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Abstract

Questions: Species-area relationships (SARs) are fundamental for understanding biodiversity
patterns and are generally well described by a power law with a constant exponent z. However,
z-values sometimes vary across spatial scales. We asked whether there is a general scale

dependence of z-values at fine spatial grains and which potential drivers influence it.
Location: Palaearctic biogeographic realm.

Methods: We used 6,696 nested-plot series of vascular plants, bryophytes and lichens from the
GrassPlot database with two or more grain sizes, ranging from 0.0001 to 1,024 m? and covering
diverse open habitats. The plots were recorded with two widespread sampling approaches
(rooted presence = species “rooting” inside the plot; shoot presence = species with aerial parts
inside). Using GAMs, we tested for scale dependence of z-values by evaluating if the z-values
differ with gran size and tested for differences between the sampling approaches. The response
shapes of z-values to grain were classified by fitting quadratic GLMs with logit link to each
series. We tested whether the grain size where the maximum z-value occurred is driven by

taxonomic group, biogeographic or ecological variables.

Results: For rooted presence, we found a strong monotonous increase of z-values with grain
sizes for all grain sizes below 1 m2. For shoot presence, the scale dependence was much
weaker, with hump-shaped curves prevailing. Among the environmental variables studied,
latitude, vegetation type, naturalness and land use had strong effects, with z-values of

secondary peaking at smaller grain sizes.

Conclusions: The overall weak scale dependence of z-values underlines that the power function
generally is appropriate to describe SARs within the studied grain sizes in continuous open
vegetation, if recorded with the shoot presence method. When clear peaks of z-values occur,
this can be seen as an expression of granularity of species composition, partly driven by abiotic

environment.

Keywords: beta diversity, grassland, GrassPlot, heterogeneity, Palaearctic, power law, rooted

presence, scale dependence, shoot presence, species-area relationship, z-value, vegetation.
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Introduction

Identifying spatio-temporal patterns in biodiversity is a major challenge in macroecology
and biogeography (McGill, 2019; O'Sullivan et al., 2019). The spatial scale is of critical
importance in studies of components, patterns, and processes of biodiversity (Chase et al.,
2018; Schrader et al., 2019). For example, environmental filtering of species, disturbances and
biotic interactions drive species richness at fine local scale, while at broader spatial scales the
main drivers are speciation, colonization, and extinction dynamics (Shmida and Wilson, 1985;
Crawley and Harral, 2001; Drakare et al., 2006). Therefore, when examining the drivers and
mechanisms of spatial biodiversity patterns, the scale-sensitivity of these patterns is of

paramount importance.

Species-area relationships (SARs), which reflect changes in species richness with increasing
grain size (Lawton, 1999; Dengler, 2009), are fundamental in comparing diversity patterns
across space (Drakare et al., 2006). SARs are among the most widely documented ecological
patterns and have long been regarded as a “genuine law” in ecology (MacArthur and Wilson,
1967; Schoener, 1976; Tjgrve et al., 2018). The shapes of SARs have been described by many
mathematical models, including the logarithmic model (Gleason, 1922), power law model
(Arrhenius, 1921) and more complex models (for reviews, see Dengler, 2009; Tjgrve, 2009;
Williams et al., 2009). Based on findings of a wide array of studies on SARs of any kind,
including in continuous habitats and on islands, the power law model overall performs best
(Triantis et al.,, 2012; Matthews et al., 2016; Dengler et al., 2020). The power law is
conventionally expressed as S = ¢ A? (Arrhenius, 1921), which in its logarithmic form becomes
log S =log c + z log A (where S is species richness, A is area sampled, and ¢ and z are fitted
parameters). The exponent z describes the rate of species accumulation with increasing area,
and is a suitable measure of multiplicative beta diversity (Koleff et al., 2003; Sreekar et al.,

2018; Dengler et al., 2020; Dembicz et al., subm.).

Given the importance and ubiquity of SARs, many biogeographers and ecologists have
analysed z-values in detail (Crawley and Harral, 2001; Drakare et al., 2006; Matthews et al.,
2019). For example, numerous theoretical models and field experiments have attempted to
identify a constant value of z for a multitude of different ecosystems and taxa, and have often
found values close to 0.25 (Connor and McCoy, 1979; Sugihara, 1980). Other researchers have

used the z-value as a fruitful approach for studying how different environmental factors affect
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SARs (Drakare et al., 2006; Patifio et al., 2014). Further, studies have examined the variation in
z-values across spatial and temporal scales, trophic levels and taxonomic groups (Patifio et al.,
2014; Roslin et al., 2014; Fattorini et al., 2017; Dembicz et al. subm.). However, an extensive
review of the literature reveals a lack of consensus regarding the variation in z-values of SARs

across spatial grains.

Many studies assume that the exponent z of the power function (i.e. the slope of the
linearized power function) is relatively constant across spatial grains (Drakare et al., 2006; Qiao
et al., 2012; Dembicz et al. subm.). However, some detailed studies have revealed significant
changes in z-values with grain size (Crawley and Harral, 2001; Fridley et al., 2005; Polyakova et
al., 2016). The concept of ‘local Z has been proposed to describe such variation of z-values with
grain size (Williamson, 2003; Dengler, 2009), and can be defined as the local derivative of the
SAR between two subsequent grain sizes in double-log space. Using this approach, Crawley and
Harral (2001: all vegetation types in a landscape in the United Kingdom), Turtureanu et al.
(2014: dry grasslands in Romania) and Polyakova et al. (2016: dry grasslands in Siberia) found
unimodal relationships, i.e. a peak of local z-values, albeit at quite different grain sizes. By
contrast, Kuzemko et al. (2016) and Dembicz et al. (2021a) did not find significant scale

dependence in dry grasslands of Ukraine and Bulgaria, respectively.

Finally, also methodological issues can influence small-grain z-values. There are two
contrasting ways how to record a plant species as present in a plot, the any-part system (also
called “shoot presence”: plants are recorded as present when the vertical projection of any
above-ground organ falls inside the plot) and the grid-point system (largely equivalent to
“rooted presence”: plants are recorded as present when they are attached to the soil surface
inside the plot) (Williamson, 2003; Dengler, 2008; Cancellieri et al., 2017). Both methods are
widespread in vegetation ecology, but the majority of researchers seems to be unaware of the
differences, as reflected by the fact that most studies do not report which of the two methods
they applied and standard textbooks like Kent (2012) or van der Maarel and Franklin (2013) do
not even mention that these two options have to be considered. However, rooted vs. shoot
presence sampling can lead to profound differences in results on a- and B-diversity as well as
SAR shapes (Gluler et al., 2016; Cancellieri et al., 2017; Dengler et al., 2020). Williamson (2003)
demonstrated theoretically that towards fine grain sizes the difference between rooted and

shoot sampling will override any ecological or taxonomic driver, with local z-values of rooted
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presence recording always approaching 1 at very fine scales, while those recorded with shoot
presence necessarily approaching 0. Thus, taking into account this methodological aspect is
essential if one does not wish to misinterpret a mathematical “constraint” as an ecological

process that justifies a new theory, as Plotkin et al. (2000) did .

In conclusion, there is scattered evidence that local z-values sometimes show significant
scale-dependence, but there is no general picture how prevalent this is and whether and how
this scale dependence is related to taxonomic group or to environmental predictors. While it is
evident that rooted vs. shoot recording must influence the results, it is unclear below which
grain sizes this difference will become noticeable and how strong it will be in relation to other
factors. If there should be peaks of local z-values at certain grain sizes this would indicate how
spatial heterogeneity of plant communities is organized spatially. As for fine-grain beta diversity
in general (Drakare et al., 2006; Dembicz et al., subm.) one should also expect for peak location
of local z-values to depend on taxonomic group and various environmental factors.
Unfortunately, there are so far no comprehensive macroecological studies to examine the

prevalence of peaks in local z-values and which drivers determine their position.

The present study thus aims at filling this knowledge gap by using 6,696 nested-plot series
from the GrassPlot database (Dengler et al., 2018; Biurrun et al., 2019), covering any type of
grasslands and other open habitats of the Palaearctic biogeographic realm. In the absence of
extensive prior studies it is premature to formulate specific hypotheses. Instead, we conduct an
explorative study including a wide range of predictors that often have been shown to be
influential on other facets of fine-grain biodiversity, assuming that they also might play a role in
scale-dependence of B-diversity. We aimed to answer the following three questions, which, in
turn, might contribute to a better understanding on scale-dependence of B-diversity and thus a

future formulation of a theory on that topic:

(1) Is there a general pattern of scale dependence of local z-values and does it depend on

the recording system (shoot vs. rooted presence)?
(2) How does scale dependence differ between taxonomic groups (vascular plants,
bryophytes, lichens)?

(3) How does scale dependence vary in relation to broad-scale biogeographic
characteristics (latitude, elevation, climate) and fine-scale ecological characteristics

(related to the stress-productivity axis, disturbance and heterogeneity)?
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Methods

Vegetation-plot data

All plot data used in this paper were taken from the collaborative vegetation-plot database
GrassPlot (Dengler et al., 2018; Biurrun et al. 2019; https://edgg.org/databases/GrassPlot). The
GrassPlot database is a compilation of vegetation-plot data, including methodological,
environmental, and structural information, from grasslands and other non-forest vegetation
types throughout the Palaearctic biogeographic realm. Requirements for inclusion of the data
in the database are precise delineation of plots in the field and sampling with the aim of
achieving complete species lists. GrassPlot specifically collects multi-scale datasets from nested-
plot sampling schemes (e.g. Dengler et al., 2016) with plot (grain) sizes from 0.0001 m? to
1,024 m2.

We extracted all series containing at least two different grain sizes from GrassPlot (v.2.09
in August 2020) to form our dataset, altogether 6,696 series and 177,138 individual plots (Fig.
1). The plots were distributed across 41 countries, from 28° to 70° N and 16° W to 162°E, and
covered an elevational gradient from 0 to 5,680 m a.s.l. All series contained information on
vascular plants, while 1,260 series contained information on terricolous bryophytes, 1,353 on

terricolous lichens, and 1,212 on all three taxonomic groups (complete vegetation).
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- series with less than 7-grains

@ - series with at least 7-grains
- Palaearctic biogeographic realm

Figure 1. Spatial distribution of the 6,696 series in the Palaearctic biogeographic realm that were analysed in this
study.
Calculation of local z-values

We first averaged richness values per grain size for the plot series with more than one plot
for a certain grain size. Species richness (S) should increase with area (A) modelled by the

function § = cA? (Dengler et al., 2020) or its linearized form:

logS =zlog A +logc
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To account for the possibility that z-values can vary between subsequent grain size
transitions of a nested-plot series (Crawley and Harral, 2001; Fridley et al., 2005), we calculated
local z (z; 40 +1) (Williamson, 2003) and local grain (g i+1) as:

logSi+1 — log S;
Zitoi+1= logAi+1 — log A;

logA;+1 + log A;
Gitoi+1=—" 5

where A; and §; are the area and the species richness of a particular grain size i, respectively.
Note that z 4, .1 is not defined if one of the two richness values is 0; thus we excluded such
grain size transitions from further analyses. We assigned each local z value to the mean of the
logarithms of the two successive grain sizes (= logarithm of the geometric mean). In these

equations, log denotes base-10 logarithm (logp).

Statistical analyses

All analyses were conducted in R version 4.0.2 (R Development Core Team, 2016).

Overall scale dependence

To analyse the scale dependence of local z-values in general, we fitted Generalized
Additive (Mixed) Models (GAM(M)s) for z,ocar = flg10car) SEParately for nested plots sampled using
two widespread methods of presence recording, i.e. shoot presence and rooted presence.
GAMMs were analysed with the R package ‘mgcv’ with series ID as a random factor. Since the
results for GAMs and GAMMs were nearly indistinguishable based on AIC, we report only GAMs
in the Results. To avoid overfitting, we paid attention to the number of ‘knots’ (k value) while
running GAM(M)s: starting with k = 0, we subsequently increased k to find the model that best
captures the relationship without overfitting based on AIC and shapes of GAM(M)s. We fitted
GAM(M)s for all data and after excluding the very few values of z/,.o; > 1 and z,.os < O (for details
see Table S1.3). Such values are theoretically impossible if the richness values of the smaller
grain sizes are true spatial averages within the area of the largest plot (Williamson, 2003).
However, empirically z,., < 0 can occur if there is no complete nesting and z,,.y > 1 when the

smaller grain sizes are not sufficiently replicated and their richness values thus biased.

Individual response curves

For subsequent analyses in this study, we only used the theoretically possible values

(Williamson, 2003). Since we had a larger proportion of shoot presence data, all subsequent
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analyses were conducted for shoot presence data only. Moreover, we restricted ourselves to
nested-plot series with at least seven grain sizes with S > 0 (i.e. six local z-values) to allow for a

meaningful assessment of the shape of the scale dependence.

To analyse the patterns of scale dependence of local z-values, we fitted to each individual

nested-plot series a polynomial GLM with logit link. The underlying model is:
1
y= 2
1+ exp(bo + b1x + byx )

where x is the local grain size gj,.os and y the predicted local z-value. This model has previously
been applied to determine the probability of occurrence of a species, in the form of a
symmetric Gaussian response curve, based on its presence or absence (binary response) across
an environmental gradient (ter Braak and Looman, 1986; Huisman et al., 1993; Oksanen and
Minchin, 2002). The same model may be applied to a continuous response in the interval [0, 1],
such as local z-values. The choice of this simple parametric model against more complex ones
(for instance able to fit skewed or bimodal response curves) was justified by the low number of
points in each series (typically six grain size transitions for standard GrassPlot series with seven
grain sizes). Therefore, we used the three regression coefficients of the model (by = intercept,
b, = linear term, b, = quadratic term) to classify the response curves into four shapes. In case of
a hump-shaped response, parameters of the Gaussian function can be retrieved from b, and b,.

We identified the location of the optimum as Opt = —b/(2b,). We further quantified Tol =
1
J_inzas the tolerance of the Gaussian curve, which measures the flattening of the curve

(equivalent, in statistical terms, to the variance of a normal distribution). To select hump-
shaped and U-shaped curves, we identified series in which Opt was within the range of local
grain sizes * 1 order of magnitude. Thus, the shapes of the fitted curves were classified based

on the following principles:

Hump-shaped (Gaussian) curves were identified by Opt €

[min(glocal) - 1:max(glocal) + 1]; Tol> 0.

U-shaped (inverse Gaussian) curves were identified by Opt €

[min(glocal) - 1;max(glocal) + 1]; Tol = NA.

Monotonic decreasing curves were identified by Opt & [min(goca) — 1L max(gioca) + 1]

, b1 <0.
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Monotonic increasing curves were identified by Opt & [min(gpca) — 1L max(gioca) + 1]

, b1 > 0.

Methods for determining peak position

We determined the peak grain size (local grain size where the maximum local z occurred)
with two different approaches: (a) we extracted the local grain size corresponding to the
maximum observed local z-value in each series (for explanation, see Fig. S1.1 in Supporting
Information); (b) we extracted the local grain size of the maximum fitted local z-value within
the range of local grains + 1 order of magnitude. In case of fitted hump-shaped curves, we took
Opt as the position of the peak of the local z-value (Fig. S1.1, Table S1.1); for monotonic curves
we assigned min(gj,cq)) — 1 for decreasing curves, max(giocq) + 1 for increasing curves, and
in case of U-shaped curves, we took the local grain one order of magnitude outside the
available data for which the higher value was predicted. We labelled the two methods as (a)

"observed" and (b) "fitted".

Relating peak position to taxonomic and environmental predictors

We tested how the position of the peaks, either observed or fitted, depended on
taxonomic group, biogeographic characteristics and ecological characteristics. For continuous
variables, we applied simple linear regressions with both linear and quadratic terms to test
their potential influence on the grain size of the peaks for the four taxonomic groups. Best fit
was assessed with AIC of the contrasting regression models. For categorical predictors, we

applied analysis of variance (ANOVA), followed by Tukey’s post-hoc test (R package ‘stats’).

Since this is the first broad exploratory study on the phenomenon of scale dependence of
local z-values, we used a wide range of potential predictor variables related to our research
questions. They were mostly determined in the field, but some additionally retrieved via the
plot coordinates (Table S1.2). For simplicity and following a previous paper using the same
dataset (Dembicz et al.,, subm.), we group them into the following categories, acknowledging
that some variables can relate to more than one category: (1) taxonomic group (vascular plants,
bryophytes, lichens, and complete vegetation), (2) macroecological characteristics (climate
variables, latitude and elevation), (3) ecological characteristics at plot-level, subdivided into

those related to (a) productivity, (b) disturbance and (c) heterogeneity, and (4) vegetation
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typologies. In the following, we briefly introduce the variables of categories (2) — (4), while

details are provided in Table S1.2.

(2) As macroecological variables we used two geographic variables (/atitude and elevation)
and four climate variables (mean annual temperature, temperature seasonality, mean annual
precipitation, precipitation seasonality). Latitude and elevation with few exceptions were
provided by the original dataset collectors, while missing elevation data was derived from
digital elevation models GTOPO30 (Danielson and Gesch, 2011) and EU-DEM v.1.1 (2020). QGIS
was used to derive climate data from the CHELSA database (Karger et al., 2017), using plot

coordinates.

(3a) Here we included variables related to the stress-productivity gradient (Grime, 1977,
Huston, 2014). As plant cover is one of the main predictors of aboveground biomass (Sanaei et
al., 2018), we used vegetation cover and herb layer cover as rough proxies for productivity and
for the competition for light (Grytnes, 2000). Changes in soil properties usually affect
vegetation cover and total biomass production (Emiru and Gebrekidan, 2013). We used soil pH
(assuming maximum productivity at intermediate values) and mean soil depth (assuming

maximum productivity at high values).

(3b) Disturbance, in the sense of removal or destruction of accumulated bio- and
necromass is the other main dimension determining species richness and other diversity facets
(Grime, 1977; Huston, 2014). Here, we used litter cover as a main proxy for the absence of
disturbance. We used slope inclination (°) as another proxy for disturbance, because erosion
increases with increasing slope (Mangeney et al., 2010). As measures of anthropogenic
disturbance we included levels of naturalness (with five levels) and the presence of grazing,

mowing and fertilizing (Table S1.2).

(3c) Heterogeneity variables are those that describe the small-scale variability of
productivity and/or disturbance, and they are usually determined within the largest or second-
largest grain plot of each nested series: Soil depth CV (coefficient of variation) indicates the
variability of soil depth within a plot. From the perspective of herbaceous vegetation, both rock
and stone cover and shrub layer cover inside the plot can be interpreted as heterogeneity
measures, assuming maximum variability in within-plot environmental conditions at

intermediate levels.
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(4) We tested three vegetation typologies: The biome represents the climate-driven
potential climax vegetation. It was derived via the plot coordinates, using the classification of
Bruelheide et al. (2019), with six biomes: alpine, boreal, continental (dry mid-latitudes),
nemoral (temperate mid-latitudes), mediterranean (subtropics with winter rain), and dry
tropics and subtropics. Further, we used a coarser and finer typology of the actual vegetation:
vegetation group (six classes) is the coarser level, within which vegetation type (20 classes) is
nested. This two-level typology was defined to be applicable across the Palaearctic and
accessible with the information provided in the individual datasets. It mainly captures aspects
of physiognomy (e.g. dwarf shrubs vs. herbs only), naturalness (natural vs. secondary) and

stress factors (e.g. drought, flooding, salinity, cold) (for details, see Biurrun et al., 2019).

Results

Pattern of scale dependence of z-values

Local z-values revealed scale dependence and differences between the two ways of
recording plant presence (Fig. 2, Fig. S2.1). In the case of complete vegetation, local z-value
reached a shallow maximum for logy (area) at around -1.5 (corresponding to 0.032 m?) for
shoot presence, while for rooted presence z-values started to increase strongly and
continuously from around 0 (1 m?) towards the smallest grain sizes (Fig. 2). For vascular plants,
the situation was similar, except that in rooted presence at grain sizes below -2.5 (0.003 m?) z-
values decreased again slightly (Fig. S2.1). Whether recorded as shoot presence or rooted
presence, bryophytes hardly showed any scale dependence of local z-values (Fig. S2.1). For
lichens recorded as shoot presence, local z-values peaked around -1.75 (0.018 m?2), while they
decreased over the studied range for rooted presence (Fig. S2.1). The GAMs conducted with
data including theoretically impossible values of local z > 1 and local z < 0 showed similar
patterns (Fig. S2.2). Among the shapes of fitted curves to individual nested-plot series, hump-

shapes prevailed for all taxonomic groups (Fig. 3, Table S2.1).
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Figure 2. Generalized additive models (GAMs) with 95% confidence intervals (pale blue) for the effect of local grain

(on log scale) on local z-value for complete vegetation, in plot series using two different ways of recording species

occurrence: a) shoot presence and b) rooted presence.
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Figure 3. Comparison of the four shapes of fitted curves (hump-shaped (H), U-shaped (U), monotonic

decreasing (D), and monotonic increasing (1)) for the complete vegetation and for the taxonomic groups

vascular plants, bryophytes, and lichens (series with at least seven grain sizes). Values on top of bars are the

number of nested-plot series analyzed.
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Taxonomic groups

The observed peak grain sizes did not differ significantly among taxonomic groups
(ANOVA; p = 0.119). Mean peak locations were between -1.55 and -1.38, i.e. 0.03-0.04 m? (Fig.
S2.3). The only discernible difference was that peak position in the case of bryophytes was
more variable than for the other two taxonomic groups. By contrast, the fitted peak grain size
differed significantly among taxonomic groups (ANOVA with Tukey’s HSD test) (Fig. S2.3). Here,
the highest fitted peak grain was found for bryophytes (0.06 m?), followed by lichens (0.05 m?)

and vascular plants (0.02 m?).

Observed vs. fitted peaks

We conducted all following analyses for the observed and the fitted peak grain size. As the
results were similar, we present only those for observed peaks in the main text, while those for
fitted peaks are provided in Supporting Information (Figs. S2.9-52.12, S2.14, S2.19-S2.22,
S2.24,52.26, S2.31-52.34).

Macroecological characteristics

For vascular plants, the observed peak grain size showed a significant U-shaped
relationship with latitude (minimum at around 47° N) and an initially flat then increasing
relationship with elevation (Fig. 4; see Fig. S2.4 for a map). Also the relationship with mean
annual temperature was u-shaped (Fig. 4), while the other macroecological variables only had
low explanatory power (Fig. S2.5). Observed peak grain size was not explained by
macroecological variables in the case of bryophytes (Fig. S2.6), whereas for lichens it showed a
unimodal relationship with latitude and elevation, but a u-shaped relationship with
precipitation seasonality (Fig. S2.7). Complete vegetation behaved similarly to vascular plants in
the case of elevation (u-shaped to increasing), but showed the opposite pattern (slightly

unimodal for latitude and mean annual precipitation (Fig. S2.8).
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Ecological characteristics related to disturbance

Observed peak grain size of vascular plants and bryophytes increased monotonically with
litter cover (Figs. S2.5-52.6), while there was no relationship for lichens and complete
vegetation (Figs. $S2.7-52.8). Slope inclination did not show a pattern for any of the four groups

(Figs. S2.5-52.8).

For vascular plants, observed peak grain size was highest in unused natural grasslands and
lowest in semi-intensified secondary grasslands (Fig. 5). Also for complete vegetation there was
a tendency of decreasing peak grain size with decreasing naturalness, while for bryophytes
there were no differences at all and lichens had a significantly higher peak grain size in
extensively managed natural grasslands compared to both unmanaged natural grasslands and
semi-natural secondary grasslands (Fig. S2.13). In vascular plants any management consistently
decreased peak grain size (Fig. $2.15), but the effect was most pronounced in the case of
mowing with a decrease by about one order of magnitude and an explained variance of 3.8%
(Fig. 6). While in complete vegetation three of the five management categories also led to a
decrease in peak grain size (albeit with very low explained variance; Fig. S2.18), there was no
effect in the case of bryophytes (Fig. S2.16) and even an increase for two categories in the case

of lichens (Fig. $2.17).

564 300 583 110 18
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Figure 5. Differences of the observed peak grain size (local grain size where the maximum local z occurred)

for vascular plants between the five levels of naturalness present in this study (no series for 1c — natural
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grasslands, overused): 1 — natural grasslands (1a — not managed, 1b — extensively managed); 2 — secondary
grasslands (2a — semi-natural, 2b — semi-intensified, 2c — intensified) (p < 0.001; R?,y = 0.028). Blue
lowercase letters indicate homogeneous groups (p < 0.05) as tested with Tukey’s post-hoc test ANOVA, the
figures on top indicate the numbers of data. Box and whisker plots represent the median and quartiles while

the red dots represent the mean values.

p <0.001, R? = 0.038
1551 139

a b

Peak grain size {log m?)

Unmown Mown

Figure 6. Effect of mowing on observed peak grain size (local grain size where the maximum local z occurred)
for vascular plants (p < 0.001; R? = 0.038). Box and whisker plots represent the median and quartiles while the

red dots represent the mean values for each management type.

Ecological characteristics related to heterogeneity

We found minimal to no influence of our heterogeneity-related variables on observed

peak position in any of the taxonomic groups (Figs. $S2.5-52.8).
Vegetation typologies

Considering biomes (i.e. broad-scale potential/climax vegetation), for vascular plants the
nemoral biome had the lowest peak grain sizes, the alpine, boreal and dry tropics and
subtropics biomes the highest and the continental biome and the subtropics with winter rain
intermediate peak grain sizes (Fig. S2.23). By contrast for bryophytes and lichens there was no

significant pattern and for complete vegetation it was very weak (Fig. S2.23).
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Among all predictors, in vascular plants the actual vegetation type had the highest
predictive power for peak grain size, 13.8% at the fine level (Fig. S2.27) and 6.8% at the coarse
level (Fig. 7). Peak grain size was particularly high in all types of dwarf shrublands and
particularly low in secondary grasslands and alpine deserts (Figs. 7, S2.27). There was no effect
of vegetation type in the case of bryophytes and lichens and only a weak effect in complete

vegetation (Figs. S2.25, 52.28-52.30).

752 714 151 133 46 27
b C bc a bc bc

Feak grain size (log m?)
l I

— i o
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semi-desers

Tall fork and

MNatural grasslands -
Azonal communities
Dwarf shrublands -
ruderal communities
Deserts and

Secondary grasslands 1

Figure 7. Differences in the observed peak grain size (local grain size where the maximum local z occurred)
between the six main vegetation types for the vascular plants (p < 0.001, R%,;. = 0.068). A common blue
lower-case letter between two boxes indicates homogeneous groups as tested with Tukey’s post-hoc test
with ANOVA (p < 0.05), the figures on top indicate the numbers of data. Box and whisker plots represent the

median and quartiles while the red dots represent the mean values for each vegetation type at coarse level.

Explanatory power of different predictors

Overall, for vascular plants, the highest proportion of variance in the observed peak grain
size was explained by vegetation types at fine level (0.138), followed by latitude (0.094),

vegetation types at coarse level (0.068), mowing (0.038) biomes (0.031) and naturalness
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(0.028). The explanatory power of the bivariate regressions for the fitted peaks on average was
lower than for the observed peaks. For bryophytes, lichens and complete vegetation, there

were much fewer significant relationships and they generally were also weaker.

Discussion

Differences between records of shoot and rooted presence

At fine grain sizes, the scale dependence of local z-values differed depending on whether
plants were recorded with shoot presence or rooted presence. These differences were best
visible for our big datasets of complete vegetation and vascular plants and somehow less
pronounced in our smaller (and thus potentially less balanced) datasets of bryophytes and
lichens. In all four groups, z-values of rooted presence recorded data started to increase more
or less monotonously below a threshold somewhere between 1 and 10 m?, while for shoot
presence there was either a shallow peak around 0.01 m? or no systematic scale dependence.
This is in agreement with Williamson (2003) who demonstrated mathematically that z-values at
very small grain sizes must approach a value of zero in the case of the “any-part system” and a
value of one in the case of the “grid-point system”. His “any-part system” is equivalent to shoot
presence, while his “grid-point system” is very similar to rooted presence in our study (for
details, see Dengler, 2008). These deviations from the “normal” shape of the species-area
relationships to the far left of the graph are “mathematical artefacts” caused by the way in
which plant presence is recorded, and thus should not be interpreted ecologically. For a tree-
only dataset of a tropical rainforest recorded with the grid-point system, Williamson (2003)
found that local z-values started to increase from below approx. 10° m? (10 ha) and reached
one at around 1 m2. For the non-forest communities in our study, we found that for complete
vegetation the increase in z-values started below approx. 1 m?, and values reached nearly 0.5 at
1 cm?. The diverging peak positions can easily be explained by the size difference in the
organisms studied (herbs, dwarf shrubs, bryophytes and lichens vs. tropical trees). We did not
actually reach a local z-value close to one, possibly because our smallest grain size was not
small enough and because rooted presence is similar, but not identical, to the grid-point
system. For the any-part (shoot presence) system, Williamson (2003) predicted a decrease in
local z-values at small grain sizes towards zero. We found no indication of this effect, since at
the smallest grain size we still had a mean local z-value of around 0.22, which was only slightly

different from the overall average. This apparent deviation from the theoretical pattern can be
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explained: in a species-area study in dry grasslands with grain sizes down to 1 mm?, Dengler et
al. (2004) observed “flattening” of the species-area curves towards small grain sizes, equivalent

to a decrease in local z towards zero, but only at grain sizes smaller than 1 cm?.

Overall scale dependence of local z-values

When removing the strong methodological effect of rooted presence sampling and
concentrating on shoot presence data, we found only a weak overall scale dependence of local
z-values for vascular plants and complete vegetation (8.6% and 10.8% explained variance,
respectively). For lichens, the effect was slightly stronger (13.1%), while local z-values of
bryophytes hardly showed any systematic scale dependence (1.9%). These relatively weak
effects when combining all nested-plot series could either mean that the scale dependence in
individual nested-plot series is also low or that it is stronger, but the shape of the response
varies idiosyncratically among the series. Our shape analysis of the fitted response curves of
local z-values vs. local grain revealed a prevalence of hump-shaped curves (Fig. 3), meaning a
peak within the observed range of areas, irrespective of taxonomic group. As for most of the
nested-plot series we had only six grain size transitions, we could not conduct a meaningful test
on statistical superiority of quadratic vs. linear vs. no scale dependence. Thus, we have to
acknowledge that among the four distinguished response types of Figure 3 an unknown
fraction of a fifth type of “no significant scale dependence” is hidden, so the prevalence of
hump-shaped curves is probably lower than Figure 3 suggests. This coincides with the fact that
two studies that analyzed relatively small regional subsets of the GrassPlot data did not either
find a significant scale dependence (Kuzemko et al., 2016; Dembicz et al., 2021a). However, as
already the combined data of all nested-plot series (Fig. 2, Fig. S2.1) show clear peaks for
complete vegetation, vascular plants and lichens, it is evident that among those nested plots
that actually show a scale dependence, unimodal relationships with peaks inside the fitted

range will prevail.

Position and meaning of peaks

Assuming a unimodal response, we found that peak grain generally varied across the
whole analyzed grain size range (Figs. 2). For all three groups as well as for complete vegetation
it was around -1.6 to -1.4, corresponding to 0.03—-0.04 m?, in the analyses of individual nested-

plot series. This coincides to the overall peaks derived for all grain-size transitions with the
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GAMs, except for bryophytes that did not show any peak there (which corresponds to a much
larger variability of the peak location for bryophytes than for the two other taxonomic groups
in case of the series-based analyses). Not to find any systematic difference in the peak location
of the three contrasting taxonomic groups was unexpected as both their sizes and their spatial
distribution patterns seem to be quite different. However, it might be that our prior assumption
that bryophytes and lichens are smaller than vascular plants is not necessarily true in the two-
dimensional projection to the ground which is quantified with shoot presence. Indeed, there

are also quite extensive thalli of some carpet-forming mosses or reindeer lichens.

The mean peak positions found in this study for vascular plants and complete vegetation
(mostly 0.01 — 0.1 m?) are quite similar to those reported for Palaearctic grasslands in regional
studies (Turtureanu et al., 2014; Polyakova et al., 2016). In contrast, Crawley & Harral (2001)
found a very different peak (at around 40,000 m?) in a study of species richness of vascular
plants in a landscape in England including a wide range of different habitats (grasslands, forest
patches, riparian vegetation, heathlands, etc.). The much larger peak grain size probably
reflects the granularity of habitats in the British landscape, inducing a steep increase of species-
richness when new habitats with ecologically different species are included in the samples. By
contrast, the data in GrassPlot refer to the internal organization of plant communities within
100 m? (or rarely up to 1024 m?) of a patch selected in most of the cases for relative

homogeneity (Dengler et al., 2018; Biurrun et al. 2019).

What is the meaning of such a peak in the relationship of local z-values vs. local grain? A
peak refers to a local maximum in the rate of species accumulation, i.e. it indicates a spatial
grain (sampling unit size) where more new species appear in a sampling unit than expected
from the overall “global” z-value of the power law SAR. These irregularities in the rate of
species accumulation reflect variability of species occupancy due to differences of abundances
and the spatial heterogeneity of vegetation. Let us consider that a plant community is
composed of “granules” or floristically rather homogenous patches: increasing the recording
area within a granule would lead to a slow increase in richness, while moving from one
“granule” to another would give a steep increase. If granules show a wide variation in their
sizes, then likely no or only a weak peak is found, while a strong prevalence of a certain granule
size should cause a visible peak in the curve. The smaller the “granules”, the finer the spatial

grain where the position of the maximum local z- value appears. Theoretically, there could also
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be multiple peaks if there are two or more nested granule sizes (cf. the concepts of hierarchical
patch dynamics; Kotliar and Wiens, 1990; Wu and Loucks, 1995). Unfortunately, the limited
number of grain-size transitions in our dataset (mostly only six) did not allow us to detect such
multiple peaks. Generally, the peaks observed were not very pronounced and their position
varied, indicating a high idiosyncrasy in granule-size distributions in vegetation. Knowledge on
peak grain size can be useful to explore the relationship between pB-diversity and the

environmental drivers shaping the compositional heterogeneity at different spatial scales.

Drivers of the peak position

Among the predictors studied for vascular plants, vegetation type had the relatively
strongest effect, with dwarf shrublands having particularly high peak grain sizes and secondary
grasslands particularly low ones. This makes sense given that heathlands have dwarf shrubs as
main structural elements, whose size is larger on average than that of herbs, while secondary
grasslands are subject to some type of management/land use, which might reduce the average
size of plant individuals and thus granules. This interpretation coincides with the fact that also
naturalness and land management were among the variables with relatively strong impact.
Generally, peak position decreased from natural to secondary grasslands and within each of the
two groups with increasing land use intensity — with the exception of intensively used
secondary grasslands, for which, however only a very small locally clustered sample was
available. Any type of land management (mowing, burning, livestock grazing, fertilization)
decreased the peak grain size, but the effect of mowing was strongest. This could be explained
by the fact that mowing is the less discriminant land use (i.e. all the stems of all species are cut).
Generally, management prevents litter accumulation and limits growth of the strongest
competitors, thus maintaining species coexistence through reducing competition and increasing
availability of establishment microsites (Tilman, 1994; Questad and Foster, 2008), so
(particularly with the shoot presence approach) the smaller “spatial granules” can hold more

species, thus lead to fine “granule” and cause a z-value peak at smaller grains.

Among the biogeographic variables, latitude showed the strongest effect on observed
peak position (9.4% explained variance), with a U-shaped response and a minimum at around
47° N (Fig. 4). This was also reflected in the comparison of biomes, where we found a minimum
of the peak position in the nemoral biome and particularly high values in the alpine, boreal and

dry subtropical biomes (Fig. 7). The fact that local z-values peak at particularly fine grain sizes
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for plots from between 45 and 50 °N latitude and/or the nemoral biome might not be a
consequence of latitude/biome per se, but of higher land use intensity driven by the rather
benign environment of this latitude/biome. Interestingly, in the same region also the total z-
values (i.e. assuming a constant z) were lowest, as Dembicz et al. (subm.) found and attributed

this to the same likely reason.

Conclusions and outlook

The overall weak scale dependence of local z-values within the range 0.0001-1024 m?
questions the widespread search for SAR models that are more complicated than the power
function (see reviews by Tj@rve, 2003; 2009). Instead it supports conclusions of two previous
GrassPlot publications (Dengler et al., 2020; Dembicz et al., subm.) that: (i) the power function
is an appropriate model to describe SARs at these scales in continuous vegetation in open
habitats; and (ii) deviations from the “perfect” power law are relatively minor and inconsistent.
Thus, for most purposes one can safely assume a constant z-value across the grain sizes studied
here. However, this is only true if species richness is recorded with the shoot presence method,
as for data recorded with the rooted presence method we found significant deviations from the
power law below 1 m?, i.e. strongly increasing z-values. This finding matches the theory and
suggests that shoot presence recording is preferable when studying SARs, as this permits a
focus on ecological determinants of curve shapes by reducing distortion by mathematical

artifacts.

We consider SARs within the grain size range analyzed here to be mainly an expression of
granularity of species composition, which in turn is partly driven by granularity of the abiotic
environment, and partly by the growth form of the dominant species. If granule sizes vary over
a large range, constant z-values (no scale dependence of local z-value) should be expected,
while a prevalence of a particular granule size should lead to a peak of local z-values vs. grain
size. Scale dependence of local z-values appears to be mainly locally driven and highly
idiosyncratic. Of the few macroecological patterns that emerged, the responses to latitude
(possibly also related to land use), naturalness, and land use were most prominent. We propose
a mechanism explaining the effect of land use on decreasing peak z-value position, but this
should be tested experimentally. To explore the topic further, we also recommend conducting

simulation studies using artificial communities with varying granularity and species-abundance
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distribution to understand more mechanistically how these parameters shape the details of

SARs.
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Figure S1.1. Actual local z-values and fitted Gaussian curves for the dataset CH_H series from GrassPlot (subalpine and
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alpine habitats in Grisons, Switzerland, sampled by J. Dengler and colleagues). The shape of each individual curve and
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shaped (inverse Gaussian); I: monotonic increasing; peak (dotted circle): actual local scale of the maximum local z-
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value; opt (plain circle): local scale of the maximum fitted local z-value.
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Table S1.1. The curve parameters with peak recognition for the eight nested-plot series in CH_H (see Fig. S1.1).

W
]

Peak_act: actual local grain of the maximum observed local z-value; Peak_mod: local grain of the maximum fitted local

>~ b
- O

z-value.

N
N

e
[V Ny V)

46 - I 1.5 25 -1.145 0.169  0.000 -203.636 NA  0.000
47
48 - H 2.5 -0.697 -0.984 -0.164 -0.118 -0.697 2.059 0.284
49
50 - H 2.5 -0.862 -0.797 -0.283 -0.164 -0.862 1745  0.337
51
52 - u 2.5 -45 -1.828  0.059  0.103 -0.285 NA  0.137
53
54 - H -2.5 0.366 -1.424  0.019 -0.025 0.366  4.440  0.195
55
56 - H 2.5 -1.997 -1.431  -0.403 -0.101 -1.997 2226  0.263
57
58 - u 35 45 -1.733 -0.054  0.103 0.263 NA  0.149
59
60 - H -1.5 -0.643 -0.855 -0.039  -0.030 -0.643  4.077 0.301
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Table S1.2. Predictor variables used to explain the position of the peak local z-value, grouped into four broad

categories.

Predictor variables [with
units]
1. Taxonomic group

Taxonomic group

Type

Categorical

Explanation

Vascular plants, bryophytes, lichens, and complete
vegetation (all groups sampled simultaneously)

Source(s)

GrassPlot (Dengler et al.,
2018)

2. Biogeographic characteristics

Latitude []

Elevation [m a.s.l.]

Mean annual temperature
[c

Mean annual precipitation
[mm]

Temperature seasonality
[c

Precipitation seasonality
(%]

Metric

Metric

Metric

Metric

Metric

Metric

Temperature variation over a given year (or averaged
years) based on the standard deviation (variation) of
monthly temperature averages

Measure of the variation in monthly precipitation
totals over the course of the year

GrassPlot (Dengler et al.,
2018)
GrassPlot (Dengler et al.,
2018)

CHELSA (Karger et al.,
2017)
CHELSA (Karger et al.,
2017)
CHELSA (Karger et al.,
2017)

CHELSA (Karger et al.,
2017)

3. Ecological (site) characteristics

3.1 Productivity
Soil pH

Soil depth mean [cm]

Vegetation cover [%]
Herb layer cover [%]

3.2 Disturbance

Slope inclination [°]
Litter cover [%]

Naturalness - at fine level

Livestock grazing
Mowing

Burning
Fertilization
Managed

3.3 Heterogeneity
Soil depth CV [cm]

Rock and stone cover [%]

Metric

Metric

Metric

Metric

Metric
Metric

Categorical

Binary
Binary
Binary
Binary

Binary

Metric

Metric

In upper soil layer, measured in H20

Mean of five random measurements within a plot

Estimated in the field

Estimated in the field

Measured in the field

Estimated in the field

no series for 1c — natural grasslands, overused): 1 —
natural grasslands (1a — not managed, 1b — extensively
managed); 2 — anthropogenic grasslands (2a — semi-
natural, 2b — semi-intensified, 2c - intensified

Grazed vs. not grazed grassland

Mown vs. not mown grassland

Burnt vs. unburnt grassland

Fertilized vs. unfertilized grassland

Managed vs. not managed

Standard deviation of five random measurements

Estimated in the field as independent from vegetation
cover and adding up to 100% with cover of gravel and
fine soil

GrassPlot (Dengler et al.,
2018)
GrassPlot (Dengler et al.,
2018)

GrassPlot (Dengler et al.,
2018)
GrassPlot (Dengler et al.,
2018)

GrassPlot (Dengler et al.,
2018)
GrassPlot (Dengler et al.,
2018)
GrassPlot (Dengler et al.,
2018)

GrassPlot (Dengler et al.,
2018)
GrassPlot (Dengler et al.,
2018)
GrassPlot (Dengler et al.,
2018)
GrassPlot (Dengler et al.,
2018)
GrassPlot (Dengler et al.,
2018)

GrassPlot (Dengler et al.,
2018)
GrassPlot (Dengler et al.,
2018)
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Shrub layer cover [%] Metric Estimated in the field GrassPlot (Dengler et al.,
2018)

4. Vegetation typology

coNOUL A WN =

Biome Categorical Six biomes represented in the analyzed, among nine GrassPlot (Dengler et al.,
types distinguished in GrassPlot (as shown in Fig. S2.4)  2018)
according to a recent classification by Bruelheide et al.
(2019, based on Schultz, 2005 and Korner et al., 2017),
for details see Biurrun et al. (2019)

JEE | (I i S Vo)
A wWN-—=O

Vegetation group Categorical Six groups, for the details see Biurrun et al. 2019 GrassPlot (Dengler et al.,
2018)

_—
0N Oy WU

Vegetation type Categorical 20 vegetation types represented in the analysed data,  GrassPlot (Dengler et al.,
among 22 types distinguished in GrassPlot (see Biurrun  2018)
etal., 2019)
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N
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Table S1.3. Numbers of plots and series for all data and theoretically possible values of local 0 < z < 1 used in the analysis. Number of plots, grain size transitions/pairs and

nested plot series with at least seven grain sizes, local z-values were > 1 or < 0.

Vascular 154942 22698 292 166 2114 | 21642 6137 13 27 275 177138 29276 317 196 2442
plants

Bryophytes 11605 2651 6 5 500 4126 1423 50 25 119 15797 4109 57 30 622
Lichens 17896 1289 4 3 291 4126 694 5 10 71 22061 2000 10 13 364
Complete 11410 4179 9 2 636 4126 1610 6 15 130 15602 5845 15 17 772
vegetation
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Appendix S2. Additional detailed results.
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Table S2.1. Shapes of fitted curves.

—_ -
N —

Taxonomic group Total series Shape Number of Percent (%)

W

series

Complete vegetation 621 Hump-shaped (H) 396 64
U-shaped (U) 133 21
Decreasing (D) 79 13
Increasing (1) 13 2

Vascular plants 1825 Hump-shaped (H) 1105 61
U-shaped (U) 497 27
Decreasing (D) 194 11
Increasing (1) 29 1

Bryophytes 238 Hump-shaped (H) 118 50
U-shaped (U) 102 42
Decreasing (D) 9
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Increasing (1) 9
Lichens 78 Hump-shaped (H) 56 72
U-shaped (U) 17 22

Decreasing (D) 5
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Figure S2.1. Generalized additive models (GAMs) of the effect of local grain on local z for (a, b) vascular plants, (c, d)

bryophytes, and (e, f) lichens, with data obtained using two different ways of recording plants: (a, c, e) shoot presence

and (b, d, f) rooted presence (excluding theoretically impossible values of local z> 1 or < 0).



Page 93 of 125

coNOUL A WN =

OuLuuuuuuuuuu bbb DdDDBEDIDDEDDEDIDDWWWWWWWWWWNNNNNNNNNN=S = 223 23 a2 23029
SCwVwoOoONOUPMMWN=-_OVOVONOOCULLPMPWN—_,OOVUONOULPPWN=_,OOVONOOCOULLDDWN=—_OOVONOODUEA WN=O

Appendix S2 to Zhang, J. et al. 2021. Journal of Vegetation Science.

Journal of Vegetation Science

(a) GAM (blue) and GAMM (green) - Vascular plants (shoot)
GAM: P < 0.0001, R*= 0.0526; GAMM: P < 0.0001, R*= 0.0522

(b) GAM (blue) and GAMM (green) - Vascular plants (rooted)
GAM: P < 0.0001, R*=0.174; GAMM: P < 0.0001, R*=0.174
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(c) GAM (blue) and GAMM (green) - Bryophytes (shoot)
GAM: P < 0.0001, R*=0.0177; GAMM: P <0.0001, R*==0.0177
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(d) GAM (blue) and GAMM (green) - Bryophytes (rooted)
GAM: P <0.0001, R®=0.0233; GAMM: P < 0.0001, R* = 0.0233
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(e) GAM (blue) and GAMM (green) - Lichens (shoot)
GAM: P <0.0001, R*= 0.112; GAMM: P < 0.0001, R*=0.112
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(f) GAM (blue) and GAMM (green) - Lichens (rooted)
GAM: P < 0.0001, R*=0.021; GAMM: P < 0.0001, R*=0.021
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(g) GAM (blue) and GAMM (green) - Complete vegetation (shoot)
GAM: P < 0.0001, R? = 0.094; GAMM: P < 0.0001, R*=0.094
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(h) GAM (blue) and GAMM (green) - Complete vegetation (rooted)
GAM: P <0.0001, R® = 0.144; GAMM: P < 0.0001, R*= 0144
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Figure S2.2. Generalized additive models (GAMs) and generalized additive mixed models (GAMMs) of the effect of

local grain on local z for (a,b) vascular plants, (c,d) bryophytes, (e,f) lichens, and (g,h) with data obtained using two

different ways of recording plants: (a,c,e,g) shoot presence and (b,d, f,h) root presence (with all data).
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Figure S2.3. Differences in observed peak grain size (a) and fitted peak grain size (b) among taxonomic groups
recorded by shoot presence. Blue lowercase letters indicate homogeneous groups (P < 0.05) according to Tukey’s
post-hoc tests.
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Figure S2.4. Spatial distribution of the grain sizes of observed peak for vascular plants. The values are given as log,, of
area in m2. The colours of the background refer to the biomes distinguished in GrassPlot.
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Figure S2.5. Differences in observed peak grain size (local grain size where the maximum local z occurred) of vascular

plants (R*<0.02) depending on predictor variables. Blue lines indicate significant linear relationships (p < 0.05) with

confidence intervals, red lines represent quadratic relationships (p < 0.05) with confidence intervals.
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Figure S2.6. Differences in observed peak grain size (local grain size where the maximum local z occurred) of

bryophytes depending on predictor variables. Blue lines indicate significant linear relationships (p < 0.05) with

confidence intervals, red lines represent quadratic relationships (p < 0.05) with confidence intervals.
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Figure S2.8. Differences in observed peak grain size (local grain size where the maximum local z occurred) of complete

vegetation depending on predictor variables. Blue lines indicate significant linear relationships (p < 0.05) with

confidence intervals; red lines represent quadratic relationships (p < 0.05) with confidence intervals.
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Figure S2.9. Differences in fitted peak grain size (local grain size where the maximum local z was predicted) for

vascular plants depending on predictor variables. Blue lines indicate significant linear relationships (p < 0.05) with

confidence intervals; red lines represent quadratic relationships (p < 0.05) with confidence intervals.



coNOUL A WN =

O uuuuuuuuuu bbb DDDBEDIDDEDDEDIDWWWWWWWWWWNNNNNNNNNN=S = 2 23 23 a2 3029
SQwVwWoONOCOUPMNWN=—_ODVOVONOOCULLPMPWN—_,OUVONOULPMAWN=_,OOVONOOCULLDDWN=—_OOVOONOODUEA WN=O0O

Appendix S2 to Zhang, J. et al. 2021. Journal of Vegetation Science.

Journal of Vegetation Science

Page 100 of 125

10

a N=238, P=0.165R:=0015 b N=238P=0140,R2=0017 ¢ N=238 P=0313,R2=0010 d N =238, P =0.326, R? = 0.009
254 wemssmn = = - 25 woemm com s ws 0w w e 254 - o e mn om o 25 = - = mmm .
T .. g |- T .. T s
s | - Y 5 SIS S A S
) a0 S o & o - B, & % & o
< 004 2 .. = 00 vy . 2 00 © vage *oZ o0 Seiy s
1. A .01 - i o5 .01 o % ©
g0 A R A% S PR 1 el P - S
@ . . @ i @ e talem BB ® % LI
< e < = c L TP c w “1 g
g ¢ T * o ce Tt Ty g oY
2259 3 DL Zasiy 225 LSe s 2a25e R
o * e T 3 PR | [ e ?
@ . @ @ [
o o o o
0 momm o mm om sms = — cmarss @ 0o seos S8 o o  wom mmmwem @ oo = o am e memmomem -
40 45 50 55 0 500 1000 1500 2000 0 5 10 15 2500 5000 7500 10000 125C
Lafitude () Elevation(masl) Mean annual temperature (°C) Temperature seasonality (°C)
e N=238,P=0794 R2<0001 f N=238 P=0081,R?=0021 g N=137,P=0818,R2<0001 h N =190, P =0.053, R2 = 0.031
ae N 254 PR 25 vommans sms s o . 254 smmmmm w0 8 0
T . T o * . T -
£ <% £ R £ . . E o e o oo
o e age - o - o . o LI .
° ',al.,. e 900 . .° ©° . o . 900 se &, ", ®
o 007 ° o 0.0 . Y . e o 007 = v0 8 &%
R /A P - oot L
= W, e, ® ® > R 4
£ 1200 . i= £ . - £ e .
5 . . [ & . & e *°
D251 o L 9 251 5. . 2251 e :
o [ [ [ -
g . N 3 3 . 3 .
o o o o
commmn @e e wme 0o - 2 e mmme——— @ ¢ o o e swn se @ o ® e o ewmcwmms cee cmme
500 1000 1500 2000 25 50 75 0 25 50 75 100 4 6 8
Mean annual precipitation (mm) Precipitation seasonality (%) Mean soil depth (cm) Soil pH
i N=197, P=0562, R =0002 j N=195P=0477,R*=0003 K N=137,P=0115R2=0018 | N=211,P=0767, R*=0.003
254 = ® 50 som suss s ssemm 251 = ® ® s ss ssmsess emesmm 25] wmiomsmmes s 558 ss 25] memos 550 sem
& ¢ . e g 4 o °
£ ° ° g £ £ ° £ °
= e % = o 3 o ., . o e . "
ko] ° . 1. Ze O k] ee® "% o k=] 5. .
% 007, S e e w001, T 007% e e . . o 001pe e
N ° ® g% e N ® N PR @ T e N t L LN
@ I @ . ® ° w . ® .
£ * e . £ 2% o e ° £ °
® - ° e . o * s o .
225 e, J2H 228 e D257
[ . [ o [ ]
@ - @ @ - @ .
o o o o
T s o emeces scen meememmms o ommmewws o o cmems ® ss o .
25 50 75 100 25 50 75 100 0 10 20 0 20 40 60 80
Vegetation cover (%) Herb layer cover (%) Soil depth CV (%) Rock and stone cover (%)
m  N=190,P=0465R*=0003 n N=192, P=0.033,R®=0024 o N=193, P =0.031,R2= 0.036
254 oo e . o . 254 = ccsemme o o oo
o ® . o o
S L = 9 k<]
E 0.0 o e . E E
® be ® ®
£ . £ £
s I Ju o
LRI 2- £
[u] g [0 [l
D D Lo
o o o
saee . a0 memestw w0s 80 w0 980
0 5 10 15 0 20 40 60 80 0 10 20 30 40 50

Shrub layer cover (%)

Litter cover (%)

Slope inclination ()

Figure S2.10. Differences in fitted peak grain size (local grain size where the maximum local z was predicted) for

bryophytes depending on predictor variables. Blue lines indicate significant linear relationships (p < 0.05) with

confidence intervals; red lines represent quadratic relationships (p < 0.05) with confidence intervals.
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Figure S2.11. Differences in fitted peak grain size (local grain size where the maximum local z was predicted) for

lichens depending on predictor variables. Blue lines indicate significant linear relationships (p < 0.05) with confidence

intervals; red lines represent quadratic relationships (p < 0.05) with confidence intervals.
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Figure S2.12. Differences in fitted peak grain size (local grain size where the maximum local z was predicted) for

with confidence intervals; red lines represent quadratic relationships (p < 0.05) with confidence intervals.

complete vegetation depending on predictor variables. Blue lines indicate significant linear relationships (p < 0.05)
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Figure S2.17. Comparison of effect of land use on observed peak grain size (local grain size where the maximum local z
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Figure S2.23. Comparison of observed peak grain size (local grain size where the maximum local z occurred) for a)
vascular plants, b) bryophytes, c) lichens, d) complete vegetation between the six biomes considered in this study. A
common blue lower-case letter between two boxes indicates homogeneous groups as tested with Tukey’s post-hoc
test with ANOVA (P < 0.05), the figures on top indicate the numbers of data. Box and whisker plots represent the
median and quartiles while the red dots represent the mean values for each biome.
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Figure S2.24. Comparison of fitted peak grain size (local grain size where the maximum local z was predicted) for a)
vascular plants, b) bryophytes, c) lichens, d) complete vegetation between the six biomes considered in the study. A
common blue lower-case letter between two boxes indicates homogeneous groups as tested with Tukey’s post-hoc
test with ANOVA (P < 0.05), the figures on top indicate the numbers of data. Box and whisker plots represent the
median and quartiles while the red dots represent the mean values for each biome.
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Figure S2.25. Comparison of observed peak grain size (local grain size where the maximum local z was predicted) for
a) bryophytes, b) lichens, c) complete vegetation between the six vegetation types at coarse level considered in this
study. A common blue lower-case letter between two boxes indicates homogeneous groups as tested with Tukey’s
post-hoc test with ANOVA (p<0.05). Box and whisker plots represent the median and quartiles while the red dots
represent the mean values for each vegetation type at coarse level.
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Figure S2.26. Comparison of fitted peak grain size (local grain size where the maximum local z was predicted) for a)
vascular plants, b) bryophytes, c) lichens, d) complete vegetation between the six vegetation types at coarse level
considered in this study. A common blue lower-case letter between two boxes indicates homogeneous groups as
tested with Tukey’s post-hoc test with ANOVA (p < 0.05). Box and whisker plots represent the median and quartiles
while the red dots represent the mean values for each vegetation type at coarse level.
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Vascular plants, P = 0.001, adj.R? = 0.138
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Figure S2.27. Comparison of observed peak grain size (local grain size where the maximum local z occurred) for

®NOUL A WN =
g

O

[=]
1

—_
—_

—_
N

o
Peak grain size (log m?)

—
w
‘Itﬁ"
=]

—
o~

[t

NN _
- o 0 N O
A.2 Alpine steppes
B.3 Mesic grasslands
B .4 \Wet grasslands
.1 Dunes

C.5 Wetlands

F.1 Alpine deserts

©°
A1 Alpine grasslands
A4 Rocky grasslands
C.2 Rocks and screes
C.3 Saline communities

D1 Lowland heathlands
E.1 Tall forb communities
E.2 Ruderal communities

N
N

B.1 Sandy dry grasslands
B.2 Meso-xeric grasslands

N
w

B.5 Mediterranean grasslands
D.2 Arctic-alpine heathlands

N
~

A3 Xeric grasslands and steppes
F.2 Cold deserts and semi-deserts

WINNNNN
O OV N O WU
0.3 Garrigues and thorn cushion communities

w
—_

vascular plants between the vegetation types at fine level considered in this study. A common lower-case letter

w
N

between two boxes indicates homogeneous groups as tested with Tukey’s post-hoc test with ANOVA (p <0 .05). Box

w w
AW

and whisker plots represent the median and quartiles while the red dots represent the mean values for each

w
(]

vegetation type at fine levels.

SOuvuuuuuuuuubbbdDDdDDdDDDDADDWWWW
QO VWOoONOUEAWN—_OUVOONOOULD, WN—=0V0ONO



coNOUL A WN =

O uuuuuuuuuu bbb DDDBEDIDDEDDEDIDWWWWWWWWWWNNNNNNNNNN=S = 2 23 23 a2 3029
SQwVwWoONOCOUPMNWN=—_ODVOVONOOCULLPMPWN—_,OUVONOULPMAWN=_,OOVONOOCULLDDWN=—_OOVOONOODUEA WN=O0O

Journal of Vegetation Science Page 114 of 125

Appendix S2 to Zhang, J. et al. 2021. Journal of Vegetation Science. 24

Bryophytes, P = 0.15, adj.R? = 0.023
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Figure S2.28. Comparison of observed peak grain size (local grain size where the maximum local z occurred) for
bryophytes between the vegetation types at fine level considered in this study. Box and whisker plots represent the

median and quartiles while the red dots represent the mean values for each vegetation type at fine levels.
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Figure S2.29. Comparison of observed peak grain size (local grain size where the maximum local z occurred) for lichens
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between the vegetation types at fine level considered in this study. Box-and-whisker plots represent the median and
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quartiles while the red dots represent the mean values for each vegetation type at fine levels.
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Complete vegetation, P = 0.018, adj.R? = 0.022
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Figure S2.30. Comparison of observed peak grain size (local grain size where the maximum local z occurred) for
complete vegetation between the vegetation types at fine level considered in this study. A common lower-case letter
between two boxes indicates homogeneous groups as tested with Tukey’s post-hoc test with ANOVA (p < 0.05). Box
and whisker plots represent the median and quartiles while the red dots represent the mean values for each

vegetation type at fine levels.
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Vascular plants, P = 0.001, adj.R? = 0.069
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Figure S2.31. Comparison of fitted peak grain size (local grain size where the maximum local z was predicted) for
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Bryophytes, P = 0.057, adj.R2 = 0.038
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Figure S2.32. Comparison of fitted peak grain size (local grain size where the maximum local z was predicted) for
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bryophytes between the vegetation types at fine level considered in this study. Box and whisker plots represent the

median and quartiles while the red dots represent the mean values for each vegetation type at fine levels.
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Figure S2.33. Comparison of fitted peak grain size (local grain size where the maximum local z was predicted) for
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lichens between the vegetation types at fine level considered in this study. A common lower-case letter between two
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boxes indicates homogeneous groups as tested with Tukey’s post-hoc test with ANOVA (p < 0.05). Box and whisker
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Complete vegetation, P = 0.053, adj.R?* = 0.016
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Figure S2.34. Comparison of fitted peak grain size (local grain size where the maximum local z was predicted) for
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complete vegetation between the vegetation types at fine level considered in this study. A common lower-case letter
between two boxes indicates homogeneous groups as tested with Tukey’s post-hoc test with ANOVA (p < 0.05). Box
and whisker plots represent the median and quartiles while the red dots represent the mean values for each

vegetation type at fine levels.
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45 Figure 1. Spatial distribution of the 6,696 series in the Palaearctic biogeographic realm that were analysed in
46 this study.
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42 Complete Vascular Bryophytes: Lichens
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45 Figure 3. Comparison of the four shapes of fitted curves (hump-shaped (H), U-shaped (U), monotonic
46 decreasing (D), and monotonic increasing (I)) for the complete vegetation and for the taxonomic groups
47 vascular plants, bryophytes, and lichens (series with at least seven grain sizes). Values on top of bars are
the number of nested-plot series analyzed.
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Figure 4. Differences in observed peak grain size (local grain size where the maximum local z occurred) of
vascular plants depending on predictor variables. Red lines indicate quadratic relationships (p < 0.05) with
confidence intervals.
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Figure 5. Differences of the observed peak grain size (local grain size where the maximum local z occurred)
for vascular plants between the five levels of naturalness present in this study (no series for 1c - natural

34 grasslands, overused): 1 - natural grasslands (1a — not managed, 1b - extensively managed); 2 -

35 secondary grasslands (2a - semi-natural, 2b - semi-intensified, 2c - intensified) (p < 0.001; R2adj. =

36 0.028). Blue lowercase letters indicate homogeneous groups (p < 0.05) as tested with Tukey’s post-hoc test

37 ANOVA, the figures on top indicate the numbers of data. Box and whisker plots represent the median and

38 quartiles while the red dots represent the mean values.
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Figure 6. Effect of mowing on observed peak grain size (local grain size where the maximum local z
occurred) for vascular plants (p < 0.001; R2 = 0.038). Box and whisker plots represent the median and
quartiles while the red dots represent the mean values for each management type.
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Vascular plants, P = 0.001, adj.R2 = 0.068
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39 Figure 7. Differences in the observed peak grain size (local grain size where the maximum local z occurred)
40 between the six main vegetation types for the vascular plants (p < 0.001, R2adj. = 0.068). A common blue
lower-case letter between two boxes indicates homogeneous groups as tested with Tukey’s post-hoc test

with ANOVA (p < 0.05), the figures on top indicate the numbers of data. Box and whisker plots represent

42 the median and quartiles while the red dots represent the mean values for each vegetation type at coarse

43 level.



