in the short term) *.

Although these debates continue vigorously on the theoretical level, it is note-
worthy that today, most macroeconomic models of the dynamic stochastic gen-
eral equilibrium (DSGE) type are based upon the assumption that firms change
their prices only infrequently (see [Woodford, 2003], [Gali, 2015], [Walsh, 2017]).
And these models form the academically dominant modeling of the new synthesis
([Goodfriend and King, 1997]) and are used daily, as a complement to traditional
macroeconomic modeling, by governments, central banks and international agen-
cies ([Christiano et al., 2018]).

On the empirical side, beyond older studies (see [Klenow and Malin, 2010] and
[Taylor, 1999], for a review of the literature), recent access to numerous and vast
microeconomic databases makes it increasingly possible to analyze the issue of
price stickiness ([Mackowiak and Smets, 2013]). By way of illustration, a recent
European Central Bank study of eleven eurozone countries ([Gauthier et al., 2023])
concluded that: 1/ on average, only 12.3% of prices change each month (8.5% if
we exclude sales periods), 2/ differences in terms of price rigidity are limited when
comparing countries, and are much greater across sectors, 3/ the median upward
price variation over the period 2000-2019 is 9, 6% and 13% downwards (6.7%
and 8.7% respectively if sales periods are excluded), and 4/ the distribution of
price changes is highly dispersed (14% of price changes are less than 2%, and
10% of price changes are greater than 20%). Generally speaking, it should also
be noted that the empirical literature distinguishes between countries with high
inflation rates and those with very moderate inflation, the average duration of a
price being much shorter in the former than in the latter.

Despite our own limitations in this field, and the fact that it is not our aim here
to provide an overview of the issue, we feel that these brief elements are sufficient
to pursuade the reader of the theoretical, empirical and political value of studying
price stickyness.

The aim of our paper is to contribute to the investigation of the effect of non-
continuous price adjustment in a dynamic Cournot oligopoly, with homogeneous
good, n heterogeneous firms and discrete time. We consider an affine inverse de-
mand function, whose parameters (ag and b;) remain constant. There are no de-
mand or supply shocks. We modelize viscosity via the following mechanism: in
each period ¢, a part 8 of each firm’s output (fixed in time and common to all firms)

“For a broad perspective on theoretical debates on macroeconomics one can refer to
[Gaffard, 2018]
SWe offer in the development another interpretation of the same equations



is sold at the price of the previous period ¢ — 1, while the other part of output (1—0)
is sold at the price of period ¢. This formalization of stickyness seems to us to be
one of the simplest imaginable, although exogenous and trivial compared to the
literature. In fact, it is like considering that each producer has two warehouses of
different sizes (or of the same size), and that at each new period the first warehouse
will label the products and sell them at the price of the previous period, while the
second warehouse will label the products and sell them at the price of the current
period. Alternatively, this assumption could represent the joint time required by
each producer to price and notify consumers of the new price, since the period ¢
price applies to both the (1 — #)) portion of output in period ¢ and the € portion of
output in period ¢ + 1. Thus, in our model there is a synchronized price adjustment
and all firms have the same price duration.

To the best of our knowledge, three articles in the literature are the closest to
our own. All three, however, deal with continuous-time dynamic problems where
prices evolve continuously. In each case, they analyze the dynamic Cournot-Nash
equilibrium, first with open-loop strategies, then with state feedback, the state be-
ing the current price. Our paper recovers their common conclusion that the sta-
tionary asymptotic price is lower than the Cournot repeated game price but, unlike
in ours, in these papers the limit at evanescent stickyness is not the stickiness-
free equilibrium. The paper by [Fershtman and Kamien, 1987], restricted to the
duopoly, offers a study of the asymptotic regime in a framework where dynam-
ics with first-order viscosity makes the current price the state variable, with a
quadratic term in the production cost, necessary to avoid a singularity in the con-
tinuous time problem. The article by [Driskill and McCafferty, 1989] is also re-
stricted to the duopoly case and the asymptotic regime, but in their framework
what leads to a continuous evolution of prices lies in the fact that the players have
for (costly) control the speed of variation of their production rate, and not the rate
itself. Thus, their production rate becomes a continuously evolving state variable.
The inverse affine law of demand thus produces a continuous variation in price.
Finally, the article by [Wiszniewska-Matyszkiel et al., 2016] considers n players,
and is interested in the time trajectory —and not just the asymptotic regime— of
prices and production. The dynamics and criteria are the same as in the paper by
[Fershtman and Kamien, 1987], but they offer a very detailed analysis of trajecto-
ries, as well as dependencies in the various parameters.

Our article is organized as follows. In Section 2 we state our dynamic Cournot
oligopoly problem with sticky price in discrete time, and explain our assumptions.
In section 3 we present the complete solution to our problem, and discuss the dy-
namics, exhibiting the oscillatory nature of the equilibrium solution and the asymp-



totic regime. In section 4 we propose a numerical analysis to compare the sticky
price case with the Cournot repeated game. Section 5 analyzes three special cases:
the absence of stickiness, monopoly, and Cournot oligopoly when the number n of
producers goes to infinity. Section 6 concludes.

2 The problem

2.1 Cournot dynamic oligopoly with sticky prices

We consider a typical Cournot n firms oligopoly with an affine inverse demand
function. Let n be the number of producers, producer ¢’s production be g;, the
inverse demand function be characterized by a price ag and coefficients b; giving a

price P:
n
P=ag— ) big
i=1

Each producer 7 has a linear production cost c;g;.

The producers will make an infinite sequence of production decisions ¢;(t), t €
N. But the specificity of this market is that a proportion 6 of their production g;(t)
will be sold at the previous price P (¢t — 1), while the rest, a proportion (1 — ) will
be sold at the clearing price P(t) given by the inverse demand function. Therefore,
given the appropriate discount factor p, player ¢’s profit II; will be:

o0
II; = Z p!

t=1

OP(t—1)+(1-10) (GO - Z@:%(ﬂ) - Ci] a(t). (D)
k=1

We seek a Cournot-Nash (dynamic) equilibrium.
The following hypotheses hold on the parameters of the problem :

ag >0, Vi, ¢; < (1—=20)ag

so that the a; defined thereafter, are positive. And as in any Cournot model with an
affine inverse demand function, we assume that the b; are “sufficiently small” so
that realistic productions ¢; keep P > 0.

Furthermore, we will restrict our analysis to the case § < 1/2. Two reasons
lead to this restriction:

1. On the one hand, we have a slightly different interpretation of the same math-
ematical problem: if the production g; is made at a constant rate g; over the
time interval of length 1 between ¢ and ¢ + 1, and the price evolves linearly
from x to P during that period, reaching P atatime t + 7 < t 4+ 1 and



stays there until the end of the period, i.e. time ¢ + 1, then we have the same
P(t + 1), and the same profit as expressed by equation (1) with § = 7/2, as
in our discrete time problem. Therefore, in this equivalent continuous-time
model, 6 < 1/2.

2. On the other hand, and more importantly, if 8 is too large, the problem may
have no solution. To understand this, let us consider the monopoly problem
(n = 1) with § = 1. Then the monopolist may produce a large quantity ()
every odd numbered periods (say, years), yielding on even numbered periods
a negative® price P(t — 1) which applies for that period when it produces
zero, and hence a price ag on odd periods. Clearly, its profit will be IT =
(ao — ¢)Q/(1 — p?), hence arbitrarily large. The monopoly problem has
therefore no solution in that case. Similar strategies are possible for the n
producers model.

Notice also that our formulas will only hold if pf? /(1 — ) < 1, which is ensured
(and beyond) by the restriction § < 1/2.

2.2 Notation and preliminary analysis

We will use the following notation:

0 C;
biqi:ri, 5::7, ai::ao—l_e.

Notice that (1 — 0)(1 + §) = 1, so that, e.g., a; = ap — (1 + J)¢;. The parameter
€ [0, 1] is an alternative measure of the stickyness, convenient in the calculations,
if difficult to interpret in economic terms.

To stress the fact that P(¢ — 1) is the state of the problem at time ¢, we let
P(t — 1) = z(t). We may then notice that:

b' o0 3 n
Tzeni =3 ! <5x(t) +a; — Zrk(t)> ri(t). 2)
t=1 k=1
and the state dynamics are very simple:
n
w(t+1)=ao— Y ri(t). (3)
k=1

%0r null if we agree that P = max{0,a0 — >_, biq; }.



We have a dynamic game problem with affine dynamics and quadratic payoff. No
surprise that we will find a quadratic Isaacs Value function V;(z). We will let

bi
pWi(z) == Pm‘/%(ﬂﬂ) = ax® + Bix + 7. “4)

The fact that o be independent of ¢ will result from the fact that we will succeed in
finding such Value functions that satisfy Isaacs’ equation.
Further notation used will be:

1-6

n n
1
A= E ag Dzig ¢, and therefore A =nag— D,
k=1 k=1

n n
A=n+1-2na, RZZT’Z, i = a; — B, H:an'
k=1 k=1

3 Complete solution

As stated above, we seek an equilibrium with payoffs as in (2) and Value functions
as in (4). Isaacs’ equation reads as follows:

Wi(z) = %mQ + izm + % = max{ (5:U +a; — ZT’“) T

14
! k=1

n 2 n &)
+a <a0—2rk) + Bi (%—Zm) +%}-

k=1 k=1

This is a concave function of r;. Differentiating and equating to zero, we obtain
the equilibrium production 7" as:

ry =0x — (1 —2a)R — 2aap + ;..

(This expression is still implicit, since R contains r}.) Summing over the 7 yields,
after an elementary calculation:

1
R= E[n(&x — 2aag) + H, (6)
and 1
r;‘:Z[&c—2aao—(1—2a)fﬂ+7]i- (7

There remains to place this back into equation (5) and identify like powers of x.



3.1 Investigation of o and the closed-loop dynamics
3.1.1 Determination of «

Begining with terms in 22, we find:
1 &
We write this equation as:

. ) 1
if6=0, a=0, ifd#£0, Wa:fn(a)

with
nla — 2na + 1

fula) = (n+1-2na)?"

We observe that 1/ p62 > 1, and furthermore that:

1 1\ 1 L (1Y
fn(O):my fn<2n>_2na fn(%>1,

1 1
v 0, —+ =
a€<,2n+2>,

Therefore, in an (y, z) plane, a may be identified as the abscissa of the intersection
point of the line z = (1/pd?)y and the curve z = f,(y). See Figure 1. We know
that the slope of the line is larger than one, while the curve z = f,(y) is convex,
tangent to the first diagonal at y = 1/2n. There exists therefore one intersection
for y < 1/2n, which is the limit of the recursion y(t)/(pd?) = fu(y(t + 1))
as t — —oo starting from y = 0, i.e. the solution that we seek. (Figure 1 easily
illustrates the two solutions for y < (n+1)/2n, a third solution is on the decreasing
branch of the graph of f,,(-) aty > (n+1)/2n.)

A consequence of this graphical representation is that « increases from zero to
1/2n as pd? increases from zero to one, and that for a given p§?, a decreases when
n increases. Actually, we can even show that 2na goes to zero as n goes to infinity.
(See appendix)

while
fol@) >0,  fi(a)>0.

3.1.2 Qualitative behavior of the dynamics

It follows from equations (3) and (6) that the dynamics under the Cournot-Nash
equilibrium strategies are:

no (n+1)ag— H
—x —_—

a(t+1) = — () + A

()]



2\
z = fn(y)
YR
Va
A
1]
2n
1
+1)?
o 1/2n (n+1)/2n 'y

Figure 1: Determination of a.. (Drawing for n = 2, p6% = 2/3.)

It follows from the fact that & < 1/2n that A > n. Therefore, nd/A < 1.
Hence, for almost all initial conditions, these dynamics oscillate around a long
time, asymptotic equilibrium value Z:

(TL+ 1)0,0 - H

1
A +nd (10)

T =
that we will characterize further later on, when we have calculated H.

Two non-intuitive consequences result from this analysis.

e On the one hand, we insist that this oscillating behaviour is not the result
of a trial-and-error process a la Cournot iteration. The actual Cournot-Nash
equilibrium srategy yields an oscillation. Our analysis of the extreme case
f = 1 gives an indication of why this may be so.

e On the other hand, although once the prices and productions have reached
constant values the stickiness seems to play no role, yet these long term
repeated values are not the repetition of the equilibrum values in a game
with no stickiness, i.e. z = (ag + Y, cx)/(n +1).

It may be noticed that, as shown below in subsection 5.2, these somewhat paradox-
ical facts hold even in the simple case of a one-player game, i.e. a monopoly.



3.2 Investigation of 3; and ~;

3.2.1 Coefficients 5; and asymptotic price

It is usefull, for more legibility, to introduce yet another short hand notation:
F=n?-2na+1=A—-n(n-1).

Identifying terms in = in equation (4) with the r; as in (7) yields:

Bi J
= m{—%yﬂuﬁ—?A(l—na)ai—2[2na2—(2n—|—1)a+1]H}. (11)

Summing in i, recalling that H = A — ) . f3;, expanding A? where it appears
without the coefficient dp, and regrouping terms, we obtain:

A2
T, ) = —2 2_9 1) + 2(n?a — 2 1)A.
<6p + >§Z:B naag(n na+ 1) +2(n“a — 2na + 1)

Using again H = A — ). f;, and recognizing a term A which appears in the

coefficient of A, it follows that

[A+ dp(n — 1)]AA + 20pT'naag
A2 4 5pI’ '

H = (12)
Here, the right hand side contains only data of the problem and « that we know
how to compute, at least numerically. This is an explicit, although unappealing,
formula. It can be placed back into equation (11) to get /3; and hence n; = a; — [3;
and place this in equation (7) to get the equilibrium strategies. The formulas thus
obtained are exceedingly complex and of little interest. If one wants numerical
values, the best is to compute H and [3; numerically from their respective formulas
above.

Asymptotic equilibrium price At this point, we claim that we are able to com-
pute a from formula (8), and we have an explicit formula for H (in terms of «).
Therefore, we may compute  with formula (10). We obtain:

A2(1+ dp)ag + [A + (n — 1)dp]AD
A2+ 5pl’ ’

[i‘:

See subsection 4 for some numerival values.
The dynamics may be written



3.2.2 Coefficient ; and equilibrium profits

To compute equilibrium profits, we still need to evaluate the coefficients ;. This
is obtained by equating terms without x in equation (4) with the r; as in (7). An
explicit expression can be found, but again of little help. As expected, ; goes to
infinity as p approaches one.

% :AQ(ll—p){ — (2naag + Aa; — H)[2aag — Ala; — ;) + (1 — 2a) H|

+af(n+ 1)ag — H)* + ABi[(n + 1)ag — H].

It finishes to prove that indeed, a Value function of the form (4) can be found
that satisfies Isaacs’equation, and therefore that the strategies (7) form a set of a
dynamical Cournot-Nash equilibrium strategies.

Starting from a market price Py, set (1) = P, the dynamics (9) gives the
sequence of prices under the equilibrium strategies. The total discounted profit of
each player is then given by:

II; = 170(04332+5ipo+%)- (13)
pb;

The dependence of the final price and profits on 6 (or ¢) is difficult to assert
from these formulas. The following table of numerical values shows that stickyness
decreases the price and increases the producers’ profits. This is coherent with the
rest of the literature on sticky prices.

4 Some numerical results

We propose here some numerical values aiming to compare the sticky case with
the repeated Cournot game. In Table 1, we show on the one hand the asymptotic
price P compared to the Cournot price Pc, and on the other hand the profits. Since
the profit II; in the sticky case depends on the initial price at time zero, we take it
as the Cournot price. The underneath values are for ag = 10, ¢ = 1, p = .95, and
d=1,ie.0=1/2:

We give in Figure 2 three price trajectories with the same parameters ag and c,
n = 3, and different values of p and 6.

We also show in Table 2 a nonintuitive phenomenon at very small discount rate.
While we expect that the higher the discount rate 1 — p, the more difference we
have with the non sticky case, this is not quite so for 4 and p sufficiently close to
one, as the following table shows. We show the asymptotic price P. We have set
ao = 10 and ¢ = 1 as in Figure 1, and n = 3. We have labeled the columns with p
and the lines with 6:

10



n 1 2 3 4 ) 6

P 0.443 | 3.297| 2.536 | 2.151| 1.920| 1.765
Pc 5.9 4 3.25 2.8 2.5 2.286
IT; | 810.13 | 308.96 | 153.35 | 90.618 | 59.613 | 42.123
o 405 180 | 101.25 64.8 45 | 33.061
n 7 8 9 10 100 00

P 1.655 | 1.573 | 1.509 | 1.457 | 1.045 1
Po | 2125 2 1.9 1.818 | 1.089 1
II; | 31.317 | 24.184 | 19.232 | 15.657 | 0.1618 0
IIc | 23.312 20 16.2 | 13.388 | 0.1588 0

Table 1: Comparing asymptotic prices and profits for the sticky prices case and
repeated Cournot as functions of n. Here ag = 10,c =1, p = .95, 0 = .5.

5 Particular cases

5.1 No stickyness

With no stickyness, we have § = § = 0, and consequently, according to our
formulas

a=0, A=n+1, (=0, H=A, n=a=ay—¢.

We recover the formulas of the classical Cournot-Nash equilibrium with affine in-
verse demand function. We write them using the shorthand notation Y, ¢ = C
and therefore A = nag — C, as:

C c 1 C 2
p=27% ; Tz‘*:a0+ —¢ bill; = —— @0+ —¢
n+1 n+1 1—-p\n+1

In the case where all the production costs coefficients c; are equal, this yields

1 a; 2
II; = . .
bi(1 —p) (n—i— 1>

11



Figure 2: Three price trajectories starting from the Cournot price for n = 3, ap =
10, ¢; = 1, and different p and 6.

p

6 .8 .85 9 .95 .99
A48 || 2.5878 | 2.5948 | 2.6002 | 2.6042 | 2.6060
485 || 2.5764 | 2.5825 | 2.5871 | 2.5898 | 2.5903
49 || 2.5644 | 2.5997 | 2.5731 | 2.5742 | 2.5725
495 || 2.5519 | 2.5562 | 2.5581 | 2.5567 | 2.5513

D[ 2.5389 | 2.5417 | 2.5415 | 2.5358 | 2.5196

Table 2: Z for values of p and § close to one with n = 3.

5.2 Monopoly

We now deal with the case n = 1. In that case, a can be calculated exactly. We
have A = 2(1 — «), and equation (8) becomes

4a(l—a)—ps*=0.

We remember that pé? is less than one, and let e = /1 — pd2.
Then, the smallest root of the above equation yields:

1 a1 — (1 —¢)ag
=—(1-— A=21-a)=1 =pl—.
The equilibrium dynamics are now
5 (14 pd)ag + (1 +6)cy
t+1)=——ux(t .

z(t+1) 1—i—£3€()+ pd+1+e¢

This oscillates around the long term, asymptotic equilibrium
1+¢
z= ( ) [(1+ pd)ag + (14 d)ci] .

(I+e+4+6)(1+e+ pd)

12



And finally, the monopoly profit is given by:

L dagla(l+0)er + 8] + (a1 — B)*

=
1—p 4b(1 — «)

Numerical values are given in subsection 4 in the column n = 1.

5.3 Large number of producers

We may investigate what these formulas say as n goes to infinity. To make things
simple, we concentrate on the symmetric case where ¢; = ¢ for all 4, hence A =
n(ap — (14 9d)c), and also b; = b. We have already noticed that naw — 0, therefore
A ~ n. It follows that

H ~ A=n(ap— (1+0)c), hence ng — 0.

Therefore, R ~ dx + a and, given that the price x remains bounded, as in the
standard Cournot case, all productions go to zero. It is also a simple matter to
check that ny — 0. Hence the producers’ profits vanish as well as the cumulative
profit of all of them. And finally, the behavior of the asymptotic price is also as in
the repeated Cournot case:

_ ap+n(l+d)c
(1+d)n

6 Conclusion

Our paper presents a simple case of sticky price in a dynamic discrete-time Cournot
oligopoly. In this framework, we find the well-known result in the literature that the
long-run price is lower than the Cournot repeated game price. On the other hand,
in comparison with the continuous case, we establish two new results: 1/ with zero
stickiness, the long-run price coincides with the Cournot repeated game price, and
2/ when there is stickiness, the equilibrium solution has an oscillating character.
We also show that with a variation in the number of producers (n) or in the share
of production sold at the previous price () over time, the optimal solution starts to
oscillate again.

It seems clear to us that the discounting of future profits plays an important
role in this oscillating character of price trajectories, favoring an increase in profit
at time ¢ at the cost of a decrease at time ¢ + 1. Numerical simulations confirm that
the discount rate also plays a role in the gap between the asymptotic price and the

13



Cournot price, a gap that increases with discounting, i.e. as p decreases. However,
we consider it an open problem that this monotonic growth is no longer true when
p is very close to 1 and 6 close to 1/2.
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A Investigation of 2na

We prove the following theorem:

Theorem 1 For a fixed positive p6? smaller than one, there exists a unique solution
a less than 1/2n of equation (8), and 2na: goes to zero as n goes to infinity.

For the sake of clarity, let w := 2na, and we call w* the solution sought. Equation
(8) may be re-written as

I, (n—2uw+2 N
p52w _n(n+1—w*)2 = 9nlw).
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Expectedly, we have g, (1) = 1and g/,(1) = 1. We also have g,,(0) = 2n/(n+1)2.
Furthermore, as a simple calculation shows, for all n and all w < 1, g/ (w) > 0.
As a consequence, g, (-) is a convex function. Hence,

Vw e [0,1],  gn(w) < gn(0) +w(gn(1) — g(0)) .
Thus, g, () being strictly convex,
Vw e (0,1),  gn(w) < gn(0) +w(l—gn(0)) = Gnlw).

Let )
__ p6°gn(0)
1— pd? + g, (0)

so that G, (w1) = w1/pd%. Now, observe that wy < 1 so that

w1

gn(w1) < Gp(wy) = ;:712
The continuous function g, (w) — w/pé? is positive for w = 0 and negative for
w = wy. It follows from the intermediate value theorem that it vanishes at some
w = w* between 0 and wy (and only once because it is convex). We have therefore
established that 0 < w* < wj, which goes to zero with g,,(0) as n goes to infinity.
The intuition for this proof is pictured in the following graphic, which is an
enlargment, with a magnification factor 2n, of the lower part of Figure 1.

ZA
1
v
pd7
G
gn(o gn(w)
w* W1 1w

Figure 3: Investigation of the behavior of na as n — oo
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