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Abstract We propose an efficient variant of a primal Discontinuous Galerkin method
with interior penalty for the second order elliptic equations on very general meshes
(polytopes with eventually curved boundaries). Efficiency, especially when higher
order polynomials are used, is achieved by static condensation, i.e. a local elimination
of certain degrees of freedom cell by cell. This alters the original method in a way
that preserves the optimal error estimates. Numerical experiments confirm that the
solutions produced by the new method are indeed very close to that produced by the
classical one.
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1 Introduction

The recent years have seen the emergence (or the revival) of several numerical meth-
ods capable to solve approximately elliptic partial differential equations using gen-
eral polygonal/polyhedral meshes. This is witnessed for example by the book [4].
The methods reviewed in this book (if we restrict our attention only to finite element
type methods using piecewise polynomial approximation spaces in one form or an-
other) include interior penalty discontinuous Galerkin (DG) methods [6,2], hybridiz-
able discontinuous Galerkin (HDG) methods ([8], introduced in [10]), the Virtual
Element (VE) method ([21], introduced in [20,5]), the Hybrid High-Order (HHO)
method ([14], introduced in [12,13]). One can add to this list the weak Galerkin fi-
nite element [22], which is similar to HDG. The relations between HHO and HDG
methods were exhibited in [9].
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Among the above, the primal interior penalty DG methods are the most classi-
cal. In the symmetric form, also referred to as SIP – symmetric interior penalty, this
method dates back to [24,3] and is now presented and thoroughly studied in several
monographs, for example [19,11]. It is well suited to the discretization on very gen-
eral meshes because its approximation space is populated by polynomials of degree,
say ≤ k, on each mesh cell without any constraints linking the polynomials on two
adjacent cells. It leaves thus a lot of freedom on the choice of the mesh cells which
can be not only polytopes but also virtually any geometrical shapes. It is generally
admitted however that the SIP method is too expensive especially when higher order
polynomials are employed. Indeed, its cost, i.e. the dimension of the approximation
space, is the product of the number of mesh cells and the dimension of the space of
polynomials of degree ≤ k. The cost on a given mesh is thus proportional to k2 in 2D
(resp. k3 in 3D). This should be contrasted with the cost of HDG or HHO methods
which is proportional to k in 2D (resp. k2 in 3D).

The goal of the present article is to modify the SIP method so that its cost is re-
duced to that of HDG or HHO methods. In doing so, we inspire ourselves from the
static condensation procedure for the standard continuous Galerkin (CG) finite ele-
ment methods. It is indeed well known that the dimension of the approximation space
in CG is proportional to k2 in 2D on a given mesh, but the degrees of freedom inte-
rior to each mesh cell can be locally eliminated which leaves a global problem of the
size proportional to k (these numbers are changed to, respectively, k3 and k2 in 3D).
Although the notion of interior degrees of freedom does not make sense in the DG
context, we shall be able to select, on each mesh cell, a subspace of the approximating
polynomials that can be used to construct a local approximation through the solution
of a local problem. The remaining degrees of freedom will then be used in a global
problem. We shall thus achieve a significant reduction of the global problem size in
the DG SIP-like method, similarly to that achieved in CG by static condensation. The
resulting DG method, which can be refereed to as scSIP (static condensation SIP),
will not produce exactly the same approximation as the original SIP method. We
shall prove however that these two solutions satisfy the same optimal a priori error
bounds in H1 and L2 norms. Moreover, they turn out to be very close to each other in
our numerical experiments.

We treat here only the diffusion equation with variable, but sufficiently smooth,
coefficients. The extension to other problems, such as convection-reaction-diffusion,
linear elasticity, Stokes, as well as to other DG variants (IIP, NIP) seems relatively
straight-forward. Our assumptions on the mesh allow for cells of general shape, not
necessarily the polytopes.

The article is organized as follows: in the next section, we present the idea of
our method starting by the description of the governing equations. We the recall the
static condensation for the classical CG FEM. Our variants of DG FEM (SIP and
scSIP) are first introduced in Subsection 2.2. The convergence proofs are in Section
3. They are done assuming some properties of the discontinuous FE spaces and the
underlying mesh. In Section 4, we give an example of the hypotheses on the mesh
under which the necessary properties of the FE spaces can be established. Finally,
some implementation details and numerical illustrations are presented in Section 5.
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2 Description of the problem and static condensation for FEM (CG and DG
cases)

We consider the second-order elliptic problem

L u = f in Ω , u = g on ∂Ω (1)

where Ω ⊂ Rd , d = 2 or 3, is a bounded Lipschitz domain, f ∈ L2(Ω) and g ∈
H1/2(∂Ω) are given functions. The differential operator L is defined by

L u =−∂i(Ai j(x)∂ ju)

with ∂i denoting the partial derivative in the direction xi, i = 1, . . . ,d and assuming
the summation over i, j. The coefficients Ai j are supposed to form a positive definite
matrix A = A(x) for any x ∈Ω which is sufficiently smooth with respect to x so that

α|ξ |2 ≤ ξ
T A(x)ξ ≤ β |ξ |2, ∀ξ ∈ Rd ,x ∈Ω (2)

and
|∇Ai j(x)| ≤M, ∀x ∈Ω , i, j = 1, . . . ,d (3)

with some constants β ≥ α > 0, M > 0.

2.1 Static condensation for CG FEM

To present our idea, we start by recalling the idea of static condensation, going back
to [17], as applied to the usual CG finite element method for problem (1). Let us
assume for the moment (in this subsection only) that Ω is a polygon (polyhedron)
and introduce a conforming mesh Th on Ω consisting of triangles (tetrahedrons).
Assuming for simplicity g = 0, the usual continuous Pk finite element discretization
of (1) is then written: find uh ∈Wh such that

a(uh,vh) :=
∫

Ω

A∇uh ·∇vh =
∫

Ω

f vh, ∀vh ∈Wh (4)

where Wh is the space of continuous piecewise polynomial functions (polynomials of
degree ≤ k on each mesh cell T ∈ Th for some k ≥ 1) vanishing on ∂Ω . The size of
this problem, i.e. the dimension of Wh, is of order k2 on a given mesh in 2D (resp. k3

in 3D). To reduce this cost, one can decompose the space Wh as follows

Wh =W loc
h ⊕W ′h

where the subspace W loc
h consists of functions of Wh that vanish on the boundaries of

all the mesh cells T ∈Th, and W ′h is the complement of W loc
h , orthogonal with respect

to the bilinear form a. Decomposing uh = uloc
h +u′h with uloc

h ∈W loc
h and u′h ∈W ′h we

see that (4) is split into two independent problems

uloc
h ∈W loc

h : a(uloc
h ,vloc

h ) =
∫

Ω

f vloc
h , ∀vloc

h ∈W loc
h (5)

u′h ∈W ′h : a(u′h,v
′
h) =

∫
Ω

f v′h, ∀v′h ∈W ′h (6)
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The first problem above is further split into a collection of mutually independent
problems on every mesh cell T ∈Th:

Find uloc,T
h such that

∫
T

A∇uloc,T
h ·∇vloc,T

h =
∫

Ω

f vloc,T
h , ∀vloc,T

h ∈W loc,T
h (7)

where W loc,T
h is the restriction of W loc

h on T , i.e. the set of all polynomials of degree
≤ k vanishing on ∂T . The cost of solution of these local problems is negligible and
we thus get very cheaply uloc

h |T = uloc,T
h . Note also that Problem (7) can be recast as

πT L (uloc
h |T ) = πT f , ∀T ∈Th (8)

where πT is the projection to W loc,T
h , orthogonal in L2(T ).

On the other hand, Problem (6) remains global but its size is only proportional
to k in 2D (resp. k2 in 3D) which is much smaller than that of the original problem
(4). Indeed, the degrees of freedom are associated to the standard interpolation points
of Pk finite elements on the edges of the mesh. Note also that a basis for W ′h can be
constructed solving cheap local problems of the type

πT L (v′h|T ) = 0, ∀T ∈Th (9)

with appropriate boundary conditions on ∂T insuring the continuity of functions in
W ′h.

2.2 DG FEM: SIP and scSIP methods

We turn now to the main subject of this paper: the DG methods. We now let Ω be
a bounded domain of general shape, and Th be a splitting of Ω into a collection
of non-overlapping subdomains (again of general shape, the precise definitions and
assumptions on the mesh will be given Sections 3 and 4). Let Vh denote the space
of discontinuous piecewise polynomial functions of degree ≤ k on each mesh cell
T ∈Th for some k ≥ 2:1

Vh = {v ∈ L2(Ω) : v|T ∈ Pk(T ),∀T ∈Th} (10)

The SIP (symmetric interior penalty) method is then written as: find uh ∈Vh such that

ah(uh,vh) = Lh(vh), ∀vh ∈Vh (11)

with the bilinear form ah and the linear form Lh defined by

ah(u,v) = ∑
T∈Th

∫
T

A∇u ·∇v− ∑
E∈Eh

∫
E
({A∇u ·n}[v]+{A∇v ·n}[u])

+ ∑
E∈Eh

γ

hE

∫
E
[u][v] (12)

1 The usual SIP DG method makes perfect sense also for piecewise linear polynomials (k = 1). We
restrict ourselves however to k ≥ 2 since the forthcoming modification of the method allowing for the
static condensation is pertinent to this case only.
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and

Lh(v) = ∑
T∈Th

∫
T

f v+ ∑
E∈E b

h

∫
E

g
(

γ

hE
v−A∇v ·n

)
(13)

where Eh is the set of all the edges/faces of the mesh, E b
h ⊂Eh regroups the edges/faces

on the boundary ∂Ω , n, [·] and {·} denote the unit normal, the jump and the mean
over E ∈ Eh. More precisely, for any internal facet E shared by two mesh cells T E

1 and
T E

2 , we choose n as the unit vector, normal to E and looking from T E
1 to T E

2 . We then
define for any function v which is H1 on both T E

1 and T E
2 but discontinuous across E

[v]|E := v|T E
1
− v|T E

2
, {A∇v ·n}|E :=

1
2

A
(

∇v|T E
1
+∇v|T E

2

)
·n

On a boundary edge E ∈ E b
h , n is the unit normal looking outward Ω and [v] = v,

{A∇v · n} = A∇v · n. The parameter hE in (12)–(13) is the local length scale of the
mesh near the facet E which will be properly defined in Lemma 1.2 Finally, γ is the
interior penalty parameter which should be chosen sufficiently big.

Unlike the case of continuous finite elements, Problem (11) does not allow di-
rectly for a static condensation. However, we can construct a modification of (11)
that mimics the characterization of local and global components of the solution by
the projectors on local polynomial spaces (8)–(9). These spaces are now defined sim-
ply as

V loc,T
h = Pk−2(T )

We also let πT,k−2 to be the projection to V loc,T
h , orthogonal in L2(T ), and propose

the following scheme:

– Compute uloc
h ∈Vh by solving

πT,k−2L (uloc
h |T ) = πT,k−2 f , ∀T ∈Th (14)

i.e. find uloc
h |T ∈ Pk(T ) on all mesh cells T ∈Th such that∫

T
L (uloc

h |T )qT =
∫

T
f qT , ∀qT ∈ Pk−2(T )

– Define the subspace of Vh

V ′h =
{

v′h ∈Vh : πT,k−2L (v′h|T ) = 0, ∀T ∈Th
}

(15)

i.e. the subspace of functions v′h ∈Vh such that∫
T

L (v′h|T )qT = 0, ∀qT ∈ Pk−2(T ) (16)

on all mesh cells T ∈Th.

2 The usual choice hE = diam(E) is not appropriate on general meshes since some of the facets can be
of much smaller diameter than that of the adjacent cell.
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– Compute u′h ∈V ′h such that

ah(u′h,v
′
h) = Lh(v′h)−ah(uloc

h ,v′h), ∀v′h ∈V ′h (17)

– Set
uh = uloc

h +u′h. (18)

We shall show that the local problem (14) admits an infinity of solutions. We can
choose any of these solutions on each mesh cell to form uloc

h . Nevertheless, the final
result uh given by (18) is unique, cf. Lemma 3.

Note that the dimension of the “global” space V ′h on a given mesh is of order k
in 2D (k2 in 3D) so that global problem (17) is much cheaper than (11) for large
k. We have thus asymptotically the same costs for the global problems as for CG
FEM with static condensation. There is though a fundamental difference between
static condensation approaches in CG and DG cases from the implementation point
of view: the basis functions for the global space W ′h in the CG case are known a priori,
whereas those for the space V ′h in the DG case should be constructed as solutions to
local problems (16), cf. the discussion of the implementation issues in Subsection
5.1. Note however that one can get rid of problems (16) in the special case of a
constant coefficient matrix A in (1), cf. Remark 1. Indeed, (16) is reduced in this case
to L (v′h|T ) = Ai j∂i∂ j(v′h|T ) = 0 on any cell T ∈Th. The structure of V ′h does not thus
vary from one cell to another and a basis for V ′h can be chosen a priori on all the cells.

The local projection step (14) is not necessarily consistent with the original for-
mulation (11) so that the solution uh given by (14)–(18) is different from that of (11).
We shall prove however that SIP and scSIP approximations satisfy the same a priori
error bounds. Moreover, they turn out to be very close to each other in numerical
experiments.

3 Well posedness of SIP and scSIP methods and a priori error estimates

Let us now be more precise about the hypotheses on the mesh. Recall that Ω ⊂
Rd , d = 2 or 3, is a Lipschitz bounded domain and Th is a general (not necessarily
polygonal or polyhedral) mesh on Ω . We mean by this that Th is a decomposition
of Ω into mutually disjoint cells Ω̄ = ∪T∈Th T̄ so that each cell T is a Lipschitz
subdomain of Ω and for every T1,T2 ∈Th we have either T1 = T2 or T1∩T2 =∅ (the
cells T1 ∈Th are treated here as open sets). We also introduce the sets of internal and
boundary edges/faces as respectively

E i
h = {E = T̄1∩ T̄2 for some T1,T2 ∈Th}

E b
h = {E = T̄ ∩∂Ω for some T ∈Th}

and denote by Eh := E i
h ∩E b

h the union of all the edges/faces.
Let BT , for any T ∈Th, denote the smallest ball containing T , and Bin

T denote the
largest ball inscribed in T . Set hT = diam(T ) and h = maxT∈Th hT . From now on, we
assume that mesh Th is



Discontinuous Galerkin method with static condensation 7

– Shape regular: there is a mesh-independent parameter ρ1 > 1 such that, for all
T ∈Th,

RT ≤ ρ1rT (19)

where rT is the radius of Bin
T and RT is the radius of BT . This also implies hT ≤

2ρ1rT and RT ≤ ρ1hT .

Choose an integer k ≥ 2 and recall the discontinuous FE space (10). We assume that
Vh has two following properties (and we shall prove in Section 4 that these properties
hold under some additional assumptions on the mesh):

– Optimal interpolation: there exists an operator Ih : Hk+1(Ω)→Vh such that for
any v ∈ Hk+1(Ω)(
∑

T∈Th

(
|v− Ihv|2H1(T )+

1
h2

T
‖v− Ihv‖2

L2(T )+h2
T |v− Ihv|2H2(T ) (20)

+hT‖∇v−∇Ihv‖2
L2(∂T )+

1
hT
‖v− Ihv||2L2(∂T )

)) 1
2
≤C

(
∑

T∈Th

h2k
T |v|Hk+1(T )

) 1
2

– Inverse inequalities: for any vh ∈Vh and any T ∈Th

‖vh‖L2(∂T ) ≤
C√
hT
‖vh‖L2(T ) ‖∇vh‖L2(∂T ) ≤

C√
hT
‖∇vh‖L2(T ) (21)

and

|vh|H2(T ) ≤
C
hT
|vh|H1(T ) (22)

We can now study the well posedness and establish optimal a priori error esti-
mates for the classical SIP method (11).

Lemma 1 Under the above assumptions on the mesh and on Vh, setting

hE = 2
(

1
hT1

+
1

hT2

)−1

for any E ∈ E i
h with E = ∂T1∩∂T2, (23)

hE = hT for any E ∈ E b
h with E = ∂T ∩∂Ω ,

and choosing γ large enough, γ ≥ γ0, the bilinear form ah defined by (12) is coercive,
i.e.

ah(vh,vh)≥ c9 vh92, ∀vh ∈Vh (24)

with some c > 0 and the triple norm defined by

9 v92 = ∑
T∈Th

(
|v|2H1(T )+

1
hT
‖[v]‖2

L2(∂T )

)
(25)

The constants c,γ0 depend only on the parameters in the assumptions on the mesh
and on Vh, as well as on α,β in (2).
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We skip the proof of this well known result. We stress however that our definitions
of the length scale hE and of the triple norm (25) may be slightly different from those
available in the literature. In particular, we avoid to use the diameter of a facet E
(or any other geometrical information on E) to define hE . This choice enables us to
establish straightforwardly the coercivity of ah with respect to the triple norm, which
does not see the separate mesh facets either (only the whole boundaries of the mesh
cells are present there). More elaborate choices for the interior penalty parameters are
proposed in [6].

Lemma 1 implies that problem (11) of the SIP method is well posed. Moreover,
we have the following error estimate, the proof of which is also skipped (actually, it
goes along the same lines as that of our forthcoming Theorem 2).

Theorem 1 Assume that the solution u to (1) is in Hk+1(Ω). Under the assumptions
of Lemma 1, there exists the unique solution uh to (11) and it satisfies

|u−uh|H1(Th)
≤Chk|u|Hk+1(Ω)

where H1(Th) is the broken H1 space on the mesh Th and |·|H1(Th)
:=
(

∑T∈Th
| · |2H1(T )

) 1
2
.

If, moreover, the elliptic regularity property holds for (1), then

‖u−uh‖L2(Ω) ≤C|u|Hk+1(Ω)h
k+1

We turn now to the study of the scSIP method (14)–(17) and start by the following
technical lemma.

Lemma 2 There exists h0 > 0 such that for all T ∈ Th with hT ≤ h0 and for all
qT ∈ Pk−2(T ) one can find uT ∈ Pk(T ) such that∫

T
qT (L uT )≥

1
2
‖qT‖2

L2(T ) (26)

and
|uT |2H1(T )+

1
hT
‖uT‖2

L2(∂T ) ≤Ch2
T‖qT‖2

L2(T ) (27)

The constants h0 and C depend only on the regularity of the mesh and on α , β and M
in (2) and (3). One can put h0 =+∞ if the coefficient matrix A is constant on T .

Proof Let χT be the polynomial of degree 2 vanishing on ∂Bin
T , i.e.

χT (x) =

(
d

∑
i=1

(xi− x0
i )

2− r2
T

)

where x0 = (x0
1, . . . ,x

0
d) is the center of Bin

T and rT is its radius. Set A0
i j = Ai j(x0) and

L 0=−∂iA0
i j∂ j. Consider the linear map

Q : Pk−2(T )→ Pk−2(T )

defined by
Q(v) = L 0(χT v)
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The kernel of Q is {0}. Indeed, if Q(v) = 0 then w := χT v is the solution to

L 0w = 0 in Bin
T , w = 0 on ∂Bin

T

so that w = 0 as a solution to an elliptic problem with vanishing right-hand side and
boundary conditions. Since Q is a linear map on the finite dimensional space Pk−2(T ),
this means that Q is one-to-one.

Take any qT ∈ Pk−2(T ) and let uT = χT vT with vT ∈ Pk−2(T ) such that Q(vT ) =
qT . We have thus constructed uT ∈ Pk(T ) such that L 0uT = qT . This immediately
proves (26) in the case of an operator L = L 0 with constant coefficients. Moreover,
by scaling,

|uT |W 2,∞(BT )
+

1
hT
|uT |W 1,∞(BT )

+
1

h2
T
‖uT‖L∞(BT ) ≤

C

hd/2
T

‖qT‖L2(Bin
T ) (28)

with a constant C depending only on α , β and the ratio RT/rT . Thus,

|uT |H1(T ) ≤ |T |
1/2|uT |W 1,∞(BT )

≤ChT‖qT‖L2(T )

which proves the estimate in H1(T ) norm in (27). Similarly, ‖uT‖L2(T )≤Ch2
T‖qT‖L2(T )

and the estimate in L2(∂T ) norm in (27) follows by the trace inverse inequality.
It remains to prove (26) in the case of operator L with variable coefficients. To

this end, we use the estimates in (28) as follows

∫
T

qT L uT =
∫

T
qT L 0uT +

∫
T

qT ∂i((Ai j−A0
i j)∂ juT )

≥ ‖qT‖2
L2(T )−‖qT‖L2(T )|T |

1/2[max
x∈T
|A(x)−A0||uT |W 2,∞(T )+max

x∈T
|∇A(x)||uT |W 1,∞(T )]

≥ ‖qT‖2
L2(T )−‖qT‖L2(T )|T |

1/2hT max
x∈T
|∇A(x)| C

hd/2
T

‖qT‖L2(Bin
T )

≥ ‖qT‖2
L2(T )−ChT‖qT‖2

L2(T ) ≥
1
2
‖qT‖L2(T )

for sufficiently small hT . ut

Corollary 1 Introduce the bilinear form

bh(q,v) = ∑
T∈Th

h2
T

∫
T

qL u

and the space
Mh = {v ∈ L2(Ω) : v|T ∈ Pk−2(T ),∀T ∈Th}

Equip the space Vh with the triple norm (25) and the space Mh with

‖q‖h =

(
∑

T∈Th

h2
T‖q‖2

L2(T )

)1/2
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The bilinear form bh satisfies the inf-sup condition

inf
qh∈Mh

sup
vh∈Vh

bh(qh,vh)

‖qh‖h 9 vh9
≥ δ (29)

with a mesh-independent constant δ > 0. Moreover, bh is continuous on Mh×Vh with
a mesh-independent continuity bound.

Proof Take any qh ∈Mh, denote qT = qh|T , construct uT as in Lemma 2 and introduce
uh ∈Vh by uh|T = uT on all T ∈Th. This yields using (26) and (27),

bh(qh,uh)

9uh9
≥

∑T∈Th

h2
T
2 ‖qh‖2

L2(T )(
∑T∈Th

Ch2
T‖qh‖2

L2(T )

)1/2 =
2√
C
‖qh‖h

which is equivalent to (29) with δ = 2/
√

C. Finally, the continuity of bh is easily seen
from the inverse inequality (22). ut

Lemma 2 implies that operator πT,k−2L appearing in (14) is surjective from
Pk(T ) to Pk−2(T ) so that (14) has indeed a solution at least on sufficiently refined
meshes. The existence of a solution to (17) follows from the coercivity of ah. Thus,
scheme (14)–(18) produces some uh ∈Vh. In order to establish the error estimates for
this uh, we reinterpret its definition as a saddle point problem.

Lemma 3 The problem of finding uh ∈Vh and ph ∈Mh such that

ah(uh,vh)+bh(ph,vh) = Lh(vh), ∀vh ∈Vh (30)

bh(qh,uh) = ∑
T∈Th

h2
T

∫
T

f qh, ∀qh ∈Mh (31)

has a unique solution. Moreover, uh given by (30)–(31) coincides with uh given by
(14)–(18).3 This implies that uh produced by the scheme (14)–(18) is unique.

Proof The existence and uniqueness of the solution to (30)–(31) follows from the
standard theory of saddle point problems, cf. for example Corollary 4.1 from [16],
thanks to the coercivity of ah (Lemma 1) and to the inf-sup property on bh (Corollary
1).

In order to explore its relation with uh = uloc
h +u′h from (14)–(18), we note bh(qh,uloc

h )=

∑T∈Th
h2

T
∫

T f qh for all qh ∈Mh and bh(qh,u′h) = 0 for all qh ∈Mh since u′h ∈V ′h. We
obtain thus

bh(qh,uloc
h +u′h) = ∑

T∈Th

h2
T

∫
T

f qh, ∀qh ∈Mh (32)

Eq. (17) can be rewritten as

Lh(v′h)−ah(uloc
h +u′h,v

′
h) = 0, ∀v′h ∈V ′h

3 More precisely, all solutions uh of (14)–(18) may be accompanied by ph ∈ Mh so that the resulting
couples (uh, ph) also solve (30)–(31). Since the solution to (30)–(31) is unique, the inverse statement is
also true: uh given by (30)–(31) is also a solution to (14)–(18).
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This, together with the fact that V ′h is precisely the kernel of the bilinear form bh, i.e.
V ′h = {vh ∈Vh : b(qh,vh) = 0, ∀qh ∈Mh}, means that there exists p̃h ∈Mh such that

bh(p̃h,vh) = Lh(vh)−ah(uloc
h +u′h,vh), ∀vh ∈Vh,

cf. Lemma 4.1 from [16]. The last equation can be rewritten as

ah(uloc
h +u′h,vh)+bh(p̃h,vh) = Lh(vh), ∀vh ∈Vh, (33)

Comparing (33)–(32) on one hand with (30)–(31) on the other hand, we identify uh
with uloc

h +u′h and ph with p̃h. ut

Theorem 2 Assume that the solution u to (1) is in Hk+1(Ω). Under the assumptions
of Lemma 1 and h sufficiently small, the scSIP method (14)–(18) produces the unique
solution uh ∈Vh, which satisfies

|u−uh|H1(Th)
≤Chk|u|Hk+1(Ω) (34)

If, moreover, the elliptic regularity property holds for (1), then

‖u−uh‖L2(Ω) ≤C|u|Hk+1(Ω)h
k+1 (35)

Proof We shall use the saddle point reformulation (30)–(31). This discretization is
consistent. Indeed setting p = 0 we have

ah(u,vh)+bh(p,vh) = Lh(vh), ∀vh ∈Vh

bh(qh,u) = ∑
T∈Th

h2
T

∫
T

f qh, ∀qh ∈Mh

Thus, by the standard approximation theory for saddle point problems, cf. for ex-
ample Proposition 2.36 from [15], recalling the coercivity of ah (Lemma 1) and the
inf-sup property on bh (Corollary 1), we get

9uh− Ihu9+‖ph‖h ≤C sup
(vh,qh) ∈Vh×Mh
9vh 9+‖qh‖h = 1

(ah(uh− Ihu,vh)+bh(ph,vh)+bh(qh,uh− Ihu))

=C sup
(vh,qh) ∈Vh×Mh
9vh 9+‖qh‖h = 1

(ah(u− Ihu,vh)+bh(qh,u− Ihu))

≤C

(
9u− Ihu92

a + ∑
T∈Th

h2
T‖L (u− Ihu)‖2

L2(T )

) 1
2

with the augmented triple norm 9 ·9a defined by

9v92
a := 9v92 + ∑

E∈Eh

hE‖{A∇v ·n}‖2
L2(E)

Applying the interpolation estimates (20) and the triangle inequality gives

9u− Ihu9a +‖ph‖h ≤Chk|u|Hk+1 (36)
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This implies in particular (34).
To prove the L2 error estimate, we consider the auxiliary problem for z ∈ H2(Ω)

L z = u−uh in Ω , z = 0 on ∂Ω

Then, for all v ∈ H1(Th) and q ∈ L2(Ω),

ah(v,z)+bh(q,z) =
∫

Ω

(u−uh)v+ ∑
T∈Th

h2
T

∫
T
(u−uh)q

Setting v = u− uh and q = p− ph (with p = 0) and using Galerkin orthogonality
yields

‖u−uh‖2
L2(Ω)+ ∑

T∈Th

h2
T

∫
T
(u−uh)(p− ph) = ah(u−uh,z)+bh(p− ph,z)

= ah(u−uh,z− zh)+bh(p− ph,z− zh)

for any zh ∈Vh. Thus, taking zh = Ihz and applying the interpolation estimates,

‖u−uh‖2
L2(Ω) ≤ |ah(u−uh,z− zh)|+h‖p− ph‖h

(
∑

T∈Th

‖L z−L zh‖2
L2(T )

)1/2

+h‖p− ph‖h‖u−uh‖L2(Ω)

≤Ch9u− Ihu9a |z|H2(Ω)+Ch‖ph‖h(|z|H2(Ω)+‖u−uh‖L2(Ω))

Recalling |z|H2(Ω) ≤C‖u−uh‖L2(Ω) and (36) yields (35). ut

4 An example of assumptions on the mesh that guarantee the interpolation and
inverse estimates

In this section, we adopt the following assumptions on the mesh.

M1: Th is shape regular in the sense (19) with a parameter ρ1 > 1.
M2: Th is locally quasi-uniform in the following sense: for any two mesh cells

T,T ′ ∈Th such that BT ′ ∩BT 6=∅ there holds

1
ρ2

hT ′ ≤ hT ≤ ρ2hT ′

with a parameter ρ2 > 1.
M3: The cell boundaries are not too wiggly: for all T ∈Th

|∂T | ≤ ρ3hd−1
T

with a parameter ρ3 > 0.
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We shall show that these assumptions allow us to construct an interpolation operator
Ih to the discontinuous finite element space (10) for k ≥ 2 and to prove the interpola-
tion error estimate (20) and the inverse estimates (21)–(22).

First of all, the assumptions that the mesh is shape regular and locally quasi-
uniform entail the following

Lemma 4 Define, for any x ∈ Rd ,

Nball(x) = #{T ∈Th : x ∈ BT}

with # standing for the “number of”. Under assumptions M1 and M2, there holds

Nball(x)≤ Nint , ∀x ∈ Rd

with a constant Nint depending only on ρ1 and ρ2.

Proof Take any x ∈ Rd with Nball(x)> 0 (otherwise, for x with Nball(x) = 0, there is
nothing to prove). We now choose arbitrarily T ′ ∈Th such that x ∈ BT ′ , set hx = hT ′ ,
and then consider all the mesh cells T such that x ∈ BT ′ . By Assumption M2, hT ≤
ρ2hx for any such T . Hence, by Assumption M1, RT ≤ ρ1ρ2hx, so that T is inside the
ball Bx of radius 2ρ1ρ2hx centered at x. Recall that T contains an inscribed ball of
radius rT ≥ RT

ρ1
≥ hT

2ρ1
≥ hx

2ρ1ρ2
. If there are several such cells T , then their respective

inscribed balls Bin
T do not intersect each other and they are all inside Bx. Thus, their

number satisfies the bound

Nball(x)≤
|Bx|

min
T∈Th:x∈BT

|Bin
T |
≤ (2ρ1ρ2hx)

d(
hx

2ρ1ρ2

)d = (2ρ1ρ2)
2d

as announced. ut

Recall that Vh is the discontinuous FE space on Th of degree k ≥ 2, cf. (10).

Lemma 5 (Local interpolation estimate) Take any T ∈Th. Let πh denote the L2(BT )-
orthogonal projection to the space of polynomials, i.e. given v ∈ L2(BT ), vh = πhv is
a polynomial of degree ≤ k such that∫

BT

vhϕh =
∫

BT

vϕh ∀ϕh ∈ Pk(T )

Under Assumptions M1 and M3, we have then for any v ∈ Hk+1(BT )

|v− vh|H1(T )+
1

hT
‖v− vh‖L2(T )+hT |v− vh|H2(T )

+
√

hT‖∇(v− vh)‖L2(∂T )+
1√
hT
‖v− vh‖L2(∂T ) ≤Chk

T |v|Hk+1(BT )

with a constant C > 0 depending only on ρ1 and ρ3.
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Proof Since Hk+1(BT ) is embedded into L∞(BT ), Deny-Lions lemma together with
a scaling argument (cf. Theorem 15.3 from [7]) entail

‖v− vh‖L∞(BT ) ≤Chk+1−d/2
T |v|Hk+1(BT )

Hence,
‖v− vh‖L2(T ) ≤ |T |

1
2 ‖v− vh‖L∞(BT ) ≤Chk+1

T |v|Hk+1(BT )

and, in view of the hypothesis |∂T | ≤ ρ3hd−1
T ,

‖v− vh‖L2(∂T ) ≤ (ρ3hd−1
T )

1
2 ‖v− vh‖L∞(BT ) ≤Chk+1/2

T |v|Hk+1(BT )

The estimates for |v−vh|H1(T ) and ‖∇v−∇vh‖L2(∂T ) are proven in the same way
starting from

‖∇v−∇vh‖L∞(BT ) ≤Chk−d/2
T |v|Hk+1(BT )

This is valid since Hk+1(BT ) is embedded into W 1,∞(BT ) for k ≥ 2.
Finally, the estimate for |v−vh|H2(T ) holds thanks to the embedding of Hk+1(BT )

into H2(BT ) (k ≥ 1).
ut

Lemma 6 (Global interpolation estimate) Let Ih : Hk+1(Ω)→Vh denote the opera-
tor obtained by first extending a function v ∈ Hk+1(Ω) by a function ṽ ∈ Hk+1(Rd)
and then applying the local operator πh from Lemma 5 to ṽ on every T ∈ Th, i.e.
Ihv|T := (πhṽ)|T on any T ∈ Th. Then, under Assumptions M1–M3, (20) holds for
any v ∈ Hk+1(Ω)

Proof First, extension theorem for Sobolev spaces [1] insure that there exists ṽ ∈
Hk+1(Rd) such that

ṽ = v on Ω and ‖ṽ‖Hk+1(Rd) ≤C‖ṽ‖Hk+1(Ω )

To prove (20), we sum the local interpolation estimates of Lemma 5 over all the mesh
cells and then use Assumption M2 and Lemma 4:

∑
T∈Th

(
|v− vh|2H1(T )+

1
h2

T
‖v− vh‖2

L2(T )+h2
T |v− vh|2H2(T )+hT‖∇v−∇vh‖2

L2(∂T )+
1

hT
‖v− vh||2L2(∂T )

)

≤C ∑
T∈Th

h2k
T

∫
BT

|∇k+1v|2dx≤C
∫

Ω

(
max

T∈Th:x∈BT
hT

)2k

Nball(x)|∇k+1v|2dx

≤CNintρ
2k
2 ∑

T ′∈Th

h2k
T ′ |v|

2
Hk+1(T )

ut

Lemma 7 (Inverse inequalities) Under assumptions M1 and M3, (21) and (22) hold
for any vh ∈Vh and any T ∈Th.
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Proof Both bounds in (21) follow immediately from the following one: for any poly-
nomial qh of degree ≤ l one has

‖qh‖L∞(T ) ≤
C

hd/2
T

‖qh‖L2(T )

with C > 0 depending only on ρ1 and l. This follows in turn from

‖qh‖L∞(BT ) ≤
C

hd/2
T

‖qh‖L2(Bin
T )

where Bin
T is the largest ball inscribed in T . Scaling the ball BT to a ball of radius 1

B1 and considering all the possible positions of the inscribed ball, the last inequality
can be rewritten as

‖qh‖L∞(B1) ≤C min
Bin⊂B1,Bin a ball of radius ≥ρ

−1
1

‖qh‖L2(Bin
T )

This is valid for any polynomial of degree l by equivalence of norms.
The remaining inverse inequality (22) can be proven similarly:

|vh|H2(T ) ≤Chd/2
T |vh|W 2,∞(BT )

≤Chd/2−1
T |vh|W 1,∞(BT )

≤ C
hT
|vh|H1(Bin

T ) ≤
C
hT
|vh|H1(T )

ut

5 Implementation and numerical results

We shall illustrate the convergence of SIP and scSIP methods on polygonal meshes
obtained by agglomerating the cells of a background triangular mesh. Both the mesh
construction and the following calculations are done in FreeFEM++ [18]. An example
of such a mesh is given in Fig. 1. To construct it, we take a positive integer n (n = 4 in
the Figure), let FreeFEM++ to construct a Delaunay triangulation of Ω = (0,1)2 with
4n boundary nodes on each side of the square, and finally agglomerate the triangles
of this mesh into n×n cells as follows. We start by attributing the triangle containing
the point

Oi+ jn =

(
i−1/2

n
,

j−1/2
n

)
, i, j = 1, . . . ,n (37)

to the cell number i+ jn. Then, iteratively, we run over all the cells and attach yet
unattributed triangles neighboring a triangle from a cell to the same cell, until all the
triangles are attributed.

Some details of our implementations are given below, followed by the numerical
results on two test cases.
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Fig. 1 On the left, a polygonal mesh consisting of 4×4 cells, which are obtained by the agglomeration of
the triangles of a finer mesh seen on the right.

5.1 Implementation of SIP ans scSIP methods

Let us enumerate the mesh cells as {T1, . . . ,TNe} and introduce a basis {φ (l)
i }i=1,...,Nk

of Pk(Tl) on every cell Tl . Here and below, Ne is the number of cells in Th and
Nk denotes the dimension of Pk. In our implementation, we form the basis out of
monomials shifted to the “center” Ol = (Ol,x,Ol,y) of the cell Tl , cf. (37). i.e.

φ
(l)
i (x,y) = φ

(l)
i1i2

(x,y) = (x−Ol,x)
i1(y−Ol,y)

i2

regrouping the multi-indexes (i1, i2), 0 ≤ i1 ≤ k, 0 ≤ i2 ≤ k− i1 into a single index i
ranging from 1 to Nk. We form then the matrices A(lm) for every pair of cells Tl and
Tm sharing some parts of their boundaries. These matrices of size Nk×Nk represent
the bilinear form ah in our bases and have the following entries

A(lm)
i j = ah(φ

(l)
i ,φ

(m)
j )

We also compute the right-hand side vectors
−→
F (l) ∈RNk with F(l)

i = Lh(φ
(l)
i ) on every

cell Tl , put all
−→
F (l) into a single vector

−→
F of size NDOF =NeNk, put the matrices A(lm)

into the block matrix A of size NDOF×NDOF , and finally find
−→
U ∈RNDOF as solution

to
A−→U =

−→
F

The vector
−→
U represents the numerical solution by the SIP method (11) in the follow-

ing sense: decomposing
−→
U into the cell-by-cell components

−→
U (l) = {U (l)

i } ∈RNk , uh

in (11) is given on each cell Tl by uh = ∑
Nk
i=1 U (l)

i φ
(l)
i .

Turning to the scSIP method, we introduce moreover a basis of Pk−2(Tl), {ψ
(l)
i }i=1,...,Nk−2 ,

and form the matrices B(l) of size Nk−2×Nk on every cell Tl with the entries

B(l)
i j =

∫
Tl

ψ
(l)
i L φ

(l)
j =

∫
Tl

ψ
(l)
i ·A∇φ

(l)
j −

∫
∂Tl

ψ
(l)
i n ·A∇φ

(l)
j
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These matrices will serve to compute the local contributions in (14) as well as to
construct a basis of the space V ′h in (15). As mentioned earlier, the solution to (14)
is not unique and one can propose several ways to compute a solution in practice.
In our implementation, we have opted for a solution to (14) solving the following
saddle-point problem on every cell Tl

−→u (l)+(B(l))T−→p (l) = 0

B(l)−→u (l) =
−→
Fψ

(l) (38)

with
−→
Fψ

(l) = {F(l)
ψ,i} ∈RNk−2 , F(l)

ψ,i =
∫

Tl
f ψ

(l)
i . The unknowns here are−→u (l) ∈RNk and

−→p (l) ∈ RNk−2 with −→u (l) representing uloc
h on Tl in the basis {φ (l)

i }. The saddle-point
problem above is well posed thanks to Lemma 2.

A basis for V ′h from (15)–(16) can be constructed on every cell Tl using a saddle-
point problem similar to (38). Indeed, V ′h on Tl is the kernel of B(l). It is thus given by
the span of vectors {−→u (l,1), . . . ,−→u (l,Nk)} ⊂ RNk with −→u (l,s) defined by

−→u (l,s)+(B(l))T−→p (l,s) =−→e (s)

B(l)−→u (l,s) = 0 (39)

where {−→e (1), . . . ,−→e (Nk)} is the canonical basis of RNk . In practice, we solve the prob-
lem above successively for s = 1,2, . . . and apply the Gram-Schmidt procedure to
ortho-normalize the vectors −→u (l,s) getting rid of the vectors which turn out to be
linearly dependent from the preceding ones. This provides us with a basis for V ′h|Tl
consisting of N′k = Nk −Nk−2 vectors (actually, the Gram-Schmidt process can be
stopped once N′k ortho-normal vectors have been found).

Remark 1 In the case when the coefficient matrix A is constant (and thus does not
change from one mesh cell to another), the restriction on the functions in V ′h, i.e.∫

T qhL v′h = 0 for all qh ∈ Pk−2(T ), implies in fact L v′h = 0 on every cell T . This
is independent from the shape of T so that the structure of V ′h is the same on all the
cells, and one can keep the same basis for V ′h everywhere.

For example, in the case of Poisson equation (L = −∆ ) in 2D, vh supported on
a cell T is in V ′h if and only if ∆vh = 0. Expanding vh in the basis of monomials
vh = ∑i1,i2 vi1i2φ

(l)
i1i2

this gives rise to the equations

(i1 +2)(i1 +1)vi1+2,i2 +(i2 +2)(i2 +1)vi1,i2+2 = 0

for all non-negative (i1, i2). These equations can be easily solved to provide a basis
for V ′h on all the cells.

In our implementation, to keep things simple and the code suitable for both cases
of either constant A or varying A, we have used another strategy: if A is constant, we
perform the Gram-Schmidt ortho-normalization on the solutions to (39) on the mesh
cell number 1 only. We keep then the same basis (as expressed by the expansion
coefficients in {φ (l)

i }i=1,...,Nk ) on all the other cells Tl , l ≥ 2.
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Fig. 2 The test case with Poisson equation: the error in L2 norm and H1 semi-norm vs. mesh-size h.
The solid lines with squares represent the SIP method. The dashed lines with circles represent the scSIP
method.

Having constructed the basis for V ′h, it remains to solve the global problem (17).
We introduce to this end on every cell Tl the matrices M(l) of size Nk×N′k putting
together the vectors representing the basis for V ′h on Tl . We form then the reduced
matrices A′(lm) of size N′k×N′k and the reduced right-hand side vectors

−→
F ′(l) out of

full A(lm) and
−→
F (l) (already introduced in the description of the SIP method imple-

mentation) by, cf. (17),

A′(lm) = (M(l))T A(lm)M(m) and
−→
F ′(l) = (M(l))T

(
−→
F (l)−∑

m
A(lm)−→u (m)

)
with −→u (m) representing uloc

h on Tm and computed by (38). Putting the matrices A′(lm)

into the block matrix A′ of size N′DOF ×N′DOF with N′DOF = NeN′k and the vectors
−→
F ′(l) into a single vector

−→
F ′, we compute

−→
U ′ ∈ RN′DOF as solution to

A′−→U ′ =−→F ′

The vector
−→
U ′ represents the solution to (17). The solution uh by the scSIP method

is finally reconstructed as follows: decomposing
−→
U ′ into the cell-by-cell compo-

nents
−→
U ′(l) = {U ′(l)i } ∈ RN′k , we recall −→u (l) computed on each cell Tl by (38), in-

troduce
−→
Ũ (l) = {Ũ (l)

i } ∈ RNk as
−→
Ũ (l) = −→u (l)+M(l)−→U ′(l), and set uh on Tl as uh =

∑
Nk
i=1 Ũ (l)

i φ
(l)
i .

5.2 The first test case: Poisson equation

We have considered the Poisson equation, i.e. (1) with A = I, on Ω = (0,1)2 with ho-
mogeneous Dirichlet boundary conditions g= 0 and the exact solution u= sin(πx)sin(πy).
We have applied SIP method (11) and scSIP method (14)–(17) to this problem on the
agglomerated meshes as described in the preamble of this Section. The results are
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Fig. 3 Test case with the non constant coefficient matrix A: the error in L2 norm and H1 semi-norm vs.
mesh-size h. The solid lines with squares represent the SIP method. The dashed lines with circles represent
the scSIP method.

presented in Fig. 2. In a slight deviation from the general notations, we set here the
mesh-size as h = 1/n on the n× n mesh, and hE = h on all the edges in (12). Three
choices for the polynomial space degree k were investigated, namely k = 2,3,4 and
the penalty parameter γ in (12) was set to 2k(k + 1) (by a loose extrapolation to
the polygonal meshes of the bound on the constant in the inverse inequality on a
triangle in [23]). The numerical results confirm the theoretically expected order of
convergence in both L2 norm and H1 semi-norm. They also demonstrate that the ap-
proximation produced by SIP and scSIP methods are very close to each other.

5.3 The second test case: non-constant coefficients A

We now consider problem (1) with a non-constant coefficient matrix

A =

(
1+ x xy

xy 1+ y

)
set again on Ω = (0,1)2. The right-hand side f and non-homogeneous Dirichlet
boundary conditions g are chosen so that the exact solution is given by u = exy. The
results are presented in Fig. 3 using the same meshes and parameters h, hE , and γ as
in the first test case. We arrive at the same conclusions about the convergence of SIP
and scSIP methods as before.

Acknowledgements I am grateful to Simon Lemaire for interesting discussions about HHO and msHHO
methods, which were the starting point of conceiving the present article.
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