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Abstract

We consider a model of multi-winner elections, where each voter expresses a linear

preference over a finite set of alternatives. Based on voters’ preferences, the primary goal

is to select a subset of admissible alternatives, forming what is referred to as a committee.

We explore (weakly) separable committee scoring rules, the voting mechanisms that assess

each alternative individually using a scoring vector and select the top k alternatives, where

k represents the committee’s size. Furthermore, we operate under the assumption that

alternatives are categorized based on specific attributes. Within each attribute category,

there exists a targeted minimum number of alternatives that the selected committee should

encompass, emphasizing the necessity for diversity. In this context, we assess the cost

associated with imposing such a diversity constraint on the voting process. This assessment

is conducted through two methodologies, referred to as the “price of diversity” and the

“individual price of diversity”. We set the upper bounds for both prices across all (weakly)

separable committee scoring rules. Additionally, we show how the maximum price of diver-

sity can be used to discriminate between different voting rules in this context. Ultimately,

we illustrate that concentrating on the candidates’ performance yields a more accurate

estimation of the price of diversity compared to a focus on the enforced diversity constraint.

Keywords: Group decisions and negotiations; Voting; multiwinner elections; scor-

ing rules; price of diversity.

JEL classification: D71, D72.
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1 Introduction

Multi-winner elections pose common challenges in social choice theory, where a set of indi-

viduals have to aggregate their preferences to select a predefined-sized subset of alternatives

from a larger set. This voting scenario is prevalent in real-life situations such as parliamen-

tary elections, candidate shortlisting for competitions, or curating a set of movies for in-flight

entertainment. This process is commonly referred to as “committee selection.” Formally, a

finite set of voters express their preferences over a finite set of alternatives (or candidates) in

order to choose a fixed-size subset, known as a “committee.” Numerous research endeavors

in this field focus on the ordinal setting, where voters establish linear orders over the set of

alternatives, ranking them from most to least preferred without ties. The majority of these

studies aim to extend single-winner voting rules to the multi-winner framework. Without been

exhaustive, the reader can refer to the work of Bock et al. (2019),Brams et al. (2019), Diss

and Doghmi (2016), Diss et al. (2020), Elkind et al. (2017), Faliszewski et al. (2018, 2019),

Kilgour (2010), Kilgour and Marshall (2012), and Skowron et al. (2019). Remarkably, Elkind

et al. (2017) and Skowron et al. (2019) have introduced and characterized the family of com-

mittee scoring rules as an extension of the well-established family of positional scoring rules

for single-winner elections, initially characterized by Young (1974, 1975). The extensive family

of committee scoring rules encompasses the distinctive class of “weakly separable committee

scoring rules.” In this class, candidates can be individually rated according to a single-winner

scoring vector, and the winning committee of size k comprises the k candidates with the high-

est scores. Notably, this class of committee scoring rules is known by its comprehensibility and

ease of implementation. For a more in-depth exploration of this specific category of rules, we

refer the reader to Faliszewski et al. (2019, 2018). Note that the subclass of weakly separable

committee scoring rules can be viewed as the intersection between committee scoring rules and

the “candidates-wise” procedures defined by Kilgour and Marshall (2012). A voting procedure

is considered candidate-wise if the score of a given committee is the sum of the scores of each

candidate within the committee, with each candidate being treated as a 1-size committee.

The committee selection framework often introduces constraints driven by various concepts

and objectives, as discussed by prominent scholars such as Brams (1990), Kamada and Kojima

(2015), and Lu and Boutilier (2011), among others. The paper at hand specifically delves

into committee selection under diversity constraints, focusing on weakly separable committee

scoring rules. The foundational premise here is the existence of a distinguishing attribute –be

it gender, age, ethnicity, etc.–that allows the set of candidates to be partitioned into several

disjoint classes or types. Each candidate is assigned a label based on this attribute, and the

objective is to ensure a specified level of diversity within the selected committee, termed as

“diverse committee selection”.1 Various contributions have tackled the challenge of selecting

a diverse committee, employing diverse definitions of “diversity constraint”. For example,

Ianovski (2022) introduced “interval constraints” and “dominance constraints”, where the

1It is important to note that, for certain attributes like spoken languages, classes may overlap as candidates
could belong to multiple classes. However, our focus is on attributes where each candidate falls into a single
class (e.g., gender, age, or religion).
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former specifies the range within which the number of candidates to be selected from each

class must lie, and the latter determines, for any pair of classes, which one merits a higher

number of candidates to be selected. Ianovski (2022) explored the computational complexity

of selecting a committee that upholds candidate excellence under a defined objective function.

Similarly, Aziz (2019) considered that the set of candidates is structured into non-disjoint

classes based on a specific attribute, defining a diversity constraint as a vector of integers

indicating the minimum number of candidates to be chosen from each class. The author

assumed that the preferences of the voters have already been aggregated into a single weak

order on the set of candidates and provided an algorithm (a voting procedure) that combines

both excellence, expressed by the positions of the candidates in the social weak order, and

diversity. Numerous other studies contribute to this framework, including works by Thejaswi

et al. (2021) and Kagita et al. (2021), among others. Notably, all the cited works focus on the

single-attribute setting. In contrast, some studies delve into the multi-attribute setting, where

candidates are labeled according to more than one attribute. While beyond the scope of this

paper, interested readers can explore works by Bei et al. (2022), Bredereck et al. (2017), Celis

et al. (2017), and Do et al. (2021), among others.

The task of selecting a diverse committee naturally prompts the question: what is the cost

associated with enforcing a diversity constraint in the committee selection process? Clearly,

the imposition of diversity has repercussions on the “quality” of the selected committee, as it

narrows down the set of admissible committees. Consequently, the committee selected with

a diversity constraint might have a lower score compared to the committee selected without

any diversity constraint. Exploring the impact of the diversity constraint on the quality of the

selected committee, this paper delves into the concept referred to as the “price of diversity”

in committee selection. To the best of our knowledge, the sole exploration of the cost of the

diversity constraint in committee selection comes from Bredereck et al. (2017). They defined

the price of diversity as the ratio between the score of the selected committee without any

diversity constraint and the score of the selected committee considering the diversity constraint.

The authors concentrated on a specific scenario where the set of candidates is partitioned

into only two classes, and the diversity constraint necessitates the selected committee to be

balanced, i.e., containing an equal number of candidates from each of the two classes. In

this context, they demonstrated that, for any scoring rule based on any submodular and

monotonic function,2 the price of diversity cannot exceed 2. A related study by Benabbou et

al. (2020) tackled the price of diversity in assignment problems, which is distinctly different

from the committee selection task. In the assignment problem, a group of agents is divided

into multiple groups, and a set of items is divided into various blocks. Assigning an item to

an agent involves a utility for the agent, and the total utility of the assignment is the sum of

the utilities of all agents. A quota-based diversity constraint specifies the maximum number

of agents from each group allowed in each block of items. The price of diversity is then the

ratio between the total utility of the assignment without any diversity constraint and the total

utility of the assignment when such a diversity constraint is imposed.

2The formal definition is provided in Footnote 5.
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In this paper, we explore a framework where the set of candidates is divided into at least

two (disjoint) groups based on a specific attribute. The diversity constraint is expressed as a

vector of integers specifying the minimum number of candidates required from each group. To

maintain consistency in the diversity concept, we assume that the quota bound for each class

is at least one, ensuring that at least one candidate is needed from each class. This condition

aligns with scenarios such as the apportionment problem in party-list elections in certain

countries (refer to the examples provided by Balinski and Young, 1994 for more details). Our

focus is on studying the cost of the diversity constraint when selecting a diverse committee

under (weakly) separable committee scoring rules. To measure this cost, we propose two

approaches. The first is the well-known “price of diversity” as defined by Bredereck et al.

(2017). Introducing a second approach called the “individual price of diversity”, we base

it on the “harms” suffered by the candidates due to the diversity constraint. Initially, we

provide a bound on the price of diversity for the entire class of (weakly) separable committee

scoring rules. Additionally, we present another bound on the price of diversity that depends

on the specific rule under consideration. This allows for discriminating between voting rules by

assessing their sensitivity to diversity enforcement. Moreover, we demonstrate that, instead of

solely focusing on the applied diversity constraint, evaluating the performance of each type can

offer a more nuanced understanding of the price of diversity. Finally, we define the individual

price of diversity and show that, while it consistently exceeds the price of diversity, it cannot

surpass the tight bound provided for the price of diversity across the entire class of (weakly)

separable committee scoring rules.

The structure of the paper is as follows: In Section 2, we establish the formal setting and

introduce preliminary definitions. Section 3 delves into the definitions of the two approaches

employed to analyze the cost of the diversity constraint in our model, presenting all the key

results of the paper. Finally, Section 4 offers conclusions and outlines potential avenues for

future research.

2 Formal Setting

In this paper, we adopt the following conventions: for any integer l ∈ N∗, we denote the set

{1, . . . , l} simply as [l]. For a given set Z, we write 2Z to denote the family of all its subsets,

and 2Zk to denote the set of all its subsets of size k. Finally, the notation
∣∣Z

∣∣ is used to express

the cardinality of Z.

We examine the following scenario, involving a non-empty and finite set A =

{a1, a2, . . . , am} of alternatives/candidates,3 and a non-empty and finite set N = {1, 2, . . . , n}
of voters/individuals, where m ≥ 3 and n ≥ 2. We make the assumption that each voter

ranks, without ties, all the candidates from the most preferred to the least preferred. Thus,

the preference of each individual is a linear order on A, signifying a complete, anti-symmetric,

and transitive binary relation on the set of candidates A. For a voter i ∈ N , the strict order

of i is denoted by ≻i. The n-tuple ≻= (≻1,≻2, . . . ,≻n) encompassing all voters’ preference

3Alternatives may sometimes be represented by lowercase letters a, b, c, etc.
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orders is referred to as a preference profile or simply a profile. The set of all linear preferences

over A is denoted by P, and the set of all possible profiles with n voters is denoted by Pn.

For any pair of candidates a and b, we use the notation a ≻i b to indicate that voter i strictly

prefers candidate a to candidate b. The rank of any alternative a ∈ A in the preference relation

≻i of voter i is denoted by r(≻i, a) and is defined as:

r(≻i, a) =
∣∣∣
{
b ∈ A : b ≻i a

}∣∣∣+ 1 = m−
∣∣∣
{
b ∈ A : a ≻i b

}∣∣∣. (1)

Let us reiterate that within our framework, the objective is to identify a fixed-size subset

of candidates that most accurately captures the preferences of the voters. For any integer

k ∈ [m − 1], we define a “committee” of size k as any k-element subset of A, denoted by an

element from the set 2Ak .
4 As per Elkind et al. (2017), the rank of a committee W ∈ 2Ak in

voter i’s preference relation ≻i, denoted by r(≻i,W ), is represented by the increasing sequence

obtained through the sorting of the set
{
r(≻i, a) : a ∈ W

}
. The rank of committee W in the

preference relation of voter i is then a k-tuple I = (i1, . . . , ik) with i1 < · · · < ik. We denote

the set of all possible committee ranks in a voter preference relation by [m]k. To illustrate, let

us consider an example.

Example 1 Let us consider the set of voters N = {1, . . . , 7}, the set of candidates A =

{a1, a2, a3, a4, a5}, and the preference profile

≻=




a1 a3 a5 a2 a2 a4 a3

a2 a2 a4 a1 a5 a3 a1

a3 a4 a3 a4 a4 a1 a4

a4 a5 a1 a3 a1 a2 a5

a5 a1 a2 a5 a3 a5 a2



,

where for each i ∈ {1, . . . , 7}, the i-th column of the matrix represents the preference relation

≻i of individual i. Let us consider the second voter and the committee {a1, a2, a3}). Upon a

simple check, we find that r(≻2, a1) = 5, r(≻2, a2) = 2, and r(≻2, a3) = 1. Consequently, we

can deduce that r(≻2, {a1, a2, a3}) = (1, 2, 5).

We posit that the set of candidates is partitioned into l ≥ 2 classes (or types) denoted as

A1, . . . , Al based on a specific attribute such that A =
l⋃

j=1
Aj . In the course of this paper,

we employ the term “class” to denote the subset Aj and the term “type” to refer to the

label j ∈ [l]. As stated in the introductory section, while the classes can be non-disjoint, our

focus in this paper is on attributes for which each alternative belongs to only one class (e.g.,

gender, religion, age, etc.). Formally, this implies that Aj ∩ Aj′ = ∅ for all j, j′ ∈ [l] with

j ̸= j′. For any candidate a ∈ A, we use j(a) to represent the type of a; in other words,

j(a) is the integer from the set [l] such that a ∈ Aj(a). It is important to note that the

partitioning of the set of candidates does not influence the ranking of any voter. Each voter

4It is worth noting that we assume the committee size satisfies k ∈ [m− 1], as the case k = m is straightfor-
ward.
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provides his/her (hereafter her) sincere ranking, irrespective of the types of candidates. Indeed,

acknowledging the potential for voters to strategically vote based on different candidate types

would undermine the genuine impact of the diversity constraint. Now, let us introduce the

class of rules that we focus on in this paper.

Definition 1 A multi-winner voting rule (or committee selection rule) is a mapping F that

takes any profile ≻= (≻1, . . . ,≻n) ∈ Pn and any positive integer k ∈ [m − 1] as input, and

outputs the set F (≻, k) of one or more committees of size k.

Note that in the case of ties between two or more committees, there is usually a tie-breaking

mechanism that will output a single committee. Now, the committee scoring rules are formally

defined as follows:

Definition 2 A committee scoring function is a function f defined from the set [m]k to R+

and that satisfies the following condition: for all I = (i1, · · · , ik), J = (j1, · · · , jk) ∈ [m]k, I ⪰
J ⇒ f(I) ≥ f(J), where ⪰ is the dominance relationship on [m]k defined by I ⪰ J ⇔ it ≤ jt

for all t ∈ [k]. The committee scoring rule F associated with the committee scoring function f

is the multi-winner voting rule that selects the committee(s) with the highest score under the

committee scoring function f .

In this paper, we are interested in a particular class of committee scoring rules, namely the

“(weakly) separable committee scoring rules,” which we define below.

Definition 3 A scoring vector of length m is a vector w = (w1, . . . , wm) such that w1 ≥ w2 ≥
· · · ≥ wm and w1 > wm. The point received by each candidate a ∈ A from each individual

preference ≻i is wr(≻i,a). The score sw(≻, a) of each alternative a ∈ A, with respect to w,

across the profile ≻= (≻1, . . . ,≻n) is the sum of the points it receives from all the voters. That

is,

sw(≻, a) =

n∑

i=1

wr(≻i,a). (2)

Given a committee W of size k, the score obtained by W over the profile ≻ with respect to

the scoring vector w is given by

sw(≻,W ) =
∑

a∈W
sw(≻, a). (3)

Definition 4 A committee scoring rule F is said to be “(weakly) separable” if there exists a

scoring vector w such that, for any profile ≻ and any committee size k, F (≻, k) consists of the

committee(s) with the highest score sw(≻,W ).

To put it differently, a committee scoring rule F is considered (weakly) separable if we can

calculate the score of each candidate independently, utilizing a single-winner scoring vector,

and subsequently select the k candidates with the highest scores. When the scoring vector w

does not depend on the committee size k, we refer to F as “separable” without the “weakly”
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qualification. It is important to note that any separable committee scoring rule is inherently

weakly separable, but the converse is not necessarily true. A (weakly) separable committee

scoring rule, associated with a scoring vector w, is then a committee scoring rule with the

underlying scoring function defined as f(i1, · · · , ik) =
∑k

t=1wit . Let us give some examples of

well-known (weakly) separable committee scoring rules that we focus on in this paper.

k-Plurality: The k-Plurality rule is defined by the scoring vector w = (1, 0, . . . , 0). Each

voter gives one point to her top candidate, and 0 to all the others, and the k candidates

with the highest aggregated scores are selected;

k-Borda rule: The k-Borda rule is defined by the scoring vector w = (m − 1,m − 2, . . . , 0).

In this rule, each voter assigns m − t points to the candidate ranked at the t position

in her ranking. Subsequently, the k candidates with the highest aggregated scores are

selected.

k-Antiplurality rule: The k-Antiplurality rule is defined by the scoring vector w =

(1, . . . , 1, 0). Each voter gives zero point to her worst candidate and one point to all

the others. Subsequently, the k candidates with the highest aggregated scores are se-

lected.

Bloc rule: The Bloc rule uses the scoring vector w = (1, . . . , 1︸ ︷︷ ︸
k−times

, 0 . . . , 0). Each voter gives one

point to each of her top k candidates and zero point to all the others. The k candidates

with the highest aggregated scores are selected.

Let us quickly illustrate how the four well-known (weakly) separable committee scoring

rules we have just listed operate.

Example 2 Let us examine the same profile as outlined in Example 1. Suppose the committee

size is k = 2. The scores of the candidates based on the 2-Plurality rule, the 2-Anti-plurality

rule, the 2-Borda rule, and the Bloc rule are computed as follows:

s(≻, a1) s(≻, a2) s(≻, a3) s(≻, a4) s(≻, a5)

The 2-Plurality rule 1 2 2 1 1

The 2-Antiplurality rule 6 5 6 7 4

The 2-Borda rule 14 15 16 16 9

The Bloc rule (k = 2) 3 4 3 2 2

The winning committee for the 2-Plurality rule is {a2, a3} while the committees {a1, a4} and

{a3, a4} tie for the 2-Antiplurality rule; the committee {a3, a4} is the winning committee for

the 2-Borda rule; finally, the committees {a1, a2} and {a2, a3} tie for the Bloc rule.

It is worth noting that the k-Plurality rule, the k-Antiplurality rule, and the k-Borda rule

are all separable, and consequently, they are weakly separable. However, the Bloc rule is

weakly separable but not separable, as its scoring vector depends on the committee size k. In

the sequel, when the scoring vector of a (weakly) separable committee scoring rule is known in

7



advance, we can express the score of a candidate (and a committee) as s(≻, a) (and s(≻,W )),

omitting the vector w for simplicity in notation.

In the context of a given preference profile, the objective is to choose a fixed-size committee,

considering both the individual scores that reflect the excellence of the candidates and a

diversity constraint based on various types. A “diversity constraint” is defined by a quota

vector q = (q1, . . . , ql) ∈ Nl, specifying the minimum number of candidates from each class

that the selected committee must include. For each type j ∈ [l], we denote αj =
qj
k as the

minimum proportion of candidates of type j required in the selected committee. In our setting,

the set of candidates is assumed to be known in advance. Therefore, the required quota qj

for a class Aj cannot exceed the total number of candidates from that particular class, i.e.,

qj ≤ |Aj | for all j ∈ [l]. Notably, given a committee of size k, we have
∑l

j=1 qj ≤ k, indicating

that the sum of the minimum quotas cannot surpass the fixed committee size. Furthermore,

the concept of “diversity is meaningful if each class is represented by at least one member

in the selected committee, i.e., qj ̸= 0 for all j ∈ [l]. For diversity consistency, we focus on

diversity constraints where qj ≥ 1 for all j ∈ [l]. This implies that the number of types should

be less than or equal to the committee size k, i.e., l ≤ k. For any committee W and any type

j, we use W j to represent the set of alternatives of type j within W , denoted as W j = W ∩Aj .

Definition 5 Let W ∈ 2Ak be a committee and q be a diversity constraint. We say that W is

a q-diverse committee if |W j | ≥ qj for all j ∈ [l]. We denote by 2Ak,q the set of all q-diverse

committees of size k.

To integrate both diversity and excellence, a (weakly) separable committee scoring rule

will contemplate the set of q-diverse committees, denoted as 2Ak,q, as the set of admissible

committees. The rule then selects the committee(s) with the highest score from this set.

Definition 6 The constrained (weakly) separable committee scoring rule F associated with a

scoring vector w assigns to each profile ≻, each committee size k, and each diversity constraint

q, the set F (≻, k, q) of committee(s) from 2Ak,q with the highest score with respect to w.

It is evident that the diversity constraint, necessitating a reduction in the domain of accept-

able committees, may result in the selection of a committee that is “less optimal” compared

to the committee chosen without any diversity constraint. Our interest lies in assessing the

cost, in terms of excellence, imposed by the diversity constraint when a constrained (weakly)

separable committee scoring rule is employed to select a diverse committee.

3 Price of diversity for (weakly) separable scoring rules

Recall that the idea of capturing and analyzing the cost induced by the diversity constraint in

the selection of diverse committees was introduced by Bredereck et al. (2017). They defined

the “price of diversity” as the ratio between the score of the selected committee without any

diversity constraint and the score of the selected committee when the diversity constraint is
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enforced. The authors specifically focused on rules within the class of submodular and mono-

tonic objective functions,5 which includes the class of (weakly) separable committee scoring

functions. They have demonstrated that in the case of a binary attribute (i.e., l = 2), if the di-

versity constraint necessitates the selected committee to be balanced (i.e., q1 = q2 = k/2), the

price of diversity cannot surpass 2. This specific scenario obviously corresponds to a particular

case in our model, prompting our initial task to extend this result to our broader setting. Addi-

tionally, beyond the price of diversity defined by Bredereck et al. (2017), we believe it would be

insightful to delve into how each candidate is affected by diversity enforcement. This approach

provides an alternative method for gauging the cost induced by the diversity constraint.

3.1 Price of diversity

In this section, we introduce the initial scheme for quantifying the cost of the diversity con-

straint in our context, aligning with the definition provided by Bredereck et al. (2017).

Definition 7 Let F be a (weakly) separable committee scoring rule associated with a scoring

vector w. Given the committee size k and the diversity constraint q, the price of diversity

induced by q on F with respect to the preference profile ≻ is given by

POD(F,≻, q) =
s(≻, T )

s(≻, R)
, (4)

where T ∈ F (≻, k) and R ∈ F (≻, k, q).

Before proceeding to the first result of this section, let us state the following useful claim.

Claim 1 Every winning committee T ∈ F (≻, k) allows to build a winning q-diverse committee

R ∈ F (≻, k, q).

Proof. Let T ∈ F (≻, k) be a winning committee. If T is a q-diverse committee, then R = T .

Otherwise, we can construct from T a q-diverse committee R with the highest score (among

the q-diverse committees) such that:

� for every j ∈ [l], |T j | < qj ⇒ |Rj | = qj (T
j ⊂ Rj);

� for every j ∈ [l], |T j | = qj ⇒ Rj = T j ;

� for every j ∈ [l], |T j | > qj ⇒ |T j | ≥ |Rj | ≥ qj (R
j ⊆ T j).

This construction is carried out iteratively by replacing a candidate with the lowest individual

score in a subset T j , where |T j | > qj , with a candidate holding the highest individual score

from a class Aj′ \ T for a type j′ with |T j′ | < qj′ .

5An objective function f is said to be submodular if, for any two subsets B and C from 2A, we have f(B∪C)−f(B∩
C) ≤ f(B) + f(C); it is said to be monotonic if, for any subsets B and C from 2A, we have B ⊆ C ⇒ f(B) ≤ f(C).
Obviously, every (weakly) separable committee scoring function is submodular and monotonic.
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Literally, the committee R is constructed from T by systematically substituting candidates

from the overrepresented classes with the lowest individual scores with candidates from the

underrepresented classes having the highest individual scores, until the diversity constraint is

fulfilled. Let us give a simple example.

Example 3 Consider the set of six candidates A = {a1, a2, a3, a4, a5, a6} partitioned as A =

A1∪A2∪A3 with A1 = {a1, a2, a3}, A2 = {a4, a5}, and A3 = {a6}. Assume that the committee

size is k = 3 and that the diversity constraint is q = (1, 1, 1), requiring exactly one candidate

from each class. Consider the following preference profile with four voters

≻=




a1 a1 a1 a1

a2 a2 a2 a2

a3 a3 a3 a3

a4 a4 a4 a4

a5 a5 a5 a5

a6 a6 a6 a6




Under the 3-Borda rule, we have s(≻, a1) = 20, s(≻, a2) = 16, s(≻, a3) = 12, s(≻, a4) = 8,

s(≻, a5) = 4, and s(≻, a6) = 0. The winning committee without the diversity constraint is then

T = {a1, a2, a3}, which is not a q-diverse committee. However, from T we can construct the

q-diverse committee R with the highest score by replacing a3 and a2 by a4 and a6, and we get

R = {a1, a4, a6}.

As ties may occur among committees with the highest score, it is preferable to select the

one that most closely aligns with the diversity constraint. The next definition is therefore

useful.

Definition 8 Let k be the committee size, q be the diversity constraint, ≻ be a preference

profile, and F be a weakly separable committee scoring rule. We will call optimal committee

under F with respect to ≻, the committee T ∈ F (≻, k) that minimizes the value
∑

j∈[l]

∣∣|W j | − qj
∣∣,

and we will call diverse optimal committee any q-diverse committee R ∈ F (≻, k, q).

In other words, the optimal committee is the committee that belongs to F (≻, k) and minimizes

the number of substitutions needed to reach the diversity constraint.6

Example 4 Consider the same set of candidates, the same committee size, and the same

6The tie-breaking rule is only used when there is more than one optimal committee.
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diversity constraint as in Example 3. Consider the following preference profile with four voters

≻=




a1 a1 a1 a1

a2 a2 a2 a2

a3 a3 a4 a4

a4 a4 a3 a3

a5 a5 a5 a5

a6 a6 a6 a6




Under the 3-Borda rule, the committees {a1, a2, a3} and {a1, a2, a4} have the maximum score

of 46, and the optimal committee is T = {a1, a2, a4}, since it needs one substitution to satisfy

the diversity constraint, whereas the committee {a1, a2, a3} needs two substitutions.

Let us now state the first result of this section.

Proposition 1 Let F be a (weakly) separable committee scoring rule, k be the committee size,

and q = (q1, · · · , ql) be the diversity constraint. For any preference profile ≻, we have

POD(F,≻, q) ≤ 1

min
j∈[l]

αj
,

where αj = qj/k for all j ∈ [l].

Proof. Let F be the considered (weakly) separable committee scoring rule and ≻ a preference

profile.

If there is a q-diverse committee T in F (≻, k), then the price of diversity is equal to 1, since

T also belongs to F (≻, k, q) and the result holds.

Now, assume that there is no q-diverse committee in F (≻, k), and let T ∈ F (≻, k) be the

optimal committee with respect to ≻, and R be the diverse optimal committee obtained from

T . It follows that for each j ∈ [l] we have:

1

qj
s(≻, Rj) ≥ 1

k
s(≻, T j), (5)

where for all W ∈ 2Ak , s(≻,W j) =
∑

a∈W j

s(≻, a) is the total score collected by all the members

of W j belonging to W .

Indeed, let j ∈ [l].

� If |T j | < qj , then s(≻, Rj) ≥ s(≻, T j) since the transformation in Claim 1 increases the

number of alternatives picked from Aj (T
j ⊂ Rj). Therefore, it holds that

1

qj
s(≻, Rj) ≥ 1

qj
s(≻, T j) ≥ 1

k
s(≻, T j),

since

qj ≤ k.
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� If |T j | > qj , let us set tj = |T j | and rj = |Rj |. Without loss of generality, we can write

T j = {a1, . . . , atj} with s(≻, a1) ≥ · · · ≥ s(≻, atj ), and then Rj = {a1, . . . , arj} with

rj ≤ tj since the transformation in Claim 1 does not increase (and probably decreases)

the total number of alternatives selected from Aj (R
j ⊂ T j). The difference between the

average marginal contributions of candidates with type j, in R and T respectively, is

s(≻, Rj)

rj
− s(≻, T j)

tj
=

s(≻, a1) + · · ·+ s(≻, arj )

rj
− s(≻, a1) + · · ·+ s(≻, atj )

tj

=
(tj − rj)[s(≻, a1) + · · ·+ s(≻, arj )]− rj [s(≻, arj+1) + · · ·+ s(≻, atj )]

rjtj

≥ (tj − rj)[s(≻, a1) + · · ·+ s(≻, arj )]− rj(tj − rj)s(≻, arj )

rjtj
, since

s(≻, at) ≤ s(≻, arj ), ∀t ≥ rj .

s(≻, Rj)

rj
− s(≻, T j)

tj
≥ rj(tj − rj)s(≻, arj )− rj(tj − rj)s(≻, arj )

rjtj
= 0, since

s(≻, at) ≥ s(≻, arj ), ∀t ≤ rj .

Hence, it holds that

1

qj
s(≻, Rj) ≥ 1

rj
s(≻, Rj) ≥ 1

tj
s(≻, T j) ≥ 1

k
s(≻, T j),

since

rj ≥ qj and tj ≤ k.

� The equality holds for any type j ∈ [l] such that |T j | = qj , since the transformation in

Claim 1 does not affect the subset T j . Then, for such a type, we have

1

qj
s(≻, Rj) =

1

qj
s(≻, T j) ≥ 1

k
s(≻, T j)

As a result, we have s(≻, Rj) ≥ qj
k s(≻, T j) = αjs(≻, T j), for all j ∈ [l], which implies that

s(≻, Rj) ≥ min
j∈[l]

αjs(≻, T j) for all j ∈ [l]. Summing over all the types, we obtain s(≻, R) ≥
min
j∈[l]

αj × s(≻, T ). Thus,

POD(F,≻, q) =
s(≻, T )

s(≻, R)
≤ 1

min
j∈[l]

αj
.

It is noteworthy that the result provided in Proposition 1 is inspired from Benabbou et al.

(2020), where a bound on the price of diversity in assignment problems is established. In our

setup related to committee selection, we offer a similar result, even though the models and

tasks are entirely different.7 This result also generalizes the finding of Bredereck et al. (2017)

7In Benabbou et al. (2020), each proportion αpq is the maximal proportion of agents of type p to match with
items of group q, as required by the diversity constraint.
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for (weakly) separable committee scoring rules. In the case of a binary attribute, if the diversity

constraint demands a balanced committee (i.e., q1 = q2 = k/2), the required proportion for

each class is 1/2, and thus 1
min
j∈[l]

αj
= 2. However, Proposition 1 provides the maximum price of

diversity caused by a given diversity constraint q on any (weakly) separable committee scoring

rule F , regardless of the preference profile; that is, for any diversity constraint q and any

(weakly) separable committee scoring rule F , it holds that

max
≻∈Pn

POD(F,≻, q) =
1

min
j∈[l]

αj
. (6)

Therefore, we can derive the maximum price of diversity for every (weakly) separable

committee scoring rule, irrespective of the preference profile and the diversity constraint. This

is stated in the following corollary.

Corollary 1 For any (weakly) separable committee scoring rule F and any committee size k,

the maximum price of diversity when selecting a diverse committee of size k is k. That is, for

any (weakly) separable committee scoring rule F , we have

max
q∈Nl

(
max
≻∈Pn

POD(F,≻, q)
)
= k.

Proof. From Proposition 1 and Equation (6), we have

max
≻∈Pn

POD(F,≻, q) =
1

min
j∈[l]

αj
=

1
1
k ×min

j∈[l]
qj

≤ k,

since qj ≥ 1, for all j ∈ [l].

The result presented in Corollary 1 is applicable to the entire class of (weakly) separable

committee scoring rules, without considering the specific impact of the rule being used. Never-

theless, it is essential to understand the potential worst-case loss of excellence when selecting a

scoring rule. Hence, it would be valuable to examine the maximum price to be paid based on

the voting procedure. This analysis could help differentiate between various rules and identify

which rule is more susceptible to the diversity constraint.

Let F be a (weakly) separable committee scoring rule defined through the scoring vector

w = (w1, . . . , wm). Recall that for any preference profile ≻ and any committee W ∈ 2Ak , the

top scored candidate from W according to the profile ≻ has an individual score of at least

s(≻,W )/k, which is the average of the scores collected by all of the candidates in W . Let

T ∈ F (≻, k) be the optimal committee with respect to the profile ≻ and R be the diverse

optimal committee obtained from T when a diversity constraint is imposed. Recall that the

set T ∩ R is the set of candidates selected in T that still belong to R. Since the diversity

constraint is assumed to require at least one candidate from each class, then it holds that

|T ∩R| ≥ 1, where the instance |T ∩R| = 1 gives the maximum price induced by the diversity

constraint, and in this case the single candidate belonging to T ∩R is necessarily the top scored
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candidate across the preference profile. This scenario occurs when all the members of T are

of the same type, otherwise T ∩R would contain at least two candidates. Indeed, since qj ≥ 1

for all j ∈ [l], then if the optimal committee T contains candidates from two different types,

then the best candidate from each of the two types selected in T should still belong to R, and

T ∩R would contain at least two candidates.

Proposition 2 below establishes the maximum value of the price of diversity, contingent on

the scoring vector that defines the rule.

Proposition 2 Let F be a (weakly) separable scoring rule defined by a scoring vector w =

(w1, . . . , wm). Then for any preference profile ≻, and any diversity constraint q, we have

POD(F,≻, q) ≤ wk

wk
k +

m∑

t=m−k+2

wt

,

where wk =
∑k

t=1wt.

Proof. Let F be a weakly separable scoring rule defined by a scoring vector w = (w1, . . . , wm),

≻ be a preference profile, and q be a diversity constraint. Let T ∈ F (≻, k) be the optimal

committee under F and R ∈ F (≻, k, q) be the diverse optimal committee obtained from T .

Obviously, we have

s(≻, T ) ≤ n

k∑

t=1

wt = nwk, (7)

since the right-hand part of Equation (7) is the maximum score of any committee with respect

to the scoring vector w.

Furthermore, we have R = (T ∩ R) ∪ (R \ T ), and since F is (weakly) separable, we have

s(≻, R) = s(≻, R ∩ T ) + s(≻, R \ T ). Recall that the maximum value of the price of diversity

is reached when |R ∩ T | = 1, which means that only one candidate from T still belongs to

R. Moreover, as mentioned previously, this unique candidate is necessarily the top scored

candidate across the preference profile ≻, then it holds that s(≻, R ∩ T ) ≥ s(≻, T )/k.

On the other hand, the remaining k− 1 alternatives from R \T receive a total score of at least

n

m∑

t=m−k+2

wt, which is the lowest score of any committee of size k − 1. We therefore deduce

that

s(≻, R) ≥ s(≻, T )

k
+ n

m∑

t=m−k+2

wt. (8)

From Equation (8), it follows that

POD(F,≻, q) ≤ s(≻, T )

s(≻,T )
k + n

m∑

t=m−k+2

wt

. (9)

The right-hand part of Equation (9) is an increasing function of s(≻, T ); thus, by merging
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Equations (7) and (9), we have

POD(F,≻, q) ≤ wk

wk
k +

m∑

t=m−k+2

wt

.

From Proposition 2, we can easily derive the following corollary.

Corollary 2 For a given (weakly) separable committee scoring rule F defined with a scoring

vector w = (w1, · · · , wm), choosing a size-k diverse committee using F involves a maximum

price of diversity given by

PODmax(F ) = max
q∈Nl

(
max
≻∈Pn

POD(F,≻, q)
)
=

wk

wk
k +

m∑

t=m−k+2

wt

.

Obviously, it can be checked that the maximum price of diversity associated to a given

rule and provided in Corollary 2 cannot exceed the previous one given in Corollary 1 for the

entire class of (weakly) separable scoring rules, since PODmax(F ) ≤ k for each rule F . We are

now able to calculate the maximum price of diversity for several (weakly) separable committee

scoring rules, representing the worst loss of excellence according to each rule when a diversity

constraint is incorporated into the committee selection process. By some straightforward

calculations, we can obtain the maximum price of diversity for each of the four well-known

rules presented in Section 2. This is stated in the following corollary.

Corollary 3 The maximum prices of diversity for the four well-known (weakly) separable

scoring rules are given by:

PODmax(k − Plurality) = k;

PODmax(Bloc) = k;

PODmax(k −Borda) =
k (2m− k − 1)

(2m− k − 1) + (k − 1)(k − 2)
;

PODmax(k −AP ) =
k

k − 1
.

We can observe that the upper bound given by Corollary 1 for the whole class of (weakly)

separable scoring rules is not always reached by all the rules. The k-Borda and k-Antiplurality

rules illustrate this point. We can then compare these four rules based on the maximum price

of diversity induced by the diversity constraint.

Remark 1 The comparison of the four rules studied above according to the maximum price

of diversity is given by

PODmax(k − Plurality) = PODmax(Bloc) ≥ PODmax(k −Borda) ≥ PODmax(k −AP ).
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Based on the above comparison, it can be deduced that the k-Plurality and Bloc rules

are the most sensitive to the diversity constraint, while the k-Antiplurality rule is the least

sensitive. This is primarily due to the scoring vector wAP = (1, · · · , 1, 0) associated with the

k-Antiplurality rule, where, for example, replacing a candidate ranked first by all voters with

a candidate ranked at position (m − 1) by all voters does not change the price of diversity

for this rule. Moreover, it can be observed that the maximum price of diversity for the k-

Plurality and Bloc rules increases with the committee size, while for the k-Antiplurality rule,

it decreases with the committee size. On the other hand, for the k-Borda rule, the maximum

price of diversity increases and reaches a peak for a certain value of k (depending on the

number of candidates). Thus, PODmax(k − Borda) increases with the committee size until

a certain point, after which it decreases.8 This dynamic is explained by the fact that the

Borda rule assigns points based on the ranking of candidates, and as the committee becomes

larger, the total committee score increases. However, at a certain point, the individual scores

of candidates start to offset each other, leading to a decrease in PODmax(k − Borda). It is

noteworthy that the maximum price of diversity is the same for all the aforementioned rules

when considering the smallest committee size, k = 2. The aforementioned observed behaviors

highlight the complexity of the impact of diversity on the committee’s quality, especially for

more sophisticated voting rules like the Borda rule.

3.2 The impact of types performances on the price of diversity

Recall that Proposition 1 provides the maximum price of diversity caused by a specific diversity

constraint on any (weakly) separable committee scoring rule. In this section, we assert that

a more accurate estimation of the price of diversity can be achieved by solely considering the

performances of candidates of each type. In other words, for a given preference profile ≻
and any rule F , we can determine the maximum price of diversity induced by any diversity

constraint q, potentially offering a more refined estimate than the one provided in Proposition

1.

Formally, consider F as a (weakly) separable committee scoring rule, ≻ as a preference

profile, k as the committee size, and T ∈ F (≻, k) as the selected committee without any

diversity constraint. Define [l]T = j ∈ [l] : T ∩Aj ̸= ∅ as the set of types represented by at

least one candidate in T . For each type j ∈ [l]T , let λj(F,≻) denote the proportion of scores

of candidates with type j in T . This is expressed as:

λj(F,≻) =
s(≻, T j)

s(≻, T )
. (10)

In this manner, the proportion λj associated with each type j aims to capture the strength

of candidates of type j in T . We denote by λ(F,≻) the proportion of scores of the weakest

8The maximum price of diversity is reached at k∗ =
−2m−1+

√
8m3−16m2+2m+6

2m−5
where it is equal to

(
−4m2+10m−6+

√
8m3−16m2+2m+6

)(
−2m−1+

√
8m3−16m2+2m+6

)

−16m3+32m2−4m−12+12m
√

8m3−16m2+2m+6−18
√

8m3−16m2+2m+6
. In fact, k∗ and the maximum price are increas-

ing functions of m.
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type in T , which is expressed as:

λ(F,≻) = min
j∈[l]T

λj(F,≻). (11)

The following proposition provides an alternative bound on the price of diversity based on

the performances of multiple types, potentially offering a better estimate than the one given

by Proposition 1.

Proposition 3 Let F be a (weakly) separable committee scoring rule and ≻ a preference

profile. For any diversity constraint q, we have

POD(F,≻, q) ≤ k (k − l + 1)

l λ(F,≻)
.

Proof. Let T ∈ F (≻, k) be the selected committee without any diversity constraint. Let q

be an arbitrary diversity constraint and R be the diverse optimal committee obtained from T .

Recall that if T is a committee that already satisfies the diversity constraint q, then R = T ,

POD(F,≻, q) = 1, and the result holds. We are then interested in the case where T is not a q

diverse committee. For any j ∈ [l], the maximum number of candidates that can be required

from class Aj is (k − l + 1), since at least one candidate is required from each of the other

(l − 1) classes. Then, for all j ∈ [l], it holds that

αj ≤
k − l + 1

k
.

Therefore, it holds that

λj(F,≻)

αj
≥ k − l + 1

k
λj(F,≻) ≥ k

k − l + 1
λ(F,≻),

which implies that

s(≻, T j) ≥ αjs(≻, T )
k

k − l + 1
λ(F,≻). (12)

On the other hand, it follows from Equation (5) that

s(≻, Rj) ≥ qj
k
s(≻, T j) ≥ 1

k
s(≻, T j), (13)

since qj ≥ 1 whatever the imposed diversity constraint q. It follows from Equations (12) and

(13) that

s(≻, Rj) ≥ αj
s(≻, T )

k − l + 1
λ(F,≻).

Summing over all types, we obtain

s(≻, R) ≥ s(≻, T )

k − l + 1
λ(F,≻)

l∑

j=1

αj ≥
s(≻, T )

k − l + 1
λ(F,≻)× l

k
.
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As a result, we get,

POD(F,≻) =
s(≻, T )

s(≻, R)
≤ k(k − l + 1)

lλ(F,≻)
.

The following example shows that the bound on the price of diversity provided by Propo-

sition 3 can be significantly lower than that provided by Proposition 1.

Example 5 Consider the set of six candidates A = {a1, a2, a3, a4, a5, a6} partitioned into four

classes as A = {a1, a2} ∪ {a3, a4} ∪ {a5} ∪ {a6}, and the following preference profile

≻=




a1 a2 a3 a4

a2 a1 a4 a3

a3 a4 a2 a1

a4 a3 a1 a2

a5 a5 a5 a5

a6 a6 a6 a6




Let k = 4 be the committee size and assume that the rule under consideration is the 4-Plurality

rule. If we have the information that diversity constraint to be applied is q = (1, 1, 1, 1), then

Proposition 1 says that the maximum price of diversity is 4. However, if we focus only on the

preferences of voters giving the scores of candidates, without knowing the diversity constraint,

the optimal committee is T = {a1, a2, a3, a4} and [j]T = {1, 2} since the only types represented

in T are the types 1 and 2. In this case, it can be checked that λ1(F,≻) = λ2(F,≻) = 1/2 and

we can deduce from Proposition 5 that the maximum price of diversity would be 2.

Roughly speaking, knowing the performances of the candidates (and then of different types)

given by the profile can sometimes give a better estimation of the cost of diversity than knowing

the diversity constraint to be applied.

3.3 Individual price of diversity

We commence this section by reiterating that the price of diversity aims to gauge the influence

of the diversity constraint on the committee’s performance. However, the diversity constraint

has the consequence of favoring certain candidates while penalizing others. This occurs as

some candidates yield their positions to weaker candidates due to the diversity constraint.

Consequently, we posit that an alternative approach to assessing the cost of the diversity

constraint should involve measuring the “harm” suffered by penalized candidates. To address

this, we introduce the “individual price of diversity,” which is contingent on how candidates

experience the impact of the diversity constraint.”

If the optimal committee T fails to meet the diversity constraint q, then we can quantify

the harm suffered by each candidate from T , specifically, each candidate excluded due to the

diversity constraint. To achieve this, for each a ∈ T , we set

Ha = {x ∈ T : s(≻, x) ≥ s(≻, a)}, (14)
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as the set of candidates in T that are at least as good as a. Let R be the diverse optimal

committee obtained from T and Ra = Ha ∩R. Intuitively, Ra is the set of candidates that are

at least as good as a and that are actually selected in the diverse optimal committee R. In

other words,

Ra = {x ∈ R : s(≻, x) ≥ s(≻, a)}. (15)

The harm suffered by candidate a with respect to the diversity constraint q, denoted by

χa(F,≻, q), can be evaluated as the ratio of the aggregated score of all candidates that are at

least as good as a to the aggregated score of those candidates that are actually selected in the

diverse optimal committee R, i.e.,

χa(F,≻, q) =

∑

x∈Ha

s(≻, x)

∑

x∈Ra

s(≻, x)
. (16)

In essence, χa(F,≻, q) aims to capture how the total performance of candidates higher

scored than a has been weakened by the diversity constraint q.

Definition 9 Let F be a (weakly) separable committee scoring rule, ≻ be a preference profile,

and q be a diversity constraint. The individual price of diversity induced by q on F with respect

to the profile ≻ is defined by

IPOD(F,≻, q) = max
a∈T

χa(F,≻, q). (17)

A comparable methodology has been developed by Yang et al. (2019) to investigate “in-

group fairness” in committee selection with diversity constraints. Indeed, the candidates chosen

in the diverse optimal committee may not necessarily be the top candidates overall across the

profile, and this unfairness is not uniformly experienced by all types. The authors introduced

a similar parameter and explored this phenomenon through experimental analysis. Note that

for any candidate a ∈ T , the lowest value of χa(F,≻, q) is 1, corresponding to the case where

a, as well as all candidates that are at least as good as a, still belong to R; that is, when

Ha = Ra. Moreover, the harm χa(F,≻, q) suffered by candidate a increases as the number of

candidates at least as good as a and selected in R decreases. Note also that we can only focus

on the harm suffered by the candidates belonging to T \ R, i.e. the candidates belonging to

the optimal committee but not to the selected diverse optimal committee with the diversity

constraint, since any candidate belonging to both committees is not affected by the diversity

constraint at all. Incidentally, since the individual price of diversity is the maximum harm

suffered by the candidates from T , it can be checked that this maximum harm cannot be that

of a candidate that belongs to both T and R.

Example 6 Examine the identical profile, committee size, and diversity constraint as pre-

sented in Example 3. Under the 3-Borda rule, we have s(≻, a1) = 20, s(≻, a2) = 16, s(≻, a3) =

12, s(≻, a4) = 8, s(≻, a5) = 4, s(≻, a6) = 0, and the optimal committee is T = {a1, a2, a3}.
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However, the diverse optimal committee is R = {a1, a4, a6} and the set of candidates of-

fended by the diversity constraint is T \ R = {a2, a3}. Furthermore, the harms suffered by

a2 and a3 respectively are χa2(3 − Borda,≻, q) = s(≻,{a1,a2})
s(≻,{a1}) = 36

20 and χa3(3 − Borda,≻
, q) = s(≻,{a1,a2,a3})

s(≻,{a1}) = 48
20 = 12

5 . Thus the individual price of diversity induced by the diver-

sity constraint q on the 3-Borda rule according to the profile ≻ is IPOD(3−Borda,≻, q) =

χa3(3−Borda,≻, q) = 12
5 .

The following proposition asserts that the individual price of diversity is consistently higher

than the price of diversity for any (weakly) separable committee scoring rule, regardless of the

preference profile.

Proposition 4 For any (weakly) separable committee scoring rule F , any preference profile

≻, and any diversity constraint q, we have

POD(F,≻, q) ≤ IPOD(F,≻, q).

Proof. Let ≻ be a preference profile and T ∈ F (≻, k) be the optimal committee with respect

to ≻. Without loss of generality, we can write T = {a1, · · · , ak} with s(≻, at) ≥ s(≻, at+1), for

all t ∈ [k − 1]. It follows that

POD(F,≻, q) =
s(≻, T )

s(≻, R)
≤ s(≻, Hak)

s(≻, Rak)
= χak(F,≻, q) ≤ max

a∈T
χa(F,≻, q) = IPOD(F,≻, q),

since Hak = T and Rak ⊆ R.

Proposition 3 clearly shows that the price of diversity is more meaningful when it is mea-

sured individually across candidates, and the following example further illustrates this point.

Example 7 Consider the set of candidates A = {a1, a2, a3, a4, a5, a6} partitioned as A =

A1∪A2∪A3 with A1 = {a1, a2, a3}, A2 = {a4, a5}, and A3 = {a6}. Assume that the committee

size is k = 3, the diversity constraint is q = (1, 1, 1), and consider the following preference

profile with three voters

≻=




a1 a2 a2

a3 a1 a3

a2 a3 a1

a4 a4 a4

a5 a5 a5

a6 a6 a6




Under the 3-Borda rule, the optimal committee is T = {a1, a2, a3} with the maximum score of

36. Moreover, candidates a2 and a3 will be replaced by a4 and a5 due to the diversity constraint

q, and the individual price of diversity is IPOD(F,≻, q) = χa3 = s(≻,T )
s(≻,a2)

= 36
13 . Thus, we have

POD(F,≻, q) = s(≻,T )
s(≻,R) =

36
19 ≤ IPOD(F,≻, q).

However, we it can be checked that even if the individual price of diversity in Example

7 above is greater than the price of diversity defined in Section 3.1, it remains lower than
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the bound provided by Proposition 1, since IPOD(F,≻, q) = 36
13 < 3 = 1

min
j∈[l]

αj
. The next

proposition actually shows that the bound on the price of diversity given by Proposition 1 is

very tight, as even the individual price of diversity cannot exceed this bound.

Proposition 5 For any (weakly) separable committee scoring rule F , any preference profile

≻, and any diversity constraint q, we have

IPOD(F,≻, q) ≤ 1

min
j∈[l]

αj
.

Proof. Let k and q = (q1, · · · , ql) be the given committee size and diversity constraint,

respectively. Let F be a (weakly) separable committee scoring rule, ≻ be a preference profile,

and T ∈ F (≻, k) be the optimal committee under F with respect to ≻.

� If T is q-diverse, then T = R andHa = Ra for all a ∈ T , which means that χa(F,≻, q) = 1

for all a ∈ T and the result holds.

� If T is not q-diverse, consider the candidate a ∈ T such that χa(F,≻, q) = max
x∈T

χx(F,≻, q).

It cannot be that Ha = Ra, as in this case, we would have χa(F,≻, q) = 1, implying

that χx(F,≻, q) = 1 for all x ∈ T , which means that T = R, an impossible scenario.

Therefore, it follows that Ha ̸= Ra, and, consequently, there is a candidate a0 ∈ Ha such

that a0 /∈ Ra. Recall that Ra is the set of candidates fromHa that still belong to R (where

R is the diverse optimal committee obtained from T ). The fact that a0 /∈ Ra means

that the quota qj(a0) has already been reached in Ra, and then |Ra| ≥ qj(a0) ≥ min
j∈[l]

qj .

Consequently, it follows that

IPOD(F,≻, q) = χa(F,≻, q) =
s(≻, Ha)

s(≻, Ra)
=

∑

x∈Ha

s(≻, x)

∑

x∈Ra

s(≻, x)
≤ ks(≻, a1)

min
j∈[l]

qjs(≻, ak)
≤ k

min
j∈[l]

qj
,

since

s(≻, ak) ≤ s(≻, x) ≤ s(≻, a1),

for all x ∈ T . As a result, we obtain

IPOD(F,≻, q) ≤ k

min
j∈[l]

qj
=

1

min
j∈[l]

αj
.

It is evident that, in contrast to the price of diversity, the maximum value of the individual

price of diversity does not provide a basis for distinguishing between various rules. This is due

to a reasoning analogous to that presented in Proposition 2, which results in IPODmax(F ) = k

for any rule F .

21



4 Concluding comments

In summary, our focus in this study was on assessing the cost of diversity in committee se-

lection under (weakly) separable committee scoring rules. This scenario is common in various

real-world problems, and the introduced metrics, namely the price of diversity and individual

price of diversity, aim to quantify the loss of excellence when a diverse committee is required.

We presented an upper bound for both metrics, highlighting their worst-case scenarios, and

demonstrated the utility of the maximum price of diversity in distinguishing between different

rules. Additionally, we illustrated that an evaluation based solely on the candidates’ per-

formances derived from the preference profile can provide a more accurate estimation of the

maximum price of diversity.

Our study opens the door to several important avenues for future research. One such

direction is to explore a “qualitative” approach for measuring the price of diversity. Utilizing

the score function alone may not provide a comprehensive understanding of the loss of “quality”

among candidates. For instance, Corollary 3 reveals that the k-Antiplurality rule, among the

four (weakly) separable committee scoring rules in the literature, yields the lowest maximum

price of diversity. This outcome is largely influenced by its associated scoring vector wAP =

(1, · · · , 1, 0). In cases where replacing a candidate ranked first by all voters with one ranked

at position (m− 1) by all voters does not affect the price of diversity, it raises concerns about

fairness. Considering alternative definitions of the price of diversity based on candidates’

positions in voters’ preferences, such as using metric rationalization, could offer insights into the

closeness of the selected committee to voters’ preferences. We refer the reader to, for instance,

Andjiga et al. (2014) and Elkind et al. (2015), among many others. Additionally, employing

a probabilistic approach may help assess the frequency with which various rules approach the

bounds of the price of diversity. Indeed, if a voting rule results in reaching the maximum bound

of a given price of diversity but with a low probability, we may question the significance of such

determination. While obtaining bounds is commendable, gaining insight into the probability

of its achievement is even more valuable. We refer the reader to, for instance, Diss and

Merlin (2021) and Gehrlein and Lepelley (2011, 2017), among others. Another challenging

task is extending this analysis to other categories of committee selection rules, particularly

those handling approval preferences as in Brams (1990), Kagita et al. (2021), Kilgour (2010),

Kilgour and Marshall (2012), among others.
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