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Abstract 

Unlike classes A and B, a standardized amino acid numbering scheme has not been proposed for 

the class C (AmpC) -lactamases, which complicates communication in the field. Here, we propose a 

scheme developed through a collaborative approach that considers both sequence and structure, preserves 

traditional numbering of catalytically important residues (Ser64, Lys67, Tyr150, and Lys315), is adaptable to 

new variants or enzymes yet to be discovered, and includes a variation for genetic and epidemiological 

applications. 
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An urgent need exists to address current inconsistencies in the numbering of amino acid residues 

among class C -lactamases, both within families and across the class. Established conventions in the 

field define three common features shared among the serine-type -lactamases. In the class C -

lactamases, also known as AmpC -lactamases, these features occur at recognizable conserved motifs: 

S64XXK (where S64 is the active site serine); Y150XN; and K315(S/T)G (1 4). These designations align 

with the amino acid sequence of the mature form of both the P99 AmpC (NCBI RefSeq Accession 

WP_049134845.1 - originally characterized in an Enterobacter cloacae strain  now found to be an E. 

hormaechei strain  in GenBank Accession CAA30257.1), and Escherichia coli AmpC (NCBI RefSeq 

Accession WP_001336292.1  originally characterized in strain K-12 found in GenBank Accession 

AAC77110.1).  While E. coli -lactamase reported (5) 

and the first class -lactamase sequenced, P99 maintains identical numbering of conserved motifs while 

the mature form begins with a natural residue one (6). Many other class C  lactamases, however, possess 

insertions and deletions that shift the numbering of the conserved residues, significantly complicating 

both nomenclature and comparisons between enzymes.  

For this report, we analyzed 155 unique AmpC structures deposited in the Protein Data Bank 

(including 142 supported by 66 publications), and found that 129 -lactamase structures identify the 

catalytic serine as Ser64 (123 naturally and 6 with alignment), 10 number from the beginning of the 

precursor form with the signal peptide included, and the remaining 16 number from the beginning of the 

mature form, but do not identify the catalytic serine as Ser64 (of which 8 are not associated with a 

publication). Additionally, based on a literature search of PubMed, we found consistency is lacking for 

numbering within the various families of class C -lactamases. As an example, since the term PDC 

(Pseudomonas-derived cephalosporinase) was coined in 2009  for the chromosomal AmpC of 

Pseudomonas aeruginosa, three different approaches have been used to number amino acid residues in 

-lactamase (7). These approaches include: i) direct numbering of residues beginning with the N-

terminus of the precursor protein (7); ii) direct numbering of residues beginning with the N-terminus of 
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the mature protein (8); and iii) alignment-based numbering designed to maintain the conventional 

assignment of conserved residues and to simplify numbering for comparisons across families (9). 

Unfortunately, it can be unclear to readers which of the various schemes is being used in a given 

publication. As a result, authors may sometimes find choosing a numbering scheme and numerically 

designating a given residue problematic. Comparing findings from multiple publications may be made 

unnecessarily difficult; resolving ambiguity in assignment may be extremely challenging. For example, a 

reference to Gly at position 183 in PDC could refer to a site that is described as having a clinically 

relevant mutation  if numbering begins with Met1 of the precursor form, but would refer to a different 

glycine, 26 residues away, using alignment based numbering (10, 11). 

To address this growing concern, we propose a numbering scheme to use consistently when 

referring to crystallographically equivalent positions in the mature form of any class C -lactamase. We 

suggest the acronym SANC  to name the scheme, for Structural Alignment-based Numbering of class C 

-lactamases  In developing this numbering scheme, we 

adapted the approaches -lactamases (12) and Galleni et al. for the 

-lactamases (13). We conducted an amino acid alignment of 32 AmpC -lactamases, both 

chromosomal and plasmid encoded (Supplemental Material) and identified characteristic differences 

from P99 for each enzyme (Table 1 Sequences were obtained from the National Center for 

Biotechnology Information Protein Database (14) and signal peptide cleavage sites were determined using 

Uniprot (or SignalP 5.0 for entries not present in Uniprot) (15, 16). Mature protein sequences were 

aligned using the MUSCLE algorithm (17) with default settings. 

Consensus secondary structure (defined as a majority of structures in agreement for a given 

amino acid position) was determined based on comparisons of a representative structure of each of the ten 

AmpC -lactamases for which one or more structures are available in the Protein Data Bank, specifically: 

ACT-1 (PDB: 2ZC7), ADC-7 (PDB: 4U0T), CMY-2 (PDB: 1ZC2), E. coli AmpC (PDB: 2BLS), FOX-4 

(PDB: 5CGS), MOX-1 (PDB: 3W8K), Mycobacterium smegmatis AmpC (PDB: 5E2H), PDC-1 (PDB: 
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4GZB), and TRU-1 (PDB: 6FM6). The consensus agrees with the secondary structure (or lack thereof) of 

P99 for just over 90% of residues. This consensus was used to annotate secondary structure, including 

stripes to indicate residues with an even split between two secondary structure types, and helix numbers 

on the alignment. Finally, a simple literature survey was conducted to determine residues belonging in 

either the consensus portion or fullest likely extent of the -loop or R2-loop, both of which are also 

annotated on the alignment. By including this structural information, we hope to both better correlate the 

numbering system with well-known structural features and to provide additional points of reference for 

those just beginning to work with AmpC structures. 

The exact position of one insertion and one deletion within the alignment were manually adjusted 

(residue 203a by MUSCLE became 204a by structure -turn and the deletion of residue 247 

by MUSCLE became a deletion of residue -helix) to ensure they 

occurred in structurally reasonable areas of both the consensus structure and ten source structures. 

Amino acid numbering was based on E. cloacae complex P99 while preserving the conventional 

numbering of the following residues: Ser64, Lys67, Tyr150, and Lys315. Insertions relative to P99 were 

addressed by appending lowercase letter(s) to the number of the amino acid immediately preceding the 

insertion (e.g., 125a in PDC-1). Deletions relative to P99 were skipped, resulting in ghost residues  (e.g., 

ACC-1 has residues G115 and L117 with a deleted residue at 116). For mature enzymes with more C-

terminal amino acid residues than P99, additional residues are assigned numbers in numerical order 

beginning with 362. For mature enzymes with more N-terminal amino acid residues than P99, the first 

additional residue is numbered 0 and subsequent residues are numbered by appending a lowercase letter 

to zero while moving in an N-terminal direction (e.g., 0 and 0a for BUT-1 and Edwardsiella AmpC). 

Signal peptide residues are assigned negative numbers, beginning with -1 for the residue adjacent to the 

cleavage site and proceeding in the N-terminal direction until all residues are numbered. Multiple 

sequence alignments are not considered for the signal peptide regions. Figure 1 illustrates these principles 

with several examples. 
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Amino acid positions should  be provided under both a family-specific, precursor-based scheme 

(precursor numbering) and the alignment based scheme (SANC) at first mention of a given residue in a 

publication. Authors are free to choose their favored convention for subsequent mentions, but as a general 

suggestion we encourage the use of SANC for biochemical and structural publications and precursor 

numbering for genetic and epidemiological publications. 

Providing numbering under both schemes is essential to our proposal. Structural numbering 

maintains continuity with the conventional assignment of the catalytic serine as Ser64 and the majority of 

existing literature on class C -lactamase structure and function while precursor numbering enables direct 

gene translation and simplifies interpretation of sequencing results, particularly within a single family. 

Utilizing this hybrid approach, an initial description of a typical PDC variant might read -221 

differs from PDC-1 (GenBank AAG07497.1) by a single amino acid substitution, E247K, occurring at 

 

In the supplementary materials, we provide a table featuring a multiple sequence alignment of 32 

class C -lactamases with column headers indicating the appropriate number to be used at each position. 

The spreadsheet also features a text-based alignment of the structures used in determining the consensus 

secondary structure. Separately, we provide a protein profile hidden Markov model (HMM) which 

implements the SANC scheme, built from the multiple sequence alignment using HMMER 

(http://hmmer.org). Alignments of the HMM to class C -lactamases can be expected to produce correct 

SANC assignments when results of the search are examined. We suggest using the HMM, rather than 

examinations by eye, to make position assignments under this scheme for novel AmpC enzymes that may 

be discovered in the future. Finally, basic instructions for using our HMM with the HMMER software are 

also included with the supplementary materials. 

For the specific case of PDC variants, a database  utilizing the three numbering schemes (SANC 

and both family-specific precursor and mature form numbering) is freely available at 

https://arpbigidisba.com/pseudomonas-aeruginosa-derived-cephalosporinase-pdc-database/ 
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-Lactamase 

NCBI Accession Insertions and Deletions Relative to E. 

cloacae complex P99 

ACC-1 WP_032491956.1 -116, +204a, +247a, -289, -290, +362, +363 

ACT-1 WP_063857727.1 -361 

ADC-7 WP_063857816.1 +0, +204a, -245, -304, -305, -306, +362 

ADC-8 WP_004923134.1 

+0d, +0c, +0b, +0a, +0, -245, +362, +363, 

+364, +365, +366, +367 
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AQU-1 WP_099156042.1 -1, -2, +204a, -243, -245, -301, -302, +362 

B. multivorans AmpC1 WP_012218336.1 +204a, -245, +362, +363, +364 

BUT-1 WP_104531863.1 +0a, +0 

CepH WP_063843234.1 -1, -2, +204a, -243, -245, +362 

CepS WP_063843235.1 -1, -2, +204a, -243, -245, +362 

CFE-1 WP_032490699.1 None 

CMA-1 WP_032974004.1 -1, -2, -3, -4, -5, -6, -116, +204a, -245, +362 

CMH-1 WP_063859580.1 None 

CMY-2 WP_000976514.1 None 

CSA-1 WP_007888761.1 -1, -2, -3, -4, -5, -6, -116, +204a, -245, +362 

DHA-1 WP_004236386.1 -1, -2, -3, -4, -301 

E. coli AmpC 
WP_001336292.1 

-1, -2, -3 

EC-5 WP_001443153.1 -1, -2, -3 

Edwardsiella AmpC WP_041692555.1 +0a, +0 

FOX-4 WP_032489727.1 -1, -2, +204a, -243, -245, +362 

LHK-1 WP_081666691.1 -1, -2, -3, -4, +204a, -245 

LRA-10 WP_099982803.1 -1, -126, +204a, -245, -361 

LRA-18 WP_099982801.1 -1, -245, -311, +362, +363, +364, +365 

M. smegmatis AmpC WP_011729443.1 

-1, -2, -3, -4, -5, -6, +204a, -245, -305, -306, 

+362 

MIR-1 WP_032489464.1 None 

MOX-1 WP_032489888.1 

+0, +204a, -243, -245, -301, -302, -303, 

+362 

OCH-1 WP_040129485.1 +0, +204a, -245, +362, +363, +364 

PAC-1 WP_034051940.1 -1, -2, -3, -4, -5, -116, +204a, -245, +362 
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PDC-1 WP_003101289.1 

+125a, +204a, -245, +362, +363, +364, 

+365, +366, +367, +368, +369, +370  

SRT-1 WP_063864749.1 

-1, -2, -3, -4, -5, -6, -116, +204a, -245, 

+362, +363 

SST-1 WP_063864750.1 

-1, -2, -3, -4, -5, -6, -116, +204a, -245, 

+362, +363 

TRU-1 WP_042027926.1 -1, -2, +204a, -243, -245, +362 

Table 1: Insertions and deletions present in the AmpC enzymes examined when compared to E. cloacae 

complex P99. Minus indicates a deletion and plus indicates an insertion. Appended letters indicate an 

insertion follows a given residue number. 
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Figure 1: Using an alignment to assign SANC-based amino acid residue numbers. Positions 

corresponding to insertions and deletions are indicated in bold. ADC-7 adds residues 0, 204a, and 262 and 

deletes residues 245 and 304-306. ADC-8 adds residues 0-0d and 262-267 and deletes residue 245. BUT-

1 adds residue 0. PDC-1 adds residues 125a, 204a, and 362-370 and deletes residue 245. For reference, 

signal sequences are highlighted in yellow, S64XXK in green, Y150XN in blue, and K315(S/T)G in red. 
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