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Abstract

We characterize the positional social preference correspondences (spc) satisfying the quali-
fied majority property for any given majority threshold. We also characterize the positional
spcs satisfying the minimal majority property. We next evaluate the probability that the
Borda, the Plurality and the Antiplurality spcs fulfil the two aforementioned properties
under two assumptions on individuals’ preferences in the presence of three and four alterna-
tives for various sizes of the society. Our results show that the Borda spc is the positional
spc which better behaves in relation with the qualified majority principle and the mini-
mal majority principle. Finally, we propose some remarks on the concept of Condorcet
consistency for social choice correspondences.

Keywords: social preference correspondence; social choice correspondence; positional rule;
qualified majority; probability; Condorcet consistency.

JEL classification: D71

1 Introduction

Consider a society where h ≥ 2 individuals have to select some elements in a given set of
n ≥ 2 alternatives or to determine a social preference on that set by means of their individual
preferences. Assume that individual and social preferences are required to be linear orders
(strict rankings) and call a preference profile any list of h linear orders each of them associated

∗The authors wish to thank Daniela Bubboloni for providing useful comments and suggestions. The first
author would like to acknowledge the financial supports from Université de Lyon (project INDEPTH Scientific
Breakthrough Program of IDEX Lyon) within the program Investissement d’Avenir (ANR-16-IDEX-0005) and
from Université de Franche-Comté within the program Chrysalide-2020.
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with a specific individual in the society. Any correspondence from the set of preference profiles
to the set of alternatives [resp. the set of social preferences] represents then a particular decision
process which determines a possibly empty set of alternatives [resp. social preferences] whatever
preferences individuals express. Such correspondences are called social choice correspondences
(sccs) [resp. social preference correspondences (spcs)].

Among all the conceivable sccs and spcs, the positional ones are frequently used in practical
situations. A positional scc [resp. spc] is associated with a scoring vector w = (wr)

n
r=1 ∈ Rn

such that w1 ≥ w2 ≥ . . . ≥ wn and w1 > wn. Given a preference profile, each time an alternative
is ranked r-th by one individual it obtains wr points; the scc selects those alternatives realizing
the greatest score; the spc selects those social preferences that are consistent with the total
score obtained by alternatives, namely if the total score of an alternative is greater than the
one of another alternative then the former alternative has to be socially preferred to the latter
one. Note that if a scc and a spc are both associated with the same scoring vector then the
elements selected by the scc are the ones that are first ranked by at least one of the linear
orders selected by the spc (see Proposition 20).

The notion of a Condorcet winner has received a considerable amount of attention in the so-
cial choice literature due to its intuitive appeal. Given a preference profile, a Condorcet winner
is an alternative which is preferred to any other alternative by a simple majority of individuals.
As it is well known however, except for special situations, the existence of a Condorcet winner
is not guaranteed for all the conceivable preference profiles. Thus, the simple majority princi-
ple cannot be used in general to build nonempty valued sccs. It is then surely an interesting
problem to determine sensible weaker variants of the simple majority principle. A possible way
to weaken that principle is to consider different level of majority than simple majority. The
principle of Condorcet consistency,1 basically introduced by Ferejonh and Grether (1974) and
Greenberg (1979), is based on that idea. Given ν ∈ N∩ (h2 , h], a spc is said to satisfy the Con-
dorcet consistency with respect to the majority threshold ν (briefly ν-Condorcet consistency)
if, for every preference profile p, the fact that an alternative x1 is preferred to another alterna-
tive x2 by at least ν individuals implies that x2 is not selected. A crucial result by Greenberg
(1979) shows that there exists a nonempty valued ν-Condorcet Consistent scc if and only if
ν > n−1

n h. As a consequence, every preference profile admits Condorcet winner if and only if

bh2 c+ 1 > n−1
n h, that is, h = 2 or n = 2 or (h, n) = (4, 3).

The concept of Condorcet consistency can be immediately translated to the framework of
spcs. Given ν ∈ N ∩ (h2 , h], a spc is said to satisfies the qualified majority property associated
with the majority threshold ν (briefly ν-majority property) if, for every preference profile p,
the fact that an alternative x1 is preferred to another alternative x2 by at least ν individuals
implies that x1 is ranked over x2 in any social preference associated with p.

The analysis of Condorcet consistency of sccs is developed for positional sccs by Baharad
and Nitzan (2003) and Courtin et al. (2015) (see Section 6 for further details). That analysis
gives important information on the quality of positional sccs. Similarly, the analysis of the
majority properties of positional spcs seems to be an interesting issue to address. Unexpectedly,
at the best of our knowledge, such an issue has not been considered in the literature, yet.
In this paper we fully characterize the positional spcs which satisfy the ν-majority property
(Propositions 5 and 7). As a particular instance, we get that the well-known Borda spc fulfils
the ν-majority property if and only if ν > n−1

n h.
We focus then on a further property for spcs, called minimal majority property, recently

1We use here the terminology used in Baharad and Nitzan (2003) and Courtin et al. (2015).
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introduced by Bubboloni and Gori (2014, 2015). A spc is said to satisfy the minimal majority
property if it associates with every preference profile p those social preferences which are con-
sistent with the ν-majority property for all majority thresholds ν which allow to get at least a
social preference. We then characterize the positional spcs which satisfy the minimal majority
property (Propositions 9, 10, 12 and 13) showing, in particular, that the Borda spc fulfils the
minimal majority property if and only if n = 2 or h = 2 or (h, n) = (4, 3) (corresponding to
those situations where a Condorcet winner always exists).

The last part of the paper is devoted to the evaluation of the probability that some classic
positional spcs fulfil the two aforementioned properties by using two well-known assumptions on
the individuals’ preferences often used for such studies. We believe that studying the probability
of the agreement between some well-known spcs and the two considered variants of the majority
principle is an important research direction. To the best of our knowledge, our paper can be
considered the first to explore such a framework.

The paper is organized as follows. Section 2 describes the basic framework and some
preliminary results. Sections 3 and 4 describe our main results regarding the conditions under
which a positional spc satisfies the ν-majority property and the minimal majority property.
Section 5 presents our computational analysis related to the probability of some well-known
positional spcs to fulfil the two aforementioned conditions. Section 6 is devoted to some
comments on the concept of Condorcet consistency of positional sccs. Finally, the last section
presents our conclusions.

2 Definitions and preliminary results

Let h, n ∈ N with h, n ≥ 2 be fixed throughout the paper, H = {1, . . . , h} be the set of
individuals and N = {1, . . . , n} be the set of alternatives. A preference relation on N is a
linear order on N , namely a complete, transitive and antisymmetric binary relation on N . The
set of linear orders on N is denoted by L(N). Given q ∈ L(N) and x1, x2 ∈ N , we usually
write x1 �q x2 instead of (x1, x2) ∈ q and x1 6= x2, and we define the rank of x1 at q as
rankq(x1) = |{x ∈ N : x �q x1}|+ 1. A preference profile is an element of the set P = L(N)h.
If p ∈ P and i ∈ H, the i-th component of p is denoted by pi and represents the preferences of
individual i. A social preference correspondence (spc) is a function from P to the set of the
subsets of L(N). A spc F is nonempty valued if, for every p ∈ P, F (p) 6= ∅. Given two spcs
F1 and F2, we say that F1 is a refinement of F2 and we write F1 ⊆ F2 if, for every p ∈ P,
F1(p) ⊆ F2(p). We write F1 6⊆ F2 otherwise.

Let ν ∈ N∩ (h2 , h] be a majority threshold. Given p ∈ P and x1, x2 ∈ N , we write x1 �pν x2

if |{i ∈ H : x1 �pi x2}| ≥ ν and x1 6�pν x2 otherwise. The ν-majority spc, denoted by Mν , is
defined, for every p ∈ P, as

Mν(p) = {q ∈ L(N) : ∀x1, x2 ∈ N, x1 �pν x2 implies x1 �q x2}.
It is known that Mν is nonempty valued if and only if ν > n−1

n h (see, for instance, Propositions
6 and 7 in Bubboloni and Gori, 2014). Given a spc F , we say that F satisfies the ν-majority
property if F ⊆Mν . As a consequence, if ν ≤ n−1

n h and F is nonempty valued, then F 6⊆Mν .

Note also that if ν, ν ′ ∈ N ∩ (h2 , h] with ν ≤ ν ′, then Mν ⊆ Mν′ . Thus, if F satisfies the
ν-majority property, then it satisfies the ν ′-majority property as well.

For every p ∈ P, it is well defined the number

ν(p) = min{ν ∈ N ∩ (h2 , h] : Mν(p) 6= ∅},
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called minimal majority threshold. The minimal majority spc, denoted by M , is defined, for
every p ∈ P, as M(p) = Mν(p)(p). Of course, M is nonempty valued and M ⊆ Mν for all

ν > n−1
n h. Given a spc F , we say that F satisfies the minimal majority property if F ⊆M .

Consider now the set

W = {w = (wr)
n
r=1 ∈ Rn : w1 ≥ w2 . . . ≥ wn, w1 > wn} ,

whose elements are called scoring vectors, and let Γ : W → R and γ : W → R be defined, for
every w ∈W, as

Γ(w) = w1 − wn, γ(w) = min
r∈{1,...,n−1}

wr − wr+1.

Fixed w ∈W, the scoring function associated with w is the function sw : P ×N → R defined,
for every p ∈ P and x ∈ N , as

sw(p, x) =
∑

i∈H
wrankpi (x);

the positional spc associated with w, denoted by Fw, is defined, for every p ∈ P, as

Fw(p) = {q ∈ L(N) : ∀x1, x2 ∈ N, sw(p, x1) > sw(p, x2) implies x1 �q x2} .

Consider now wb = (wbr)
n
r=1 ∈W defined, for every r ∈ {1, . . . , n}, as wbr = n − r. The vector

wb is called Borda scoring vector and the corresponding positional spc is called Borda spc.
Note that Γ(wb) = n− 1 and γ(wb) = 1.

The next proposition shows the simple argument needed to prove that, for every w ∈ W,
Fw is nonempty valued.

Proposition 1. Let w ∈W and p ∈ P. Then Fw(p) 6= ∅.

Proof. Let sw(p,N) = {sw(p, x) ∈ R : x ∈ N} and, for every t ∈ sw(p,N), Nw(p, t) = {x ∈ N :
sw(p, x) = t}. Note that {Nw(p, t)}t∈sw(p,N) is a partition of N . For every t ∈ sw(p,N), pick
any bijective function ωt : Nw(p, t)→ {1, . . . , |Nw(p, t)|}. A simple check shows that

q∗ =
{

(x, y) ∈ N2 : sw(p, x)− sw(p, y) > 0
}
∪

⋃

t∈sw(p,N)

{
(x, y) ∈ Nw(p, t)2 : ωt(x) ≤ ωt(y)

}
(1)

is an element of Fw(p).

In fact, later on in the paper, we need the following more general version of Proposition 1.

Proposition 2. Let w ∈ W and p ∈ P. Consider k distinct x1, . . . , xk ∈ N with 1 ≤ k ≤ n
and assume that, for every i1, i2 ∈ {1, . . . , k} with i1 < i2, sw(p, xi1) ≥ sw(p, xi2). Then there
exists q∗ ∈ Fw(p) such that, for every i1, i2 ∈ {1, . . . , k} with i1 < i2, xi1 �q∗ xi2.

Proof. We refer to the notation introduced in the proof of Proposition 1. Let r = |{s(p, xi) ∈ R :
i ∈ {1, . . . , k}}| and {tj}rj=1 = {s(p, xi) ∈ R : i ∈ {1, . . . , k}} ⊆ sw(p,N). For every t ∈ {tj}rj=1,
consider the nonempty set I(t) = {i ∈ {1, . . . , k} : sw(p, xi) = t} and note that ∅ 6= {xi}i∈I(t) ⊆
Nw(p, t), so that there exists a bijective function ωt : Nw(p, t) → {1, . . . , |Nw(p, t)|} such that
ωt(xi1) < ωt(xi2) for all i1, i2 ∈ I(t) with i1 < i2. For every t ∈ sw(p,N) \ {tj}rj=1, pick any
bijective function ωt : Nw(p, t) → {1, . . . , |Nw(p, t)|}. A simple check shows that q∗ built as in
(1) fulfils the desired properties.
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We complete the section with two simple but useful lemmata.

Lemma 3. Let w ∈W. Then Γ(w)
n−1 ≥ γ(w).

Proof. Assume by contradiction that Γ(w)
n−1 < γ(w), that is,

w1 − wn
n− 1

< min
r∈{1,...,n−1}

wr − wr+1.

Then, for every r ∈ {1, . . . , n− 1}, we have that w1−wn
n−1 < wr−wr+1. As a consequence, we get

w1 − wn =
n−1∑

r=1

w1 − wn
n− 1

<
n−1∑

r=1

wr − wr+1 = w1 − wn

and the contradiction is found.

Lemma 4. Let ν ∈ N ∩ (h2 , h], w ∈W, p ∈ P and x1, x2 ∈ N . If x1 �pν x2, then

sw(p, x1)− sw(p, x2) ≥ (Γ(w) + γ(w))ν − Γ(w)h.

Proof. Assume x1 �pν x2 and define H1 = {i ∈ H : x1 �pi x2} and H2 = {i ∈ H : x2 �pi x1}.
Note that H1 ∩H2 = ∅, H1 ∪H2 = H, |H1| ≥ ν and |H2| ≤ h− ν. Then we have that

sw(p, x1)− sw(p, x2) =
∑

i∈H

(
wrankpi (x1) − wrankpi (x2)

)

=
∑

i∈H1

(
wrankpi (x1) − wrankpi (x2)

)
−
∑

i∈H2

(
wrankpi (x2) − wrankpi (x1)

)

≥ |H1|γ(w)− |H2|Γ(w) ≥ νγ(w)− (h− ν)Γ(w) = ν(Γ(w) + γ(w))− hΓ(w)

and the proof is complete.

3 Positional spcs and the ν-majority property

The next proposition states conditions on the scoring vector w and the majority threshold ν
that are sufficient to make the positional spc associated with w satisfy the ν-majority property.

Proposition 5. Let ν ∈ N ∩ (h2 , h] and w ∈W. If ν > Γ(w)
Γ(w)+γ(w)h, then Fw ⊆Mν .

Proof. Let p ∈ P and consider q ∈ Fw(p). We have to show that q ∈Mν(p). In other words, we
have to prove that, for every x1, x2 ∈ N , if x1 �pν x2, then x1 �q x2. Consider then x1, x2 ∈ N
such that x1 �pν x2. Using Lemma 4 and since ν > Γ(w)

Γ(w)+γ(w)h, we get

sw(p, x1)− sw(p, x2) ≥ ν(Γ(w) + γ(w))− hΓ(w) > 0.

Then, as q ∈ Fw(p), we deduce x1 �q x2.

Observe that if n = 2, then, for every ν ∈ N ∩ (h2 , h] and w ∈ W, we have that Fw ⊆ Mν

since Γ(w)
Γ(w)+γ(w) = 1

2 .
Proposition 5 implies the following interesting result.
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Corollary 6. Let ν ∈ N ∩ (h2 , h]. Then the three following conditions are equivalent:

(i) Mν is nonempty valued;

(ii) ν > n−1
n h;

(iii) Fwb ⊆Mν .

Proof. By Proposition 7 in Bubboloni and Gori (2014) we know that (i) implies (ii). Since

Γ(wb)

Γ(wb) + γ(wb)
h =

n− 1

n
h, (2)

by Proposition 5 we get that (ii) implies (iii). Finally, since Proposition 1 guarantees that Fwb
is nonempty valued, (iii) trivially implies (i).

It is worth noting that Corollary 6 implies that, among all the positional spcs, the Borda
one satisfies the strongest possible version of the ν-majority property or, in other words, it
satisfies the ν-majority property for the largest possible set of majority thresholds. Note also
that the structure of the proof of Corollary 6 allows to deduce that the inequality ν > n−1

n h
implies that Mν is nonempty valued by means of some simple properties of the Borda spc,
that is, (2) and Propositions 1 and 5. That provides an alternative proof of Proposition 6 in
Bubboloni and Gori (2014) (see also Can and Storcken, 2013, Example 4).

The next proposition allows to completely characterize those positional spcs satisfying the
ν-majority property. Indeed, it shows that the condition on w and ν found in Proposition 5 is
also necessary to make the positional spc associated with w fulfil the ν-majority property.

Proposition 7. Let ν ∈ N ∩ (h2 , h] and w ∈W. If Fw ⊆Mν , then ν > Γ(w)
Γ(w)+γ(w)h.

Proof. Assume by contradiction ν ≤ Γ(w)
Γ(w)+γ(w)h. Consider r̂ ∈ {1, . . . , n − 1} such that wr̂ −

wr̂+1 = γ(w); qα ∈ L(N) such that, for every x, y ∈ N , x < y (as numbers) implies x �qα y;
qβ ∈ L(N) such that rankqβ (r̂) = n and rankqβ (r̂ + 1) = 1; p ∈ P such that pi = qα for all
i ∈ {1, . . . , ν}, and pi = qβ for all i ∈ {ν + 1, . . . , h}.2 Since, for every x, y ∈ N with x < y, we
have that x �pν y, then Mν(p) = {qα}. Note that

sw(p, r̂)− sw(p, r̂ + 1) = ν(wr̂ − wr̂+1)− (h− ν)(w1 − wn)

= νγ(w)− (h− ν)Γ(w) = (Γ(w) + γ(w))ν − Γ(w)h.

Since ν ≤ Γ(w)
Γ(w)+γ(w)h, we get sw(p, r̂)−sw(p, r̂+1) ≤ 0. By Proposition 2 there exists q∗ ∈ Fw(p)

such that r̂ + 1 �q∗ r̂. Then q∗ 6= qα so that Fw 6⊆Mν , a contradiction.

Corollary 8 below shows that if two components of a scoring vector are equal, then the
corresponding spc does not fulfil any type of qualified majority property. That is the case,
for instance, of the Plurality spc, defined by the scoring vector w = (1, 0, . . . , 0), and of the
Antiplurality spc, defined by w = (1, . . . , 1, 0).

Corollary 8. Let w ∈W be such that γ(w) = 0. Then, for every ν ∈ N ∩ (h2 , h], Fw 6⊆Mν .

Proof. Assume by contradiction that there exists ν ∈ N ∩ (h2 , h] such that Fw ⊆Mν . Then, by

Proposition 7, we get ν > Γ(w)
Γ(w)+γ(w)h = h, a contradiction.

2If ν = h, then we set {ν + 1, . . . , h} = ∅.
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4 Positional spcs and the minimal majority property

The next propositions fully describe which positional spcs fulfil the minimal majority property.
In particular, they imply that the Borda spc satisfies the minimal majority property if and
only if n = 2 or h = 2 or (h, n) = (4, 3). Recall that, as described in the introduction, those
conditions on h and n are equivalent to say that the Condorcet winner exists for every preference
profile. Moreover, if the Borda spc does not satisfy the minimal majority property, then no
positional spc does.

Proposition 9. Let n = 2 and let L(N) = {qα, qβ}, where 1 �qα 2 and 2 �qβ 1. Then, for
every w ∈W,

Fw(p) = M(p) =





{qα} if |{i ∈ H : 1 �pi 2}| > h
2 ,

L(N) if |{i ∈ H : 1 �pi 2}| = h
2 ,

{qβ} if |{i ∈ H : 1 �pi 2}| < h
2 .

Proof. Straightforward.

Proposition 10. Let h = 2. Then, for every w ∈W, the two following conditions are equiva-
lent:

(i) Fw ⊆M ;

(ii) w1 > w2 > . . . > wn.

Proof. First of all note that, since h = 2, N ∩ (h2 , h] = {2}. Moreover, due to Corollary 6, M2

is nonempty valued. As a consequence, M = M2. Given now w ∈ W, we have that (ii) is

equivalent to ν > Γ(w)
Γ(w)+γ(w)h when h = 2 and ν = 2. Then we conclude using Propositions 5

and 7.

Lemma 11. Let h ≥ 3, n ≥ 3 and (h, n) 6= (4, 3). Then dh+1
2 e ≤ n−1

n h.

Proof. Assume first h odd so that dh+1
2 e = h+1

2 . Then we have to show that h+1
2 ≤ n−1

n h, that
is, h ≥ n

n−2 . Since h ≥ 3 and 3 ≥ n
n−2 for all n ≥ 3, h ≥ n

n−2 follows. Assume now h even so

that dh+1
2 e = h+2

2 . Then we have to show that h+2
2 ≤ n−1

n h, that is, h ≥ 2n
n−2 . If n = 3, then

h ≥ 6 and 6 = 2n
n−2 which imply h ≥ 2n

n−2 . If n ≥ 4, then h ≥ 4 and 4 ≥ 2n
n−2 which imply

h ≥ 2n
n−2 .

Proposition 12. Let h ≥ 3, n ≥ 3 and (h, n) 6= (4, 3). Then, for every w ∈W, Fw 6⊆M .

Proof. Fix w ∈W and define ν0 =
⌈
h+1

2

⌉
. Consider r̂ ∈ {1, . . . , n− 1} such that wr̂ − wr̂+1 =

γ(w); qα ∈ L(N) such that, for every x, y ∈ N , if x < y (as numbers), then x �qα y; qβ ∈ L(N)
such that rankqβ (r̂) = n and rankqβ (r̂ + 1) = 1; p ∈ P such that pi = qα for all i ∈ {1, . . . , ν0},
and pi = qβ for all i ∈ {ν0 + 1, . . . , h} (note that ν0 < h). Since, for every x, y ∈ N with x < y,
we have that x �pν0 y, then Mν0(p) = {qα}. As a consequence, ν(p) = ν0 and M(p) = Mν0(p).
Note now that

sw(p, r̂)− sw(p, r̂ + 1) = ν0(wr̂ − wr̂+1)− (h− ν0)(w1 − wn) = ν0γ(w)− (h− ν0)Γ(w).
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By Lemma 11, we have that ν0 ≤ n−1
n h, that is, h−ν0

ν0
≥ 1

n−1 . Using now Lemma 3, we get

Γ(w)
h− ν0

ν0
≥ Γ(w)

n− 1
≥ γ(w),

which implies ν0γ(w) − (h − ν0)Γ(w) ≤ 0. Thus, sw(p, r̂) ≤ sw(p, r̂ + 1) and Proposition 2
implies the existence of q∗ ∈ Fw(p) such that r̂ + 1 �q∗ r̂. Then q∗ 6= qα and Fw(p) 6⊆ M(p).
Thus Fw 6⊆M .

Proposition 13. Let (h, n) = (4, 3). Then, for every w ∈W, the two following conditions are
equivalent:

(i) Fw ⊆M ;

(ii) 3 min{w1 − w2, w2 − w3} > w1 − w3.

Proof. First of all note that N∩ (h2 , h] = {3, 4}. Moreover, due to Corollary 6, M3 is nonempty
valued. As a consequence, M = M3. Given now w ∈ W, we have that (ii) is equivalent to

ν > Γ(w)
Γ(w)+γ(w)h when h = 4 and ν = 3. Then we conclude using Propositions 5 and 7.

5 Computational results

From the previous results we understand that the Borda spc is the scoring spc which better
behaves in relation with the qualified majority principle and the minimal majority principle. For
instance, while Corollary 6 shows that the Borda spc is a refinement of Mν as soon as ν > n−1

n h,
there is no possible threshold ν for which this is true under other commonly studied spcs in
the literature. In the next sections, our purpose is to measure at which extend the Borda spc
performs better than those spcs . Our attention will be restricted to the Plurality spc defined by
the scoring vector w = (1, 0, . . . , 0) and the Antiplurality spc defined by w = (1, . . . , 1, 0). Our
probabilistic results are based on the two major assumptions on the distribution of individual
preferences. The first one is called the Impartial Culture (IC) condition which was introduced
for the first time in the social choice literature by Guilbaud (1952); it assumes in our framework
of linear orderings that each individual independently chooses, with equal likelihood, one of the
linear orderings in L(N). Therefore, each preference profile p ∈ L(N)h occurs with probability
1/(n!)h. The second assumption is called the Impartial Anonymous Culture (IAC) condition
and it was introduced for the first time in the literature of social choice theory by Gehrlein
and Fishburn (1976) and Kuga and Nagatani (1974); it assumes in our framework that every
voting situation, a vector giving the numbers of individuals who each have a specific linear
ordering, occurs with the same probability. Hence, each voting situation h̃ = (h1, h2, . . . , hn!),
where hj represents the number of individuals who have the jth linear ordering, occurs with

the probability 1/
(
h+n!−1
n!−1

)
. For more details on those and other probabilistic assumptions and

their use in social choice theory, the reader may refer to Gehrlein and Lepelley (2011, 2017)
and Diss and Merlin (2020).

As mentioned in the introduction, there has been a significant interest over the past three
decades in developing representations for the probability of interesting voting events under the
two aforementioned assumptions. The most significant part of the research on these proba-
bilities make use of analytical and geometrical techniques in order to obtain exact theoretical
probabilities of the studied voting events in the case of three-alternative elections and more
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recently in the case of four-alternative elections (see, for instance, Brandt et al., 2020a, 2020b;
Bruns and Söger, 2015; Bruns et al., 2019; Bubboloni et al., 2020; Diss el al., 2020; vEl Ouafdi
et al., 2020a, 2020b; Kamwa and Merlin, 2019). However, it turns out that in our framework
the implementation of those techniques are difficult to manage. This is due to the fact that
studying the probability that a given spc is a refinement of Mν (or M) leads to several cases
and sub-cases which further complicate the calculations even in three-alternative elections. The
codes that we use, and which are described below, give an overview on the complexity of ob-
taining exact results even in three-alternative elections. This is the reason why we resort to
computer (Monte-Carlo) simulations. This also explains why we restrict our attention in this
paper to three-alternative and four-alternative elections. We believe however that the consid-
ered values of n, h, and ν should give us enough information regarding the probability of the
inclusion of the outcome of the studied positional spcs in Mν or M and how the Borda spc
behaves in comparison to the other spcs. As mentioned in the introduction, to the best of
our knowledge, the type of probability calculations we consider in this paper are new in the
literature of social choice theory.

5.1 Some positional spcs and the ν-majority property

Courtin et al. (2015) study the probability that six positional sccs (Borda, Plurality, An-
tiplurality, Nanson, Coombs, and Hare)3 satisfy the Condorcet consistency with respect to the
majority threshold ν under the IAC model. Thus, the analysis that we conduct in this section
can be seen as an extension of this paper from the framework of sccs to spcs. Our first concern
is the probability of the inclusion of the outcome given by the studied positional spcs in Mν .
Before presenting our results, we describe hereafter the methodology applied in calculating our
estimated probabilities. We take the Borda spc (denoted by Fwb) as an example but the steps
work similarly for the two other considered spcs.

Step 1. Fix the number of individuals h, the number of alternatives n and the value of ν ∈
(h2 , h]. List then all the possible elements of L(N), say q1, q2, . . . , qn!.

Step 2. Under the IC (resp. IAC), randomly generate a preference profile p (resp. anonymous
preference profile p).

Step 3. Compute the two binary relations

Rwb = {(x, y) ∈ N2 : swb(p, x) > swb(p, y)} and Rν = {(x, y) ∈ N2 : x �pν y}.

Step 4. Check the truth of the following statement:

∀i ∈ {1, . . . n!}, if Rwb ⊆ qi then Rν ⊆ qi.

If the statement is true, then Fwb(p) ⊆ Mν(p); if the statement is false, then Fwb(p) 6⊆
Mν(p).

Step 5. Iterate Steps 2, 3 and 4 one million times and count the number of cases for which
Fwb(p) ⊆ Mν(p). The desired probability is calculated by dividing the previous value on
the number of iterations.

3The Nanson, Coombs and Hare sccs are three special cases of sequential positional sccs based respectively
on the scores of Borda, Antiplurality, and Plurality where alternatives are successively removed in a multi-stage
process until a winner is found.
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Our results are provided in Tables 1 to 12 (see the Appendix).4 The results should be read
following the parity of h. Indeed, differences between our results for odd numbers and even
numbers of individuals are expected since all the considered spcs encounter much more ties
between alternatives with even numbers of individuals than with odd numbers. Note that the
parity of h has significant consequences on the probability of voting events in general; this effect
decreases for larger electorates since the probability that a tie is observed between two or more
alternatives approaches zero when h tends to infinity. As noticed before, the considered cases
of h and ν should give us enough information for comments. From Table 1, for instance, we
can deduce that if there are 9 individuals and 3 alternatives, the Borda spc selects an outcome
consistent with the 5-majority rule with a probability of 0.7017, an outcome consistent with the
6-majority rule with a probability of 0.9922, and (from Corollary 6) an outcome consistent with
the (7,8,9)-majority rule with a probability of 1. Recall that, as a consequence of Corollary
8, we know that for all the possible values of ν there is a profile p such that the outcome
obtained under the Plurality/Antiplurality spc is not a subset of Mν(p). Then, it is interesting
to consider all the values of ν in (h2 , h] as the probability is theoretically less than 1, i.e., we do
not consider only values smaller than n−1

n h as it could be the case for the Borda spc. However,
it is found that the probabilities obtained under the three spcs converge to 1.0000 for a value
of ν roughly around 60%− 65% of h particularly when h increases. Our results also show very
rapid convergence under the Borda spc in comparison to the two other spcs. Moreover, it is
shown that our probabilities approach the value 1.0000 much faster with IC than with IAC.

Most importantly, our results clearly show that, over the entire range for all parameters n,
h, and ν, the Borda spc performs always better than the Plurality spc and the Antiplurality
spc which both would be expected to behave in the same way under IC and IAC. Indeed, taking
into account the small differences in terms of the estimated probabilities of the two spcs, it
is not clear which positional spc does better than the other. Note finally that the difference
between the performance of Borda spc and the two other spcs is generally more important
under IC than IAC, particularly when h increases.

5.2 Some positional spcs and the minimal majority property

Our second objective is the probability of the inclusion of the outcome obtained under some
positional spcs in M . We also describe the methodology that we use in estimating our proba-
bilities since it is slightly different than the one that we used in Subsection 5.1. We again take
the Borda spc (denoted by Fwb) as an example.

Step 1. Fix the number of individuals h and the number of alternatives n. List then all the
possible elements of L(N), say q1, q2, . . . , qn!.

Step 2. Under the IC (resp. IAC), randomly generate a preference profile p (resp. anonymous
preference profile p).

Step 3. Compute the binary relation Rwb = {(x, y) ∈ N2 : swb(p, x) > swb(p, y)}.

Step 4. Set ν = bh2 c+ 1 (that is, the smallest integer value in (h2 , h]) and operate as follows:

4Note that in those tables the probability values 1 and 1.0000 have different meanings. The first one cor-
responds to an exact value while the second one is obtained using our simulation method. Thus, the value 1
referred to a certain property means that one of our theoretical results can be applied and that such a property
is then true.
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Step 4.1. Compute Rν = {(x, y) ∈ N2 : x �pν y}.
Step 4.2. If Rν does not contain a cycle, then define R = Rν and go to Step 5;

Step 4.3. If Rν contains a cycle, then set ν = ν + 1 and go to Step 4.1.

Step 5. Check the truth of the following statement:

∀i ∈ {1, . . . n!}, if Rwb ⊆ qi then R ⊆ qi.

If the statement is true, then Fwb(p) ⊆ M(p); if the statement is false, then Fwb(p) 6⊆
M(p).

Step 6. Iterate Steps 2 to 5 one million times and count the number of cases for which Fwb(p) ⊆
M(p). The desired probability is calculated by dividing the previous value on the number
of iterations.

Tables 13 and 14 (see the Appendix) show computed values of the probability that Fw ⊆M
for three-alternative and four-alternative elections under both the IC and IAC assumptions for
various values of h and n under the three considered positional spcs. Some remarks emerge
from these tables.

First, our results should again be read following the parity of h which affects our results.
When h increases with the same parity we observe that the probability that Fw ⊆ M is
generally vanishing when the number of individuals h increases, except some values of h where
the probability could increase when h increases.

Second, our results also show very different behaviours of the three considered positional
spcs. The probability that Fw(p) ⊆ M(p) strongly varies for different spcs with particular
emphasis on the superiority of Borda spc. It clearly exhibits the best behaviour of the spcs
studied, with probabilities of up to 100% for some particular values of h, and with 79% under
IAC and 77% under IC with 106 individuals and three alternatives. It also seems that the
convergence of the probability to its limiting value is much faster for Borda spc than the two
other spcs.

Third, when the number of alternatives increases from three to four, the relative behaviour
of the three considered positional spcs remains vastly unchanged with probabilities decreasing
for the three spcs. The Plurality and Antiplurality spcs are quite non robust to the minimal
majority property when h and n increases, with only about 9% occurrence probability for
h = 106 and n = 4.

6 Some remarks on the Condorcet consistency

The important papers by Ferejonh and Grether (1974) and Greenberg (1979) suggest two
different versions of the Condorcet consistency principle for sccs as well as of the qualified
majority principle for spcs, depending on the nature of the majority threshold. According to
Ferejonh and Grether (1974), the majority threshold is to be thought as an element of the set
(1

2 , 1], interpreted as a percentage of individuals; according to Greenberg (1979), the majority

threshold is instead an integer in the set (h2 , h], representing a specific number of individuals.
A careful discussion about the different definitions of Condorcet consistency is proposed in the
next sections. That analysis allows to correct some errors present in the literature.
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6.1 A comparison between two different definitions

A social choice correspondence scc is a function from P to the set of subsets of N . A scc f is
nonempty valued if, for every p ∈ P, f(p) 6= ∅. Given two sccs f1 and f2 we say that f1 is a
refinement of f2 and we write f1 ⊆ f2 if, for every p ∈ P, f1(p) ⊆ f2(p). For every α ∈ (1

2 , 1]

and ν ∈ N ∩ (h2 , h], let cα and mν be sccs defined, for every p ∈ P, as

cα(p) = {x ∈ N : ∀y ∈ N, |{i ∈ H : y �pi x}| < αh},

mν(p) = {x ∈ N : ∀y ∈ N, |{i ∈ H : y �pi x}| < ν}.
Given α ∈ (1

2 , 1], we say that a scc f is α-Condorcet consistent if f ⊆ cα; given ν ∈ N∩ (h2 , h],
we say that a scc f is ν-Condorcet consistent if f ⊆ mν . The definition of α-Condorcet
consistency is in line with Ferejonh and Grether (1974) and Baharad and Nitzan (2003) and it
is the one used by Courtin et al. (2015); the definition of ν-Condorcet consistency, which is the
one presented in the introduction, is instead in line with Greenberg (1979). Those definitions
are formally different but clearly strictly related. Our purpose is to well understand the link
between them.

Proposition 14. Let α ∈ (1
2 , 1]. Then dαhe ∈ N ∩ (h2 , h] and cα = mdαhe.

Proof. Of course, dαhe ∈ (h2 , h]. Observe first that if β ∈ R and k ∈ Z, then k < β if and
only if k < dβe. Indeed, if k < β, then k < dβe since β ≤ dβe. If instead k ≥ β, then
k ≥ min{z ∈ Z : z ≥ β} = dβe. Considering now p ∈ P, we get that, for every x, y ∈ N ,

|{i ∈ H : y �pi x}| < αh if and only if |{i ∈ H : y �pi x}| < dαhe,

so that cα(p) = mdαhe(p).

Proposition 15. Let ν ∈ N ∩ (h2 , h]. Then ν
h ∈ (1

2 , 1] and mν = c ν
h

.

Proof. Of course, ν
h ∈ (1

2 , 1]. Since
⌈
ν
hh
⌉

= ν, we get mν = c ν
h

due to Proposition 14.

The problem of the existence of nonempty valued and ν-Condorcet consistent sccs is com-
pletely solved by the next proposition which is an immediate consequence of Corollary 3 in
Greenberg (1979) and its proof.5

Proposition 16. Let ν ∈ N ∩ (h2 , h]. Then mν is nonempty valued if and only if ν > n−1
n h.

By Propositions 16 and 14, it is possible to clarify under which conditions on α there are
nonempty valued and α-Condorcet consistent sccs.

Proposition 17. Let α ∈ (1
2 , 1]. Then cα is nonempty valued if and only if dαhe > n−1

n h.

Proof. Simply note that, by Proposition 14, cα is nonempty valued if and only if mdαhe is
nonempty valued and that, by Proposition 16, mdαhe is nonempty valued if and only if dαhe >
n−1
n h.

5Proposition 16 can also be seen as a consequence of Proposition 6 in Bubboloni and Gori (2014) and the
proof of Proposition 7 in Bubboloni and Gori (2014).
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We stress that Courtin et al. (2015, p.234) propose a different version of Proposition 17.
Indeed, they state that, as a consequence of the results in Ferejohn and Grether (1974), it is
known that6

for every α ∈ (1
2 , 1], α > n−1

n implies cα is nonempty valued, (3)

for every α ∈ (1
2 , 1], cα nonempty valued implies α > n−1

n . (4)

Unfortunately, while (3) is correct and can be seen as a consequence of Proposition 17, (4) is
generally false. Indeed, consider the next lemmata.

Lemma 18. If n = 2 or n divides h, then, for every α ∈ (1
2 , 1], dαhe > n−1

n h implies α > n−1
n .

Proof. Let α ∈ (1
2 , 1] such that dαhe > n−1

n h. If n = 2, we immediately get α > n−1
n . If n

divides h, we get n−1
n h ∈ Z. Then αh > n−1

n h which implies α > n−1
n .

Lemma 19. If n ≥ 3 and n does not divide h, then there exists α∗ ∈ (1
2 , 1] with α∗ ≤ n−1

n such
that dα∗he > n−1

n h.

Proof. Set α∗ = n−1
n and observe that α∗ ∈ (1

2 , 1] since n ≥ 3. Moreover, α∗h 6∈ Z because n−1
and n are coprime and, by assumption, n does not divide h. Thus dα∗he > α∗h = n−1

n h.

Thus, by Lemmata 18 and 19 and Proposition 17, we get that (4) holds true if and only if
n = 2 or n divides h.

6.2 Positional sccs and the Condorcet consistency

Given w ∈W, the positional scc associated with w, denoted by fw, is defined, for every p ∈ P,
as

fw(p) = {x ∈ N : ∀y ∈ N, sw(p, x) ≥ sw(p, y)} .
The positional scc fwb is called the Borda scc. It is obvious that, for every w ∈ W, fw is
nonempty valued. Moreover, the next proposition holds true.

Proposition 20. Let w ∈W. Then, for every p ∈ P,

fw(p) = {x ∈ N : ∃q ∈ Fw(p) such that rankq(x) = 1}.

Proof. Let x ∈ fw(p). Setting F 1
w(p) = {x ∈ N : ∃q ∈ Fw(p) such that rankq(x) = 1}, we

must show that x ∈ F 1
w(p). Consider then 1 ≤ k ≤ n and distinct x1, . . . , xk ∈ N such that

x1 = x and fw(p) = {x1, . . . , xk}. By Proposition 2, there exists q ∈ Fw(p) such that, for
every i1, i2 ∈ {1, . . . , k} with i1 < i2, xi1 �q xi2 . In particular, x �q y for all y ∈ fw(p) \ {x}.
Moreover, for every y ∈ N \ fw(p), we also have x �q y since sw(p, y) < sw(p, x). As a
consequence, rankq(x) = 1 which implies x ∈ F 1

w(p).
Let now x ∈ F 1

w(p). If by contradiction x 6∈ fw(p), then there exists y ∈ N such that
sw(p, y) > sw(x, p). Then, for every q ∈ Fw(p), y �q x so that rankq(x) ≥ 2. Then x 6∈ F 1

w(p),
a contradiction.

From Propositions 5 and 20, we get the following proposition. Note that the second part of
the statement agrees with Proposition 1 in Courtin et al. (2015).

6Essentially the same statement can be also found in Baharad and Nitzan (2003, p.688).
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Proposition 21. Let ν ∈ N ∩ (h2 , h], α ∈ (1
2 , 1] and w ∈W. Then

(i) ν > Γ(w)
Γ(w)+γ(w)h implies fw ⊆ mν ;

(ii) α > Γ(w)
Γ(w)+γ(w) implies fw ⊆ cα.

Proof. (i) Let p ∈ P and x ∈ fw(p). Assume by contradiction that x 6∈ mν(p). Then there
exists y ∈ N such that y �pν x. By Proposition 5 we have Fw ⊆ Mν . As a consequence, for
every q ∈ Fw(p), we have that y �q x so that rankq(x) ≥ 2. Applying Proposition 20, we finally
get the contradiction.

(ii) Since α > Γ(w)
Γ(w)+γ(w) , we get dαhe > Γ(w)

Γ(w)+γ(w)h. Then, by (i) and Proposition 14, we
conclude fw ⊆ mdαhe = cα.

We finally observe that Courtin et al. (2015, Theorem 2) propose an interesting result about
the Borda (fwb), the Plurality (fpl), the Nanson (fna), and the Coombs (fco) sccs. Indeed,
they state that,

for every α ∈ (1
2 , 1] and f ∈ {fwb , fpl, fna, fco}, α > n−1

n implies f ⊆ cα, (5)

for every α ∈ (1
2 , 1] and f ∈ {fwb , fpl, fna, fco}, f ⊆ cα implies α > n−1

n . (6)

While there is no problem with (5), their proof of (6) is based on (4) and then, due to the
previous discussion about (4), it only works if n = 2 or n divides h. However, thing can be
easily fixed as follows.

Theorem 22 (Courtin et al. 2015, Theorem 2 revised). Let ν ∈ N ∩ (h2 , h], α ∈ (1
2 , 1] and

f ∈ {fwb , fpl, fna, fco}. Then

(i) f ⊆ mν if and only if ν > n−1
n h;

(ii) f ⊆ cα if and only if dαhe > n−1
n h.

Proof. (i) Assume ν > n−1
n h. If f = fwb , then apply Proposition 21 and (2). If f ∈

{fpl, fna, fco}, then note that ν
h ∈ (1

2 , 1] and ν
h > n−1

n . Then, applying (5) and Proposition
15, we get f ⊆ c ν

h
= mν . Assume now ν ≤ n−1

n h. Since f is nonempty valued, by Proposition
16, we get f 6⊆ mν .

(ii) Assume dαhe > n−1
n h. Then, by (i) and Proposition 14, f ⊆ mdαhe = cα. Assume now

dαhe ≤ n−1
n h. Since f is nonempty valued, by Proposition 17, we get f 6⊆ cα

Note that, from Theorem 22(ii) and Lemma 19, we can understand that if n ≥ 3 and n does
not divide h, then (6) is in fact false.

7 Conclusion

In this paper we studied the conditions under which positional spcs satisfy two variants of the
majority principle called the qualified majority property and the minimal majority property.
This study allows us to understand the extent to which positional spcs respect the two prop-
erties. It turns out that, among all the positional spcs, the Borda spc satisfies the properties
for the largest set of pairs (h, n). We also studied by a computational approach the probability
that, given a preference profile, the Borda, the Plurality and the Antiplurality spcs fulfil the two
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properties restricted to that preference profile, providing a broad comparison of these classic
spc. It comes from our probabilistic results that the Borda spc performs better comparatively
to the Plurality and the Antiplurality spcs, which both seem to behave very similarly. Our
results also give an understanding of how the probabilities change as the parameters h, n and
ν vary.
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Appendix

Table 1: The probability that Fw ⊆Mν for n = 3 and h ∈ [2, 9] under IAC

Fw h\ν bh
2
c+ 1 bh

2
c+ 2 bh

2
c+ 3 bh

2
c+ 4 bh

2
c+ 5

Borda
2

1
Plurality 0.8226
Antiplurality 0.8229

Borda
3

0.7805 1
Plurality 0.4875 0.9677
Antiplurality 0.4889 0.9678

Borda
4

1 1
Plurality 0.6963 0.9923
Antiplurality 0.6983 0.9923

Borda
5

0.7114 1 1
Plurality 0.3189 0.8968 0.9971
Antiplurality 0.3156 0.8969 0.9974

Borda
6

0.9673 1 1
Plurality 0.6927 0.9574 0.9988
Antiplurality 0.6918 0.9580 0.9991

Borda
7

0.6959 1 1 1
Plurality 0.3776 0.8226 0.9809 0.9995
Antiplurality 0.3751 0.8218 0.9803 0.9995

Borda
8

0.9306 1 1 1
Plurality 0.6117 0.9097 0.9906 0.9997
Antilurality 0.6080 0.9086 0.9900 0.9997

Borda
9

0.7017 0.9922 1 1 1
Plurality 0.4183 0.7799 0.9503 0.9945 0.9998
Antiplurality 0.4173 0.7782 0.9483 0.9947 0.9998

Table 2: The probability that Fw ⊆Mν for n = 3 and h ∈ [2, 9] under IC

Fw h\ν bh
2
c+ 1 bh

2
c+ 2 bh

2
c+ 3 bh

2
c+ 4 bh

2
c+ 5

Borda
2

1
Plurality 0.8203
Antiplurality 0.8201

Borda
3

0.7840 1
Plurality 0.4799 0.9667
Antiplurality 0.4803 0.9656

Borda
4

1 1
Plurality 0.6946 0.9935
Antiplurality 0.6964 0.9939

Borda
5

0.7223 1 1
Plurality 0.2974 0.9103 0.9988
Antiplurality 0.2947 0.9098 0.9989

Borda
6

0.9784 1 1
Plurality 0.7071 0.9749 0.9998
Antiplurality 0.7043 0.9748 0.9997

Borda
7

0.6988 1 1 1
Plurality 0.3425 0.8572 0.9929 0.9999
Antiplurality 0.3426 0.8586 0.9932 0.9999

Borda
8

0.9570 1 1 1
Plurality 0.6205 0.9497 0.9983 1.0000
Antiplurality 0.6189 0.9508 0.9984 1.0000

Borda
9

0.6909 0.9975 1 1 1
Plurality 0.3867 0.8316 0.9829 0.9996 1.0000
Antiplurality 0.3839 0.8305 0.9839 0.9995 1.0000
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Table 3: The probability that Fw ⊆Mν for n = 3 and h = 50/51

Fw h\ν 26 30 33 34 35 40 45 50 51

IAC

Borda
50

0.8014 0.9833 0.9999 1 1 1 1 1
Plurality 0.5376 0.7804 0.8951 0.9222 0.9425 0.9917 0.9997 1.0000
Antiplurality 0.5370 0.7810 0.8974 0.9227 0.9426 0.9916 0.9997 1.0000
Borda

51
0.7548 0.9717 0.9995 1.0000 1 1 1 1 1

Plurality 0.5003 0.7510 0.8770 0.9073 0.9297 0.9881 0.9995 1.0000 1.0000
Antiplurality 0.5016 0.7535 0.8777 0.9042 0.9310 0.9879 0.9992 0.9999 1.0000

IC

Borda
50

0.8276 1.0000 1.0000 1 1 1 1 1
Plurality 0.4327 0.9538 0.9992 0.9998 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.4293 0.9528 0.9991 0.9999 1.0000 1.0000 1.0000 1.0000
Borda

51
0.6998 1.0000 1.0000 1.0000 1 1 1 1 1

Plurality 0.3435 0.9223 0.9977 0.9995 0.9994 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.3462 0.9240 0.9977 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000

Table 4: The probability that Fw ⊆Mν for n = 3 and h = 100/101

Fw h\ν 51 59 60 66 67 70 80 90 100 101

IAC

Borda
100

0.7834 0.9802 0.9872 0.9999 1 1 1 1 1
Plurality 0.5352 0.7752 0.8001 0.9070 0.9190 0.9492 0.9930 0.9997 1.0000
Antiplurality 0.5311 0.7756 0.7998 0.9091 0.9203 0.9503 0.9928 0.9996 1.0000
Borda

101
0.7600 0.9742 0.9824 0.9999 1.0000 1 1 1 1 1

Plurality 0.5131 0.7626 0.7864 0.8983 0.9118 0.9445 0.9913 0.9996 1.0000 1.0000
Antiplurality 0.5121 0.7623 0.7865 0.8985 0.9124 0.9445 0.9915 0.9996 1.0000 1.0000

IC

Borda
100

0.7997 1.0000 1.0000 1.0000 1 1 1 1 1
Plurality 0.3583 0.9807 0.9914 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.3582 0.9813 0.9916 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Borda

101
0.7082 1.0000 1.0000 1.0000 1.0000 1 1 1 1 1

Plurality 0.3015 0.9708 0.9869 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.3000 0.9711 0.9868 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5: The probability that Fw ⊆Mν for n = 3 and h = 1000/1001

Fw h\ν 501 584 600 666 667 700 800 900 1000 1001

IAC

Borda
1000

0.7724 0.9802 0.9906 1.0000 1 1 1 1 1
Plurality 0.5279 0.7804 0.8142 0.9241 0.9254 0.9562 0.9938 0.9999 1.0000
Antiplurality 0.5255 0.7797 0.8161 0.9222 0.9254 0.9543 0.9939 0.9998 1.0000
Borda

1001
0.7693 0.9796 0.9903 1.0000 1.0000 1 1 1 1 1

Plurality 0.5216 0.7777 0.8133 0.9227 0.9244 0.9553 0.9935 0.9998 1.0000 1.0000
Antiplurality 0.5249 0.7754 0.8145 0.9215 0.9249 0.9538 0.9933 0.9997 1.0000 1.0000

IC

Borda
1000

0.7558 1.0000 1.0000 1.0000 1 1 1 1 1
Plurality 0.2831 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.2835 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Borda

1001
0.7286 1.0000 1.0000 1.0000 1.0000 1 1 1 1 1

Plurality 0.2670 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.2686 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 6: The probability that Fw ⊆Mν for n = 3 and h = 106

Fw\ν 500,001 593,333 600,000 666,666 700,000 800,000 900,000 106

IAC
Borda 0.7712 0.9800 0.9912 1.0000 1 1 1 1
Plurality 0.5257 0.8056 0.8147 0.9250 0.9557 0.9945 0.9999 1.0000
Antiplurality 0.5282 0.8037 0.8188 0.9256 0.9569 0.9940 0.9998 1.0000

IC
Borda 0.7381 1.0000 1.0000 1.0000 1 1 1 1
Plurality 0.2703 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.2725 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 7: The probability that Fw ⊆Mν for n = 4 and h ∈ [2, 9] under IAC

Fw h\ν bh
2
c+ 1 bh

2
c+ 2 bh

2
c+ 3 bh

2
c+ 4 bh

2
c+ 5

Borda
2

1
Plurality 0.4144
Antiplurality 0.4158

Borda
3

0.4984 1
Plurality 0.0000 0.8256
Antilurality 0.0000 0.8267

Borda
4

0.9402 1
Plurality 0.3399 0.9548
Antilurality 0.3396 0.9534

Borda
5

0.4206 1 1
Plurality 0.0000 0.6962 0.9885
Antilurality 0.0000 0.6951 0.9883

Borda
6

0.8666 1 1
Plurality 0.3309 0.8813 0.9971
Antilurality 0.3299 0.8808 0.9971

Borda
7

0.4037 0.9867 1 1
Plurality 0.0576 0.6043 0.9597 0.9991
Antilurality 0.0570 0.6032 0.9593 0.9992

Borda
8

0.8084 0.9994 1 1
Plurality 0.2751 0.8129 0.9864 0.9999
Antilurality 0.2737 0.8124 0.9866 0.9998

Borda
9

0.3987 0.9660 1 1 1
Plurality 0.0641 0.5455 0.9207 0.9957 0.9999
Antilurality 0.0630 0.5462 0.9203 0.9955 0.9999
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Table 8: The probability that Fw ⊆Mν for n = 4 and h ∈ [2, 9] under IC

Fw h\ν bh
2
c+ 1 bh

2
c+ 2 bh

2
c+ 3 bh

2
c+ 4 bh

2
c+ 5

Borda
2

1
Plurality 0.4156
Antiplurality 0.4184

Borda
3

0.4989 1
Plurality 0.0000 0.8256
Antilurality 0.0000 0.8256

Borda
4

0.9419 1
Plurality 0.3383 0.9536
Antilurality 0.3382 0.9548

Borda
5

0.4201 1 1
Plurality 0.0000 0.6966 0.9880
Antilurality 0.0000 0.6956 0.9880

Borda
6

0.8646 1 1
Plurality 0.3294 0.8804 0.9970
Antilurality 0.3302 0.8818 0.9969

Borda
7

0.4051 0.9862 1 1
Plurality 0.0576 0.6056 0.9584 0.9992
Antilurality 0.0585 0.6051 0.9594 0.9992

Borda
8

0.8100 0.9993 1 1
Plurality 0.2763 0.8138 0.9868 0.9999
Antilurality 0.2760 0.8139 0.9861 0.9998

Borda
9

0.3980 0.9655 1 1 1
Plurality 0.0636 0.5486 0.9228 0.9955 1.0000
Antilurality 0.0626 0.5465 0.9232 0.9956 1.0000

Table 9: The probability that Fw ⊆Mν for n = 4 and h = 50/51

Fw h\ν 26 30 31 32 35 37 38 40 45 50 51

IAC

Borda
50

0.5484 0.9889 0.9975 0.9995 1.0000 1.0000 1 1 1 1
Plurality 0.2046 0.7532 0.8477 0.9136 0.9897 0.9984 0.9994 0.9999 1.0000 1.0000
Antiplurality 0.2032 0.7556 0.8469 0.9127 0.9895 0.9984 0.9993 0.9999 1.0000 1.0000
Borda

51
0.4392 0.9751 0.9935 0.9987 1.0000 1.0000 1.0000 1 1 1 1

Plurality 0.1496 0.6903 0.7968 0.8795 0.9821 0.9964 0.9986 0.9998 1.0000 1.0000 1.0000
Antiplurality 0.1527 0.6883 0.7949 0.8779 0.9822 0.9965 0.9990 0.9998 1.0000 1.0000 1.0000

IC

Borda
50

0.5847 0.9995 0.9999 1.0000 1.0000 1.0000 1 1 1 1
Plurality 0.2129 0.9192 0.9685 0.9910 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.2160 0.9192 0.9703 0.9904 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
Borda

51
0.4180 0.9981 0.9998 1.0000 1.0000 1.0000 1.0000 1 1 1 1

Plurality 0.1326 0.8723 0.9473 0.9813 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.1331 0.8710 0.9476 0.9813 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 10: The probability that Fw ⊆Mν for n = 4 and h = 100/101

Fw h\ν 51 60 63 70 75 80 90 100 101

IAC

Borda
100

0.5063 0.9939 0.9997 1.0000 1.0000 1 1 1
Plurality 0.1944 0.8083 0.9167 0.9940 0.9995 1.0000 1.0000 1.0000
Antiplurality 0.1973 0.8073 0.9155 0.9933 0.9996 1.0000 1.0000 1.0000
Borda

101
0.4520 0.9903 0.9993 1.0000 1.0000 1 1 1 1

Plurality 0.1696 0.7755 0.8992 0.9913 0.9991 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.1702 0.7777 0.898 0.9918 0.9993 0.9999 1.0000 1.0000 1.0000

IC

Borda
100

0.5402 1.0000 1.0000 1.0000 1.0000 1 1 1
Plurality 0.1994 0.9918 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.1989 0.9918 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000
Borda

101
0.4256 1.0000 1.0000 1.0000 1.0000 1 1 1 1

Plurality 0.1434 0.9869 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.1431 0.9877 0.9991 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 11: The probability that Fw ⊆Mν for n = 4 and h = 1000/1001

Fw h\ν 501 600 625 700 750 800 900 1000 1001

IAC

Borda
1000

0.4698 0.9968 0.9998 1.0000 1.0000 1 1 1
Plurality 0.1908 0.8432 0.9241 0.9969 0.9998 1.0000 1.0000 1.0000
Antiplurality 0.1899 0.8435 0.9244 0.9962 0.9998 1.0000 1.0000 1.0000
Borda

1001
0.4616 0.9959 0.9997 1.0000 1.0000 1 1 1 1

Plurality 0.1862 0.8425 0.9220 0.9961 0.9998 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.1875 0.8418 0.9242 0.9959 0.9998 1.0000 1.0000 1.0000 1.0000

IC

Borda
1000

0.4765 1.0000 1.0000 1.0000 1.0000 1 1 1
Plurality 0.1173 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.1173 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Borda

1001
0.4423 1.0000 1.0000 1.0000 1.0000 1 1 1 1

Plurality 0.1053 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.1069 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 12: The probability that Fw ⊆Mν for n = 4 and h = 106

Fw\ν 500,001 600,000 625,000 700,000 750,000 800,000 900,000 106

IAC
Borda 0.4612 0.9969 0.9997 1.0000 1.0000 1 1 1
Plurality 0.1909 0.8486 0.9256 0.9958 0.9997 1.0000 1.0000 1.0000
Antiplurality 0.1896 0.8466 0.9245 0.9963 0.9997 0.9999 1.0000 1.0000

IC
Borda 0.4478 1.0000 1.0000 1.0000 1.0000 1 1 1
Plurality 0.0655 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Antiplurality 0.0651 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 13: The probability that Fw ⊆M for n = 3

h
IAC IC
Borda Plurality Antiplurality Borda Plurality Antiplurality

2 1 0.8221 0.8245 1 0.8202 0.8207
3 0.8305 0.5388 0.5393 0.8331 0.5280 0.5274
4 1 0.6962 0.6977 1 0.6951 0.6951
5 0.7758 0.3790 0.3804 0.7831 0.3607 0.3611
6 0.9716 0.6964 0.6968 0.9811 0.7097 0.7081
7 0.7623 0.4287 0.4305 0.7679 0.3967 0.3959
8 0.9394 0.6157 0.6213 0.9627 0.6249 0.6261
9 0.7643 0.4669 0.4667 0.7616 0.4447 0.4443
50 0.8191 0.5575 0.5519 0.8539 0.4487 0.4487
51 0.7826 0.5251 0.5274 0.7534 0.3805 0.3813
100 0.8050 0.5515 0.5501 0.8297 0.3785 0.3762
101 0.7863 0.5327 0.5336 0.7561 0.3330 0.3321
1000 0.7931 0.5435 0.5434 0.7870 0.3032 0.2998
1001 0.7921 0.5433 0.5424 0.7628 0.2898 0.2895
106 0.7930 0.5433 0.5430 0.7691 0.2894 0.2929

Table 14: The probability that Fw ⊆M for n = 4

h
IAC IC
Borda Plurality Antiplurality Borda Plurality Antiplurality

2 1 0.4169 0.4152 1 0.4171 0.4206
3 0.6664 0.1680 0.1692 0.6651 0.1691 0.1682
4 0.9424 0.3379 0.3394 0.9412 0.3398 0.3385
5 0.6260 0.1606 0.1607 0.6288 0.1621 0.1616
6 0.8812 0.3475 0.3468 0.8802 0.3442 0.3461
7 0.6198 0.1946 0.1949 0.6193 0.1940 0.1940
8 0.8406 0.3025 0.2996 0.8406 0.2994 0.3015
9 0.6108 0.1863 0.1882 0.6116 0.1856 0.1861
50 0.6234 0.2448 0.2449 0.6681 0.2595 0.2608
51 0.5535 0.2087 0.2052 0.5601 0.2023 0.2032
100 0.5827 0.2368 0.2337 0.6309 0.2412 0.2430
101 0.5438 0.2162 0.2143 0.5506 0.2022 0.2008
1000 0.5417 0.2270 0.2284 0.5617 0.1486 0.1496
1001 0.5364 0.2281 0.2263 0.5339 0.1399 0.1406
106 0.5340 0.2266 0.2260 0.5331 0.0870 0.0890
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