Mémoire
Présenté pour l’obtention du Grade de
MASTER
« Métiers de l’Enseignement, de l’Éducation et de la Formation »
Mention 1er degré, Professeur des Écoles

L’impact de la sieste sur la consolidation des apprentissages chez les jeunes enfants

Présenté par
GRANDVOINET Marine

Sous la direction de :
GOUJON Annabelle
Maitre de conférence en Psychologie Cognitive et enseignante à l'Institut National Supérieur du Professorat et de l'Education

Année universitaire 2019-2020
Remerciements

Je tiens d’abord à remercier Annabelle Goujon, ma directrice de mémoire, pour le sujet proposé, les discussions et la bienveillance dont elle a fait preuve pour que j’oriente ce mémoire dans la direction que je souhaitais, ainsi que pour ses encouragements et ses conseils qui ont guidé mon travail jusqu’ici.

Je remercie toutes les personnes qui ont lu ou liront mon travail et y porteront de l’intérêt.

Je remercie mon équipe de l’école de Corbenay, la directrice de l’école Karine Afonso, ainsi que toutes mes collègues pour leur écoute et leur intérêt porté à ce mémoire.

Je remercie mes collègues et amies, Elisa, Jade, Laurine et Philomène, qui ont rédigé leur mémoire en même temps que moi et qui ont été d’un grand soutien tout au long de ce processus d’écriture et de ces deux années de master.

Un immense merci à ma famille et mes amis, toujours présents, et particulièrement à Louis pour sa présence, sa patience et son soutien sans faille, ainsi qu’à Mathilde qui me soutient dans chaque étape depuis tant d’années.
Table des matières

Introduction...7

Contexte de recherche..9

PARTIE THEORIQUE...11

1. Apprentissage, mémoire et mémorisation...11

 1.1. L’apprentissage..11

 1.1.1. Définition de l’apprentissage...11

 1.1.1.1. Apprentissage implicite...11

 1.1.1.2. Apprentissage explicite ...11

 1.2. La mémoire..11

 1.2.1. Définition de la mémoire...11

 1.2.1.1. Mémoire à long terme versus mémoire à court terme..12

 1.2.1.1.1. Mémoire déclarative..13

 1.2.2.2. Mémoire non déclarative..13

 1.2.1.2. Mémoire à court terme ...13

 1.2.3. Les mémoires : organisation..14

 1.3. Le processus de mémorisation...15

 1.3.1. La mémorisation...15

 1.3.1.1. Etape 1 : l’encodage...15

 1.3.1.2. Etape 2 : le stockage..15

 1.3.1.3. Etape 3 : la restitution...16

 1.3.2. Le système cognitif de Atkinson et Shiffrin..16

 1.3.3. La consolidation des informations en MLT..17

 1.3.3.1. Plasticité cérébrale et consolidation mnésique...17

 1.3.3.1.1. Consolidation synaptique..17

 1.3.3.1.2. Consolidation systémique..19

 1.3.3.2. Etiquetage des neurones...20

2. Le sommeil...21

 2.1. Définition et caractéristiques..21

 2.1.1. Définition du sommeil...21

 2.1.2. Les quatre stades du sommeil...22

 2.1.3. Organisation type d'une nuit de sommeil..23
2.2. Processus biologique lié au sommeil ... 24
 2.2.1. Notion d'horloge interne ... 24
2.3. Le sommeil chez les enfants .. 26
 2.3.1. Le sommeil chez l'enfant, différences avec l'adulte 26
 2.3.2. Le sommeil à l'école maternelle : la sieste .. 26
 2.3.3. Le sommeil à l'école primaire ... 27
3. Lien sommeil-mémoire ... 28
 3.1. Rôle du sommeil avant l'apprentissage ... 28
 3.2. Sommeil et mémoire ... 28
 3.2.1. Sommeil et encodage ... 28
 3.2.2. Sommeil et consolidation mnésique ... 29
 3.2.3. Liens neurophysiologiques sommeil-mémoire 29
 3.3. Résultats des études préalables concernant l'effet du sommeil sur les
 apprentissages .. 30
 3.3.1. Premières découvertes ... 30
 3.3.2. Les connaissances actuelles sur les adultes ... 31
 3.3.3. Les connaissances actuelles sur les enfants ... 33

PARTIE EXPERIMENTALE ... 35
1. Problématique et hypothèses de recherche ... 35
2. Plan expérimental .. 36
 2.1. Variables indépendantes intra-sujets .. 37
 2.1.1. Durée du délai entre phase d'apprentissage et phase de restitution 37
 2.1.2. Type d'apprentissage ... 37
 2.2. Variable indépendante inter-sujets : place du deuxième apprentissage 37
 2.3. Modalités d'analyse des données .. 37
3. Expériences proposées ... 38
 3.1. Echantillon d'étude ... 38
 3.2. Expérience 1 : Apprentissage visuel .. 39
 3.2.1. Méthode ... 39
 3.2.1.1. Matériel ... 39
 3.2.1.1.1. Logiciel ... 39
 3.2.1.1.2. Stimuli ... 39
 3.2.1.2. Procédure .. 40
 3.2.1.2.1. Phases d'apprentissage .. 40
 3.2.1.2.2. Phases de restitution ... 42
3.2.1.3. Résumé de l’expérience ... 42
2.2.2. Résultats ... 43
2.2.3. Discussion ... 44
3.3. Expérience 2 : Apprentissage auditif ... 45
 3.3.1. Méthode... 45
 3.3.1.1. Matériel ... 45
 3.3.1.1.1. Logiciel .. 45
 3.3.1.1.2. Stimuli ... 45
 3.3.1.2. Procédures .. 46
 3.3.1.2.1. Phases d’apprentissage ... 46
 3.3.1.2.2. Phases de restitution ... 46
 3.3.1.3. Résumé de l’expérience .. 48
 3.3.2. Résultats ... 48
 3.3.3. Discussion .. 50
4. Discussion générale .. 51
 4.1. Impact du travail de lecture sur mes pratiques professionnelles........ 52
 4.2. Résultats attendus et impact sur mes pratiques professionnelles 53
 4.3. Compétences du professeur des écoles développées par ces réflexions ... 55
 4.4. Pistes et perspectives de recherche .. 57

Conclusion... 59

Annexes ... 60
 Annexe 1 .. 61
 Annexe 2 ... 62

Bibliographie.. 63
Tables des illustrations

Figure 1 : Schéma représentant l'organisation des mémoires à long terme 12

Figure 2 : Tableau représentant l'organisation entre elles des différentes mémoires................. 14

Figure 3 : Mémoire et cerveau - Le cerveau et les apprentissages de Olivier Houdé et Grégoire Borst .. 15

Figure 4 : Schéma représentant le modèle de Atkinson et Shiffrin... 16

Figure 5 : Transmission synaptique et renforcement .. 18

Figure 6 : Le modèle du système de consolidation actif des apprentissages au cours du sommeil (SAUZEAU, J-B. 2017. Impact des troubles du sommeil sur les processus de consolidation des apprentissages dépendants du sommeil chez l'enfant.) 19

Figure 7 : Étiquetage des neurones (LESBURGUERES, E., BONTEMPI, B. 2011. Mécanismes de consolidation de la mémoire : importance de l'étiquetage précoce des neurones du néocortex). .. 21

Figure 8 : Tableau représentant l'organisation des stades de sommeil.................................... 22

Figure 9 : Répartition de la durée des stades de sommeil .. 23

Figure 10 : Répartition du sommeil lent et du sommeil paradoxal sur une nuit de sommeil (Mieux dormir pour mieux travailler - https://dormiraulycee.wordpress.com – 2012) 23

Figure 11 : Représentation des différentes parties du cerveau intervenant dans l'endormissement ... 24

Figure 12 : Fonctionnement de l'horloge interne .. 25

Figure 13 : Représentation schématique des fonctions physiologiques contrôlées par l'horloge biologique ... 25

Figure 14 : Bandeau favorisant l'endormissement développé par Rythm 32

Figure 15 : Impact de la sieste sur les apprentissages, étude de Mednick et al. 2003............. 33
Figure 16 : Graphique représentant la mémorisation avec ou sans temps de sieste (Kurdziel et al. PNAS 2013) ... 34

Figure 17 : Exemples d’images avec et sans signification présentées dans les banques d’images de l’expérience ... 40

Figure 18 : Organisation de la banque d’images proposée aux élèves .. 41

Figure 19 : Simulation des résultats attendus pour les expériences d’apprentissage d’images selon deux conditions de restitution, avec ou sans présence de sieste entre les deux phases d’apprentissages. ... 43

Figure 20 : Comptines proposées pour ce type d’apprentissage (Pohl, F., THIBON, D., DALTON. G. 2018. 100 Chansons & Comptines à l’école maternelle) .. 46

Figure 21 : Comptine 1 pour la restitution ... 47

Figure 22 : Comptine 2 pour la restitution ... 47

Figure 23 : Simulation des résultats attendus pour les expériences d’apprentissage de comptines selon deux conditions de restitution, avec ou sans présence de sieste entre les deux phases d’apprentissages ... 49

Figure 24 : Comparaison des simulations des résultats attendus pour les expériences d’apprentissage de comptines avec et sans temps de sieste entre les phases d’apprentissage selon deux conditions de restitution ... 49

Figure 25 : Organisation type d’une journée de maternelle prenant en compte la nature des apprentissages ... 56

Figure 26 : Organisation type d’une journée de cycle 2 ou 3 prenant en compte la nature des apprentissages ... 57
Introduction

Le métier de professeur des écoles est un métier tourné vers l’autre, vers l’élève, à l’écoute de ses capacités et de ses besoins. C’est également un métier qui permet une transmission de valeurs et de **savoirs**. Les deux années de formation proposées par l’INSPE, ainsi que les stages, les échanges avec les professionnels et la littérature rencontrée permettent d’en apprendre plus sur l’élève. Ils permettent également au professeur des écoles d’aborder l’enseignement au travers de perpétuels réflexions et questionnements afin d’être capable de proposer des **apprentissages** les plus positifs, adaptés et bienveillants possible à ses élèves.

Le sommeil se révèle ces dernières années comme un potentiel outil d’apprentissage, faisant l’objet de nombreuses études. Il représente à travers la **sieste** un quart de la journée scolaire d’un élève de petite et moyenne sections. Ceci pose donc question, interrogéant sur le véritable rôle de la sieste à l’école, à savoir si la sieste est proposée simplement par nécessité physiologique ou si elle permet des bénéfices aux élèves dans le cadre scolaire. Rapidement, on comprend que la sieste a toute sa place dans le **processus d’apprentissage** des élèves mais aussi dans leur bien-être. Il s’agit alors de se questionner sur la façon d’aborder la sieste pour qu’elle serve l’école au maximum.

D’autre part, l’étude d’expériences réalisées préalablement sur ce sujet, et notamment par Salomée Pernin, révèle que le sommeil n’a pas d’impact sur l’apprentissage d’images chez les jeunes enfants, ce qui sous-entend que ce type d’apprentissage mobiliserait la mémoire implicite. Ainsi ces résultats font émerger différentes réflexions, comme l’importance de connaître les mémoires sollicitées par les méthodes d’apprentissages, afin de pouvoir adapter ou non la pédagogie au rythme de sommeil de l’enfant.

Ayant un cursus scientifique et un grand besoin de comprendre les mécanismes qui m’entourent et plus particulièrement l’Humain, combiné à ces réflexions émanant de mon envie de devenir professeure des écoles et cette intention de mieux comprendre les élèves et leur façon d’apprendre, c’est tout naturellement que j’ai choisi un sujet d’étude tel que l’impact du sommeil sur la consolidation des apprentissages chez les jeunes enfants.
Contexte de recherche.

Ce mémoire s'inscrit dans le cadre d'une thématique proposée par Annabelle Goujon et intitulée "Le rôle du sommeil sur la consolidation des apprentissages". Il abordera plus spécifiquement l'impact de la sieste sur la consolidation des apprentissages chez les jeunes enfants.

Le premier objectif de ce mémoire est donc d'étudier l'impact du sommeil sur les apprentissages à l'école. Dans cette optique, et afin d'obtenir des résultats les plus fiables possibles, il semble judicieux de s'intéresser aux temps de sieste concernant les maternelles ou aux temps de relaxation pouvant être mis en place avec des élèves de cycles 2 et 3. Effectivement, dans le cadre de cette recherche, il semble aujourd'hui compliqué de s'intéresser aux nuits de sommeil des élèves. La diversité des habitudes familiales concernant la durée des nuits, l'heure du coucher, etc, étant trop importante, l'étude scientifique n'en serait que peu précise. De plus, il est important de garder avec les parents un lien professionnel. L'étude des nuits pourrait être perçue par les parents comme une intrusion dans leur vie personnelle ou comme un jugement de leur éducation, ce qui risquerait de compromettre la relation parents-enseignant, essentielle pour la réussite scolaire des enfants. D’autre part, la sieste, pratique simple à mettre en place et facilement contrôlable par l'enseignant apparaît comme un paramètre très intéressant à étudier, et potentiellement très bénéfique sur les apprentissages. Il s'agit donc d'études intéressantes sous tous points de vue.

Le second objectif fixé est l'étude de l'influence des méthodes d'apprentissages. Il serait donc intéressant d'étudier l'impact de la sieste sur les apprentissages selon la méthode d'apprentissage. Cette double étude permettrait de révéler la(les) méthode(s) d'apprentissage qui, couplée(s) au sommeil serai(en)t bénéfique(s) pour l'élève.

Ces études sont menées dans l'optique de mieux comprendre le fonctionnement des apprentissages chez l'élève et dans l'espoir d'acquérir de nouveaux outils et savoirs permettant d'aider chaque enfant à mieux apprendre.

Ce mémoire de recherche est organisé en deux parties : une partie théorique et une partie expérimentale.
La partie théorique aborde les notions d'apprentissage, de mémoire et de mémorisation permettant de comprendre les processus cognitifs engendrés lors de l’expérimentation par les élèves. Ensuite, le sommeil est décrit afin d’en comprendre ses composantes strictes. Il s’agit aussi de s’attarder sur la place du sommeil à l’école. La dernière partie permet de mettre en relation ces deux grands axes étudiés : l'apprentissage et le sommeil, pour en comprendre les liens. Par la suite, des résultats d'études sur le sujet appuient le propos.

La partie expérimentale présente quant à elle les expériences imaginées pour répondre à la problématique, suivies des résultats et des analyses de ceux-ci. Elle se termine par une réflexion sur les liens entre ce mémoire et la pratique du métier de professeur des écoles.
PARTIE THEORIQUE

1. Apprentissage, mémoire et mémorisation

1.1. L'apprentissage

1.1.1. Définition de l'apprentissage

L'apprentissage est un ensemble de mécanismes qui mène à l'acquisition de connaissances, de savoirs et de savoir-faire. Amener l'élève à l'apprentissage est un des enjeux majeurs de l'école, maternelle comme élémentaire. C'est le rôle clé du professeur des écoles, de permettre à ses élèves d'accéder aux connaissances par le biais de l'apprentissage. Il en existe deux types principaux : l'apprentissage implicite et l'apprentissage explicite.

1.1.1.1. Apprentissage implicite

On entend par apprentissage implicite "tout processus par lequel les comportements s'adaptent progressivement aux caractéristiques des situations sans que l'individu recourt intentionnellement à une connaissance explicite" (CRAHAY, M., DUTREVIS, M. 2010. Psychologie des apprentissages scolaires, page 26). Ceux-ci sont donc induits inconsciemment, et sont ensuite amplifiés par d'autres apprentissages, explicites.

1.1.1.2. Apprentissage explicite

L'apprentissage explicite correspond à l'acquisition de connaissances de façon consciente et systématisée que l'enfant mobilise de façon intentionnelle. Or les connaissances explicites ne deviennent pas automatiques elles-mêmes, ce qui signifie qu'il existerait une dialectique dynamique entre apprentissages implicites et apprentissages explicites.

1.2. La mémoire

1.2.1. Définition de la mémoire

"La mémoire permet d'enregistrer des informations venant d'expériences et d'événements divers, de les conserver et de les restituer. Différents réseaux neuronaux
sont impliqués dans de multiples formes de mémorisation" selon l'INSERM, Institut Nationale de la Santé et de la Recherche Médicale.

Il s'agit d'une fonction "qui nous permet d'intégrer, conserver et restituer des informations pour interagir avec notre environnement. Elle rassemble les savoir-faire, les connaissances, les souvenirs. Elle est indispensable à la réflexion et à la projection de chacun dans le futur. **Elle fournit la base de notre identité.** (INSERM).

De plus, il existe plusieurs types de mémoire, interconnectés, et suivant des réseaux neuronaux différents tels que : la mémoire de travail, la mémoire sémantique, la mémoire épisodique, la mémoire procédurale, ou encore la mémoire perceptive. Plus généralement, ces cinq systèmes de mémoire peuvent être organisés et classés sous deux grands types : la mémoire à court terme et la mémoire à long terme.

1.2.1. Mémoire à long terme versus mémoire à court terme

Il existe donc deux principaux types de mémoire : la mémoire à long terme et la mémoire à court terme, englobant les différents types de mémoire énoncés plus tôt. La différence majeure entre ces deux mémoires n'est autre que l'intervalle de rétention entre le moment où l'on crée le souvenir et le moment où on le récupère. De plus, la mémoire à long terme a une capacité considérable à enregistrer des informations, là où la mémoire à court terme a une capacité très réduite.

1.2.1.1. Mémoire à long terme

La mémoire à long terme ou MLT est la mémoire qui nous permet de retenir les choses de façon illimitée et sur de très longues périodes. Elle est organisée en plusieurs sous-types de mémoire :

![Figure 1 : Schéma représentant l'organisation des mémoires à long terme](image-url)
1.2.2.1.1. Mémoire déclarative

La mémoire déclarative ou mémoire explicite correspond au stockage et à la récupération des informations que l'individu peut faire émerger consciemment et qu'il est capable d'exprimer par le langage. Elle concerne donc les mémoires accessibles à la conscience telles que la mémoire épisodique et la mémoire sémantique.

La mémoire épisodique correspond aux souvenirs des moments passés, alors que la mémoire sémantique correspond aux connaissances et aux savoirs acquis.Cette mémoire déclarative contient donc tous les types de mémoire auxquels nous avons accès consciemment: les savoirs et les souvenirs construits.

1.2.2.1.2. Mémoire non déclarative

La mémoire non déclarative ou mémoire implicite, opposée à la précédente, correspond à tout type de mémoire non accessible consciemment. Ce sont des informations stockées auxquelles nous n'avons pas accès directement, même si elles sont bel et bien intégrées et retenues par notre cerveau. Nous sommes incapables de les exprimer par le langage car nous n'en avons simplement pas conscience. Cette mémoire implicite est répartie en quatre composantes, parmi lesquelles se trouvent deux formes de mémoire. Il s'agit de la mémoire procédurale et de la mémoire perceptive.

La mémoire procédurale correspond à la mémoire des automatismes : ce sont toutes les actions motrices que nous faisons automatiquement, comme conduire ou marcher et que nous réalisons inconsciemment. La mémoire perceptive est la mémoire associée aux sens. Elle permet par ceux-ci et principalement par la vision et l'audition de sélectionner des éléments de l'environnement de façon inconsciente. Elle permet entre-autres la reconnaissance des visages ou des voix.

Les deux autres éléments qui constituent la mémoire implicite sont le conditionnement et l'apprentissage non associatif.

1.2.2.2. Mémoire à court terme

La mémoire à court terme, MCT ou mémoire de travail correspond à la mémoire immédiate soit à la mémoire du moment présent. Il s'agit de la mémoire que l'on active en premier pour retenir l'information sur un temps court. Cette mémoire ne peut retenir que des
informations restreintes : capacité de stockage de 7 unités élémentaires plus ou moins 2. L'information courte et immédiate entre en MCT pour quelques secondes, si elle est répétée plusieurs fois elle pourra entrer en MLT, sinon elle sera directement oubliée pour laisser place à de nouvelles informations en MCT.

1.2.3. Les mémoires : organisation

Les cinq types de mémoire décrits dans la définition de la mémoire globale, soit la mémoire de travail, la mémoire sémantique, la mémoire épisodique, la mémoire procédurale, la mémoire perceptive, ont été exposés. Il est possible de reprendre ceux-ci à l'aide d'un tableau schématique afin de rendre les choses plus claires concernant leur organisation.

| MEMOIRE |
|-----------------|-----------------|
| Mémoire à long terme = MLT | Mémoire à court terme = MCT |
| Mémoire déclarative = mémoire explicite | Mémoire non déclarative = mémoire implicite |
| Mémoire épisodique = Souvenirs | Mémoire sémantique = Savoirs |
| Mémoire procédurale = Automatismes | Mémoire perceptive = Sens |

Figure 2 : Tableau représentant l'organisation entre elles des différentes mémoires

On remarque ici clairement l'organisation des mémoires entre elles. Celles-ci sont également très organisées dans le cerveau, puisque chacune emprunte des réseaux neuronaux différents, (même si elles sont interconnectées), ce qui implique que chacune corresponde plus ou moins à une zone cérébrale particulière.
1.3. Le processus de mémorisation

1.3.1. La mémorisation

Toute information doit subir trois étapes afin d'être stockée en mémoire. Ces trois étapes sont en réalité des concepts fondamentaux et obligatoires pour toute activité mnésique. Il s'agit de l'encodage, du stockage, et de la restitution. Ils permettent successivement aux informations d'entrer dans la mémoire, d'y être maintenues et d'être rappelées.

1.3.1.1. Etape 1 : l'encodage

L'encodage est la capacité d'acquérir de nouvelles informations d'origine sensorielle, c'est à dire en provenance de nos sens : l'ouïe, la vue, le toucher, l'odorat et le goût. La mémoire de travail (MCT) et la mémoire perceptive interviennent essentiellement dans cette étape. Il s'agit de mettre en place des stratégies (sémantique, phonologique, visuelle) qui vont faciliter l'encodage, c'est à dire faciliter le codage de l'information et rendre celle-ci traitable par les mécanismes neurologiques adéquats.

1.3.1.2. Etape 2 : le stockage

Le stockage est la deuxième étape de la mémorisation et correspond au maintien dans le temps des informations encodées. Celles-ci sont préalablement triées, et seules les informations principales et importantes subissent cette deuxième étape. L'information codée
intéressante est mise en mémoire (MLT), elle va alors pouvoir y être stockée, afin de durer dans le temps.

1.3.1.3. Etape 3 : la restitution

L'ultime étape est la restitution. Il s'agit de la capacité à restituer une information préalablement encodée et stockée. C'est une récupération de l'information. Les stratégies de restitution vont dépendre des stratégies d'encodage.

1.3.2. Le système cognitif de Atkinson et Shiffrin

En 1968, deux scientifiques Atkinson et Shiffrin élaborent la théorie du processus cognitif. Ce modèle montre le processus de mémorisation comme reposant sur les différents types de mémoire qui se succèdent.

Les stimuli de notre environnement nous parviennent dans un premier temps et s'inscrivent dans la mémoire à très court terme pendant quelques millisecondes seulement. Si l'information est jugée importante à cette étape elle passe en MCT. Sinon elle est directement oubliée. Ensuite, la MCT traite à son tour l'information pendant quelques secondes. Si celle-ci est vraiment importante, elle devra être répétée afin d'accéder à la MLT. Sinon elle sera oubliée. Cet enchainement correspond en réalité à l'encodage de l'information. Puis celle-ci est stockée en MLT, et y reste de façon illimitée. Lorsqu’on veut se souvenir de l’information, on active le système de récupération qui fait passer l'information de la MLT à la MCT. Elle nous revient alors en tête et nous pouvons l’exprimer.

Figure 4 : Schéma représentant le modèle de Atkinson et Shiffrin

![Figure 4](image-url)
1.3.3. La consolidation des informations en MLT

Les informations sont donc stockées en MLT durant la deuxième étape de la mémorisation. On parle alors de consolidation mnésique.

1.3.3.1. Plasticité cérébrale et consolidation mnésique

La plasticité cérébrale se définit comme la capacité que possède le cerveau, à modifier sa propre structure synaptique ainsi que ses fonctions. Les informations nouvellement acquises laissent des traces mnésiques durant l'apprentissage et entraînent une réorganisation des systèmes neuronaux, permettant alors la mémorisation.

La plasticité cérébrale se traduit par un renforcement synaptique, c’est-à-dire une communication neuronale qui peut se réorganiser pour être plus intense et efficace, permettant d’accélérer la transmission de l’information. Cela permet de privilégier certains circuits neuronaux pour une meilleure mémorisation en MLT, c’est la potentialisation à long terme. Le cerveau est d’autant plus malléable et donc d’autant plus apte à apprendre et encoder de nouvelles informations que l’individu est jeune.

1.3.3.1.1. Consolidation synaptique

La consolidation synaptique correspond à un ensemble de changements moléculaires et cellulaires qui vont permettre de renforcer les synapses durant le temps suivant l’encodage d’un apprentissage nouveau. La synapse est le pilier même du souvenir, c’est à son niveau que se passe la consolidation rendant possible le stockage de l'information.

Lorsque nous possédons une connexion synaptique faible par exemple : nous allons apprendre l'information, ce qui induit un signal électrique qui va activer le renforcement de la connexion synaptique jusqu'alors faible, le contact entre le neurone pré-synaptique et post-synaptique devient alors plus étroit.

Si on s'intéresse au renforcement de la connexion synaptique plus précisément : l'apprentissage induit un signal électrique intense dans le neurone pré-synaptique, ce qui entraîne la libération de glutamate dans la fente synaptique en importante quantité. Le signal devient alors un signal chimique. Ce glutamate va aller se fixer sur les récepteurs AMPA et NMDA se trouvant sur le neurone post-synaptique. Cependant les récepteurs NMDA restent bloqués par un ion magnésium malgré la fixation de glutamate. Pour permettre l'ouverture de
ces derniers, il sera nécessaire que le neurone post-synaptique soit préalablement dépolarisé à un moindre degré. Pour se faire, la fixation du glutamate sur les récepteurs AMPA engendre la libération d’un ion sodium qui lui-même dépolarisera localement en post-synaptique. Ainsi, cette dépolarisation couplée à la fixation de glutamate sur les récepteurs NMDA permet la libération de l’ion magnésium et donc l’ouverture des récepteurs laissant entrer les ions calcium dans le neurone post-synaptique. Le calcium se retrouve alors en grande quantité, ce qui permet la transmission du signal pré-synaptique au neurone post-synaptique. De plus cette concentration de calcium réveille les kinases du neurone et induit un renforcement de la synapse via une activation en cascade des récepteurs calciques.

En effet, ces phénomènes décrits s’accompagnent de réactions chimiques produisant la synthèse de nouvelles protéines qui permettent des changements morphologiques progressifs des neurones: changement de forme, de taille de la synapse et augmentation des surfaces d’apposition entre les éléments pré et post-synaptiques.

Figure 5 : Transmission synaptique et renforcement
Ce mécanisme global correspond à une augmentation importante et durable de l'efficacité synaptique nommée la potentialisation à long terme : PLT. Effectivement, pour que le souvenir perdure, il est nécessaire que les modifications des synapses impliquées soient stabilisées. Ce phénomène synaptique est donc pleinement responsable de la consolidation des informations. On passe de synapses silencieuses à synapses actives, ou dans certains cas, à la formation de nouvelles synapses.

1.3.3.1.2. Consolidation systémique

La consolidation systémique ou dialogue hippocampo-cortical correspond à la consolidation des informations pendant les périodes off-line soit périodes de repos ou de sommeil. Les informations sont temporairement stockées dans l'hippocampe, mais ne peuvent y rester de façon durable. Durant la période off-line suivant l'apprentissage, les informations vont donc passer de l'hippocampe au néocortex, capable d'un stockage illimité.

Figure 6 : Le modèle du système de consolidation actif des apprentissages au cours du sommeil (SAUZEAU, J-B. 2017. Impact des troubles du sommeil sur les processus de consolidation des apprentissages dépendants du sommeil chez l'enfant.)
On observe au niveau de la figure A, le dialogue hippocampo-cortical. Les informations nouvelles sont intégrées au niveau de l'hippocampe afin de créer des traces mnésiques. Durant le sommeil, ces traces mnésiques temporaires sont transférées au niveau cortical. Effectivement, il sera nécessaire que ce nouveau réseau soit réactivé et répété durant le sommeil paradoxal afin que les traces mnésiques deviennent progressivement indépendantes de l'hippocampe et pleinement intégrées aux réseaux neuronaux existants. Il s'agit de l'étiquetage neuronal.

La figure B nous permet de voir la différence entre l'intégration d'informations nouvellement encodées ou déjà existantes. Lorsque les informations sont nouvellement encodées, le processus décrit sur la figure A a lieu complètement. Or, lorsqu'il s'agit d'informations déjà stockées au niveau cortical, le cortex pré-frontal inhibe les actions d'intégration et de consolidation de l'hippocampe en les réalisant lui-même.

1.3.3.2. Étiquetage des neurones

L'étiquetage des neurones est en lien avec la consolidation systémique préalablement décrite. Effectivement, l'encodage de nouvelles informations induit directement le recrutement de neurones dans le néocortex. Or, il est nécessaire que ces neurones soient étiquetés afin que l'hippocampe les réactive pendant le sommeil.

L'étiquetage des neurones consiste donc à recruter les neurones dans le néocortex durant la phase d'éveil. Puis durant la phase de sommeil suivant l'apprentissage, les neurones vont être étiquetés en lien avec l'hippocampe et réactivés par celui-ci. Une fois l'information consolidée, l'hippocampe peut alors se désengager et l'information se trouve alors stable dans le néocortex.
Ce processus d'étiquetage permet finalement de minimiser les interférences entre les différentes expériences tout en assurant une trace mnésique stable et durable au niveau du réseau néocortical. Il s'agit en fait, en étiquetant les neurones, de信号er les éléments pertinents qui nécessitent d'être consolidés.

2. Le sommeil

2.1. Définition et caractéristiques

2.1.1. Définition du sommeil

Le sommeil est un état physiologique d'inconscience relative, nécessaire à l'homme pour être en bonne santé. Il s'agit d'un état régis par le cerveau et caractérisé par de nombreuses modifications physiologiques permettant de diminuer le tonus musculaire, le rythme cardiaque ou encore la température corporelle.

Le cerveau possède trois états fonctionnels : l'état d'éveil, l'état de sommeil lent (sommeil profond) ou l'état de sommeil REM (Rapid Eye Movement) aussi appelé sommeil paradoxal. Durant l'état de sommeil profond, il y a une diminution nette de l'activité métabolique alors qu'il existe peu de différence d'activité entre l'état d'éveil et le sommeil...
paradoxal. Or, il est essentiel de permettre à notre corps de passer par ces trois états fonctionnels.

Effectivement, les moments de sommeil paradoxal permettent de mémoriser les informations apprises durant la phase d'éveil mais sont également impliqués dans la construction psychologique de l'individu. Les moments de sommeil lent profond permettent quant à eux, de récupérer de la période d'éveil. De plus, l'hormone de croissance est fabriquée pendant cette phase de sommeil profond.

Il est donc nécessaire de dormir et d'avoir des temps de sommeil profond tout autant que des temps de sommeil paradoxal.

2.1.2. Les quatre stades du sommeil

Il existe un cycle de sommeil composé de quatre stades ayant un ordre précis. Le stade 1, correspond à une phase d'endormissement, de somnolence, qui est accompagnée d'un état relaxé du corps. C'est la transition entre l'état d'éveil et le sommeil. S'ensuit le deuxième stade, le stade de sommeil lent. Il correspond à un sommeil peu profond. Le corps est de plus en plus relaxé ce qui signifie que le tonus musculaire diminue. C'est le stade le plus présent au cours d'une nuit de sommeil. Le stade 3 est le stade de sommeil lent profond combiné avec un stade de sommeil lent très profond (stade 4 autrefois). Durant cette phase, il est difficile de réveiller l'individu, toutes ses fonctions sont diminuées. Le dernier stade est le stade 4 du sommeil paradoxal. C'est durant ce temps que sera permise la mémorisation. L'activité métabolique est la même que durant la phase d'éveil alors que le tonus musculaire est totalement aboli pour éviter de vivre ses rêves.

Ces 4 stades peuvent être organisés par leur appartenance aux états du cerveau :

<table>
<thead>
<tr>
<th>Etat de sommeil lent</th>
<th>Etat de sommeil REM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stade 1 : endormissement</td>
<td>Stade 4 : sommeil paradoxal</td>
</tr>
<tr>
<td>Stade 2 : sommeil lent léger</td>
<td></td>
</tr>
<tr>
<td>Stade 3 : sommeil profond et très profond</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8 : Tableau représentant l'organisation des stades de sommeil
De plus, on sait que ces stades s'enchaînent, or ils ne sont pas tous égaux. Ils représentent chacun respectivement une part précise de notre nuit de sommeil.

![Diagramme des stades de sommeil](image)

Figure 9 : Répartition de la durée des stades de sommeil

2.1.3. Organisation type d'une nuit de sommeil

Les stades déterminés plus tôt correspondent à un cycle de sommeil. Chaque cycle a une durée moyenne de 90 minutes. Durant la nuit, il y a succession de plusieurs cycles : 4 à 6 cycles. De plus, la nuit se divise généralement en deux parties : la première moitié, plus riche en sommeil lent profond alors que la deuxième moitié est plutôt riche en sommeil paradoxal.

![Diagramme des cycles de sommeil](image)

Figure 10 : Répartition du sommeil lent et du sommeil paradoxal sur une nuit de sommeil

(Mieux dormir pour mieux travailler - https://dormiraulycee.wordpress.com – 2012)

Cette répartition s'explique par le fait que durant la première partie de nuit, le sommeil permet à l'organisme de récupérer par rapport à la période d'éveil. Plus la durée d'éveil est importante plus la durée de sommeil lent et notamment de sommeil lent profond est importante. Le sommeil
profond prend donc une part importante dans les premiers cycles et finit par décroître au fur et à mesure des cycles et de la nuit, lorsque nous avons payé notre dette en sommeil, et que nous n'avons plus besoin de ce sommeil profond. Le sommeil paradoxal prend alors cette place laissée libre dans les derniers cycles, ce qui explique cette organisation des stades différente entre le début et la fin de la nuit.

2.2. Processus biologique lié au sommeil

![Diagramme du cerveau intervenant dans l'endormissement](image)

Figure 11 : Représentation des différentes parties du cerveau intervenant dans l'endormissement

2.2.1. Notion d'horloge interne

Dans le cerveau, au niveau des noyaux supra-chiasmatiques (NSC), dans la partie antérieure de l'hypothalamus, se trouve une horloge principale qui régule notre rythme circadien. Le rythme circadien correspond au rythme biologique d'une durée d'environ 24 heures alternant veille-sommeil et qui marque notre vie quotidienne. Ce rythme est maintenu par ce que l'on appelle "l'horloge interne". Celle-ci est dépendante de la lumière. En effet, les nuances de la lumière permettent la perception de la rotation de la terre, et régule l'organisme. L'obscurité joue donc un rôle important dans l'endormissement en entraînant une cascade d'événements.
Il existe des horloges dans tous les organes. Ce sont les horloges périphériques alors que celle du cerveau correspond à l'horloge principale. Les NSC jouent en réalité le rôle de chef d'orchestre de ce système horloger en régulant l'ensemble des horloges périphériques.

Les mécanismes de communication avec les horloges périphériques sont nombreux : par voie hormonale (passage par le sang de la mélatonine), ou système faisant intervenir la température. Celle-ci doit diminuer durant la nuit pour atteindre 36.3° aux alentours de 7h du matin. Plus le corps a une température basse, et plus l'envie de dormir est importante, on parle de pression de sommeil. Le fonctionnement de notre horloge interne, et notamment sa synchronisation avec les 24 heures de la journée, est complètement lié aux fonctions qui dirigent notre comportement.
2.3. Le sommeil chez les enfants

2.3.1. Le sommeil chez l'enfant, différences avec l'adulte

Globalement, l'enfant possède la même structure ainsi que les mêmes stades de sommeil que l'adulte. Or il existe quelques différences.

La première concerne la durée de sommeil des enfants nettement supérieure à celle des adultes. Ceci vient du fait que la glande pinéale largement impliquée dans l'endormissement, se dégrade à partir de 20ans. L'endormissement est donc plus facile pour l'enfant que pour l'adulte. De plus cette différence de sommeil semble logique : l'enfance étant une période privilégiée pour les apprentissages, le cerveau de l'enfant a besoin de plus de repos.

D'autre part, il existe une autre différence : l'enfant bénéficie de quantités de sommeil lent profond et de sommeil paradoxal supérieures à l'adulte, qui est plus souvent réveillé durant la nuit (sommeil moins profond). Il a été montré qu'à durées de sommeil égales, le sommeil de l'enfant est deux à trois fois plus efficace que celui de l'adulte (Le sommeil de l'enfant est plus efficace que celui de l'adulte. Wilheim et Al. 2013.).

2.3.2. Le sommeil à l'école maternelle : la sieste

La sieste est un phénomène indispensable au bien-être de l'enfant, qui montre son importance dès le plus jeune âge. Effectivement, la consolidation nocturne fonctionne déjà dès les premiers mois de la vie. Par exemple, l'apprentissage du langage et notamment des mots chez l'enfant de moins d'un an dépend déjà du sommeil. C'est donc pour cela qu'il est essentiel que l'enfant fasse des siestes régulières, afin de mieux retenir les mots qu'il a pu entendre précédemment (Les bébés retiennent et généralisent mieux les mots après avoir dormi. Friedric, Wilhelm, Born, Frederici. 2015.; Seehagen, Konrad, Herbert, Schneider. 2015.).

D'autre part, le sommeil fait partie intégrante du quotidien des enfants à l'école maternelle. Effectivement, la sieste est préconisée par les textes officiels : "Le respect des cycles de sommeil des enfants de l'école maternelle est indispensable. La proposition et l'organisation d'une sieste ou d'un temps de repos doivent pouvoir répondre aux besoins physiologiques des jeunes enfants : dormir, récupérer, être au calme, s'isoler ponctuellement, se détendre et se relaxer dans un espace aménagé et sain." (Éduscol - Nouveaux rythmes scolaires à l'école maternelle).
Il est estimé que le temps journalier moyen de sommeil d'un enfant entre 2 et 5 ans est de 12 à 14 heures. Il est donc clair qu'un enfant à l'école a besoin d'un temps de repos dans sa journée. Ce temps se trouve généralement après le déjeuner et correspond jusqu'à 4 ans à une sieste d'une heure trente environ (correspondant à la durée d'un cycle de sommeil chez l'enfant). Cette sieste est donc nécessaire pour répondre aux besoins physiologiques de l'enfant mais pas seulement. En effet, le sommeil permet la récupération de la fatigue psychique tout autant que physique, ainsi que la maturation du système nerveux et favorise également la mémorisation. À l'école, la sieste permet à l'enfant d'acquérir un certain équilibre qui le rend disponible pour les apprentissages.

Il semblerait que chez l'enfant de maternelle, même une brève sieste l'après-midi améliore les apprentissages de la matinée. Pour que le bénéfice soit maximal, il semble nécessaire que la sieste ait lieu le plus tôt possible après l'apprentissage. Or on estime aujourd'hui que ce bénéfice n'existe que chez les enfants qui font des siestes régulièrement. Il est donc inutile de forcer les enfants à dormir à l'école. L'idée est de laisser l'enfant dormir s'il en éprouve le besoin. En effet le cerveau est un régulateur autonome de la quantité de sommeil nécessaire à notre corps, en fonction des nouvelles stimulations de la journée (Effet positif de la sieste en maternelle. Kurdziel, Duclos, Spencer. 2013.).

Il est également important de souligner, en lien avec les expérimentations, que la régularité des heures de coucher et de lever de la sieste est fondamentale pour les enfants. On rappelle, comme cela a été précédemment expliqué plus tôt, qu’il ne faut pas non plus forcer un enfant à dormir, s'il ne dort pas au bout de 20 minutes, temps durant lequel il a tout de même bénéficié de repos, il est autorisé à se lever.

Les lectures et ressources sur le sujet de l'impact de la sieste sur les apprentissages à la maternelle restent rares. Il semble donc intéressant d'orienter la recherche de ce mémoire dans cette direction.

2.3.3. Le sommeil à l'école primaire

Bien que la sieste prime sur toute autre activité pour les 2-4 ans, il ne s'agit plus d'une pratique systématique pour les enfants plus âgés. Cependant, pour les enfants plus grands et ayant cette habitude, il est nécessaire de rester vigilant et observateur afin de pouvoir proposer
aux élèves des moments de repos ou des activités calmes afin de mieux les préparer aux apprentissages.

Plus les classes s'enchaînent, et plus il est difficile de proposer des temps de repos aux élèves, en raison des emplois du temps chargés et des programmes denses. Or, une nouvelle forme de repos est présente depuis quelques années, même si elle peine à trouver une vraie place dans le quotidien des élèves et de l'enseignant. Il s'agit de la relaxation. Elle consiste à mettre en place avec les élèves des moments de détente ou simplement de calme parfois très courts (5 min) et qui ont globalement deux objectifs : une récupération mentale et physique pour l'enfant, tout comme le fait la sieste avec les maternelles ; ainsi qu'une amélioration de la capacité de concentration et donc de l'apprentissage.

3. Lien sommeil-mémoire

3.1. Rôle du sommeil avant l'apprentissage

Récemment, de nombreuses études ont montré qu'il était indispensable d'avoir un temps de sommeil avant un apprentissage. Effectivement le sommeil permettrait de préparer l'hippocampe à l'encodage de nouvelles informations.

3.2. Sommeil et mémoire

3.2.1. Sommeil et encodage

Certains chercheurs ont étudié le lien sommeil-encodage plus en détails pour en comprendre l'importance.

Ainsi, une équipe (Drummond et al., 2000) est arrivée à la conclusion que la privation de sommeil était néfaste sur les apprentissages de listes de mots. D'autres (Mader, Santhanam, Saletin, Walker, 2011) montrent que le manque de sommeil a un important impact sur l'encodage des associations entre les visages et les noms, là où certaines équipes (Walker, Stickgold, 2006) montrent l'impact de cette privation sur l'encodage des mots émotionnels. De plus, ces conclusions sur le déficit d'encodage provoqué par la privation de sommeil sont accompagnées de résultats montrant une réduction de l'activation de l'hippocampe. C'est cette
réduction qui serait alors responsable de la difficulté de reconnaissance (Yoo, Hu, Gujar, Jolesz, Walker, 2007).

Le sommeil a donc un rôle important dans l'encodage de nouvelles informations acquises lors d'apprentissages. Il va jouer sur l'activité de l'hippocampe lors du sommeil profond pour favoriser l'encodage. Or, il va également permettre une meilleure consolidation mnésique.

3.2.2. Sommeil et consolidation mnésique

Plusieurs recherches ont révélé que le fait de dormir après un apprentissage permettait de réduire le taux d'oubli de l'information nouvelle. La question de savoir si le sommeil avait un rôle passif ou actif dans la consolidation mnésique s'est alors posée. D'un côté l'hypothèse du sommeil passif, qui se traduit par le fait que le sommeil permettrait uniquement de protéger l'information et de lui laisser le temps de se consolider étant donné qu'il s'agit du seul instant de repos pour le cerveau, qui à ce moment-là n'est pas sollicité par de nouveaux encodages ou ne subit pas de stimulations extérieures. Or, cette théorie, bien que logique, ne suffit pas pour expliquer les améliorations d'apprentissage causées par le sommeil et observées lors des études. Le sommeil serait donc impliqué activement dans la consolidation mnésique de l'information nouvelle, c'est à dire dans la consolidation synaptique et systémique définies précédemment.

3.2.3. Liens neurophysiologiques sommeil-mémoire

Des études ont pu prouver qu'il existait chez l'homme un "replay" se traduisant par la réactivation des aires hippocampiques activées lors d'un nouvel apprentissage pendant le temps de sommeil suivant l'apprentissage (Peigneux et al. 2004). De plus une corrélation entre l'amélioration des performances de restitution et l'amplitude de réactivation durant le sommeil a été démontrée.

Cette réactivation s'accompagne également d'une réorganisation des circuits neuronaux. Des tests (Walker, Stickgold, Alsop, Gaab, & Schlaug, 2005) ont révélé que les réseaux neuronaux d'un nouvel apprentissage étaient différents selon que le patient ait dormi ou non, montrant ainsi que ces réseaux subissent leur réorganisation durant le sommeil. Ainsi, le phénomène de plasticité cérébrale définit plus tôt et traduit ici par la consolidation synaptique et systémique serait donc un phénomène actif durant le sommeil. Dans un premier temps a lieu la consolidation synaptique qui correspond à la réactivation neuronale dans l'hippocampe.
des zones empruntées précédemment par l'information nouvelle. Puis ce nouveau réseau actif est transmis au néocortex, afin d'être stocké en MLT, correspondant alors à la consolidation systémique.

3.3. Résultats des études préalables concernant l'effet du sommeil sur les apprentissages

L'étude du rôle du sommeil sur la consolidation des apprentissages repose sur trois grands types d'expérimentation.

Le premier correspond à la privation de sommeil sur la période de post-apprentissage. Il existe alors deux groupes : l'un est privé de sommeil après l'apprentissage alors que l'autre bénéficie d'une nuit de sommeil complète après l'apprentissage.

Le second type correspond à une étude de l'architecture du sommeil. Le sommeil post-apprentissage est étudié pour un groupe, et comparé à un autre groupe qui n'a pas subi d'apprentissage avant de dormir.

Le dernier type d'expérience consiste à étudier à la fois l'activité cérébrale observée après un apprentissage et l'activité cérébrale observée directement pendant l'apprentissage. Le but étant d'en observer les similitudes, en faisant varier le facteur sommeil.

3.3.1. Premières découvertes

Les premiers résultats d'études sur le sujet apparaissent en 1924. Karl Dallenbach et John Jenkins, deux psychologues américains découvrent que le sommeil semble empêcher d'oublier. Ils se basent sur les travaux d'Ebbinghaus datant du 19ème siècle, et établissent une nouvelle expérience. Ils enseignent des syllabes aléatoires à leurs élèves selon deux variables : soit vers minuit, juste avant le coucher, soit le matin. Ils observent la durabilité de ces apprentissages sur le temps. Les résultats révèlent alors que les apprentissages du matin ne tiennent pas dans la durée et s'effondrent avec le temps, tandis que les apprentissages précédant le coucher restent stables dans le temps à condition que l'apprentissage soit suivi d'au moins deux heures de sommeil. Il est donc conclu que dormir à la suite d'un apprentissage permet d'éviter de l'oublier.
Les découvertes se précisent en 1994, grâce à des chercheurs israéliens qui mettent en évidence le fait que le sommeil améliore l'apprentissage. Ce constat est fait à la suite d'une nouvelle expérience. De nouveaux apprentissages sont proposés aux volontaires. Ils disposent de plusieurs heures d'entraînement et la restitution se déroule à la fin de celles-ci. Les chercheurs considèrent alors que la performance réalisée à la fin de ces heures d'entraînement correspond à la performance maximale, alors considérée comme la limite. La personne est ensuite autorisée à dormir et de nouveaux tests sont réalisés par la suite. Les résultats indiquent que la réussite est nettement supérieure après ces heures de sommeil, augmentant ainsi la performance maximale. Ces travaux permettent également de faire un lien entre qualité du sommeil et qualité de l'apprentissage. Effectivement, l'apprentissage varie directement selon la durée et la profondeur de sommeil. Ainsi, on sait aujourd'hui que le sommeil profond permet la consolidation et la généralisation des connaissances alors que le sommeil paradoxal renforce les apprentissages perceptifs et moteurs.

La même année, Matt Wilson et Bruce McNaughton comprennent le mécanisme neuronal qui permet au cerveau endormi d'apprendre. Ils découvrent qu'en l'absence de toute stimulation extérieure, les neurones de l'hippocampe s'activent spontanément pendant le sommeil. De plus, ces expériences révèlent que les neurones activés durant le sommeil ne sont autres que ceux sollicités la journée lors des apprentissages. Or, l'enchaînement des neurones est beaucoup plus rapide la nuit que la journée. D'autres expériences révèlent que le sommeil facilite également l'automatisation.

Ainsi, après avoir dormi, les connaissances acquises durant la journée sont transférées vers des circuits plus automatiques et spécialisés : l'activité cérébrale se déplace.

3.3.2. Les connaissances actuelles sur les adultes

Aujourd'hui de nombreuses recherches sur le sujet sont en cours pour exploiter ce lien sommeil-apprentissage.

On note par exemple qu'il est aujourd'hui possible d'augmenter artificiellement la profondeur du sommeil en créant un effet de résonnance dans le cerveau. Ceci a alors pour conséquence une consolidation des apprentissages nettement meilleure (Stanislas Dehaene, Apprendre ! Les talents du cerveau, le défi des machines, 2018).
La start-up française *Rythm* commence même à exploiter cet effet. Ils ont créé un bandeau censé favoriser l'endormissement tout en augmentant la profondeur du sommeil en envoyant des petits bruits qui stimulent les rythmes lents du cerveau mis en place la nuit.

D'autres chercheurs envisagent de forcer le cerveau à se réactiver la nuit pour augmenter les apprentissages. L'idée est de diffuser dans la classe une odeur particulière lors d'un apprentissage sans y prêter attention. La nuit, lorsque l'enfant se couche et entre en sommeil profond, la même odeur doit être pulvérisée à proximité. Les résultats révèlent alors que l'apprentissage a été bien plus consolidé chez les enfants qui ont été exposés à l'odeur pendant le sommeil, que les enfants qui n'ont pas été exposés. L'odeur sert ici en réalité d'indicateur inconscient qui incite le cerveau à réactiver l'épisode de la journée qui a été inconsciemment associé à cette odeur. Cette réactivation dirigée va alors permettre d'augmenter la consolidation de l'apprentissage. Ceci fonctionne ici à partir de l'olfaction, or d'autres tests mêlant la vision et l'ouïe existent également. Cependant, il est important de préciser que ces découvertes ne fonctionnent qu'avec des apprentissages réellement effectués. C'est à dire que le cerveau est
incapable d'acquérir de nouvelles compétences pendant la nuit. Il permet simplement de réactiver et consolider des choses déjà apprises et travaillées pendant la journée.

D’autre part, concernant la sieste véritablement, elle procure chez l'adulte un véritable bénéfice sur la consolidation mnésique d'après les expériences de Mednick et al. (2003).

3.3.3. Les connaissances actuelles sur les enfants

De nombreuses études ont été menées sur l'adulte pour évaluer l'impact du sommeil sur la consolidation des apprentissages. Or, à ma connaissance, il existe encore très peu de publications concernant l'impact de la sieste sur l’apprentissage chez l'enfant.

En 2008, Backhaus et al. ont révélé à la suite d'expériences que l'apprentissage verbal était nettement plus amélioré par une période de sommeil suivant l'apprentissage que par une période d'éveil. Les apprentissages visuo-spaciaux ont quant à eux été testés chez l'enfant la même année par Wilhelm et al. et ont révélé qu’ils semblaient bel et bien être favorisés par une période de sommeil, tout comme les apprentissages mobilisant la mémoire épisodique.

A contrario, lors d'études d'apprentissages perceptifs réalisées par Prehn-Kristensen et al. en 2015, les résultats ont révélé que les enfants bénéficiant de sommeil après l'apprentissage d'odeur avaient de moins bonnes performances que les enfants n'ayant eu aucun temps de sommeil après l'apprentissage. Ces résultats sont d'autant plus surprenants qu'ils sont inversés chez l'adulte. De la même façon Fischer et al. révèlent pour des enfants de 7 à 11 ans que les
performances lors d'apprentissages implicites de séquences sont détériorées au cours du sommeil de l'enfant, ce qui est totalement contraire à ce qui est observé chez l'adulte. Tous ces résultats révèlent donc que certains aspects de la consolidation des apprentissages auraient visiblement lieu pendant l'éveil chez l'enfant, alors que d'autres seraient améliorés par le sommeil. Il semblerait que ce soit la consolidation en mémoire implicite ou procédurale qui se déroule préférentiellement durant l'éveil, alors que la consolidation en mémoire déclarative et épisodique nécessiterait du sommeil.

Concernant la sieste, les expériences réalisées révèlent que celle-ci aurait des bénéfices sur les apprentissages et notamment sur la mémoire déclarative (d'après Prehn-Kristensen et al. en 2009 et Wilhelm et al. en 2008), mais également sur la généralisation des apprentissages grammaticaux (d'après Gomez et al. en 2006 et Hupbach et al. en 2009).

De plus, d'après les expériences de Kurdziel et al. de 2013, les enfants de 3 à 6 ans réalisant une sieste après un apprentissage visuo-spatial ont une bonne mémorisation à long terme.

Figure 16 : Graphique représentant la mémorisation avec ou sans temps de sieste (Kurdziel et al. PNAS 2013)
1. Problématique et hypothèses de recherche

Dans la partie théorique, nous avons vu que le sommeil a un impact considérable et reconnu sur la consolidation des apprentissages en MLT et notamment chez l’adulte. Or chez l’enfant, les études restent rares et les résultats contradictoires. En effet, certaines études ont pu révéler l’effet bénéfique du sommeil sur les apprentissages, alors que d’autres viennent contredire cet effet. De plus, il semblerait que la méthode d’apprentissage joue un rôle important sur l’effet du sommeil dans la consolidation des apprentissages. Effectivement, les études révèlent que le sommeil favoriserait la consolidation des apprentissages verbaux et visuo-spatiaux alors qu’il ne favoriserait pas la consolidation des apprentissages sensoriels, d’odeurs notamment. Par ailleurs, le rôle de la sieste sur les apprentissages reste très peu étudié.

Suite à ces constats, il semblait intéressant d’évaluer les bénéfices de la sieste sur les apprentissages selon la nature de l’apprentissage. Les objectifs principaux étaient donc d’étudier chez l’élève de petite à moyenne section (3-5 ans) l’impact de la sieste sur les apprentissages, mais également de faire varier la tâche d’apprentissage afin de tester si une sieste a une influence différente selon la nature de l’apprentissage impliqué.

Ainsi, nous avons imaginé des expériences pour répondre à ces objectifs. Ces expériences vont être décrites ici de la façon dont elles auraient dû être présentées aux élèves.

Deux expériences supposées mettre en œuvre des formes différentes d’apprentissage ont été construites pour être présentées aux élèves, à savoir un apprentissage d’images et un apprentissage de comptines. L’apprentissage d’images est supposé être de type visuo-perceptif, alors que l’apprentissage de comptines est supposé être de nature auditivo-perceptive. Chaque expérience comportait deux conditions de restitution.

La tâche « apprentissage d’images » était constituée de trois phases : une première phase d’apprentissage le matin, une seconde l’après-midi, avant la sieste pour une moitié de classe et après la sieste pour l’autre moitié, suivi d’une phase de restitution le soir même pour tout l’effectif dans une première condition, et trois semaines plus tard pour l’autre condition.

La tâche « apprentissage de comptines » comptait quant à elle quatre phases : deux phases d’apprentissage le matin, puis une troisième l’après-midi avant la sieste pour une partie
et après la sieste pour l’autre partie des élèves. De même que la tâche précédente, la restitution avait lieu le soir même pour tous les élèves dans une condition, et trois semaines plus tard pour l’autre condition.

Les hypothèses testées au travers de ces expériences étaient les suivantes :

1) La sieste aurait un impact moindre sur l’apprentissage d’images que sur l’apprentissage de comptines.
2) Si la mémoire de comptines implique le système déclaratif, le sommeil devrait favoriser la consolidation des apprentissages en MLT. La configuration optimale d’apprentissage serait alors : Apprentissage 1 – Sieste – Apprentissage 2.
3) Si la mémoire d’images implique le système non déclaratif, le sommeil ne devrait pas ou peu impacter la consolidation des apprentissages en MLT.
4) A restitution immédiate, on s’attend à ce que la sieste ait un rôle bénéfique sur l’apprentissage de comptines. Concernant la mémorisation d’images, les résultats devraient être moindres, mais nettement supérieurs qu’à restitution trois semaines plus tard.
5) A restitution sous 3 semaines, on s’attend à une baisse naturelle de la mémorisation. Cependant, on s’attend à ce que la sieste ait un rôle très bénéfique sur la mémorisation de comptines, mais peu d’effet sur la mémorisation d’images à long terme.

2. Plan expérimental

On a isolé ici les variables susceptibles d’influencer la mémorisation des élèves. Grâce au plan expérimental mis en place, trois variables indépendantes ont été étudiées : la durée du délai entre phase d’apprentissage et phase de restitution, le type d’apprentissage et la place du deuxième apprentissage par rapport à la sieste.
2.1. Variables indépendantes intra-sujets

2.1.1. Durée du délai entre phase d’apprentissage et phase de restitution

2.1.2. Type d’apprentissage

La seconde variable intra-sujets est celle concernant la méthode d’apprentissage. Effectivement, tout l’effectif a été exposé à deux types d’apprentissages différents. D’abord un apprentissage visuel basé sur la mémorisation d’images. Puis un apprentissage auditif basé sur la mémorisation de comptines. Cette variable permet d’observer les systèmes impliqués par les méthodes d’apprentissage lors de la mémorisation afin de déterminer quels apprentissages ont intérêts ou non à être couplés au sommeil.

2.2. Variable indépendante inter-sujets : place du deuxième apprentissage

2.3. Modalités d’analyse des données

Concernant les apprentissages visuo-perceptifs, durant la phase de reconnaissance, les données devaient être récoltées sous le format CSV (Comma-separated values) avant d’être analysées sur Microsoft Excel. Ces données correspondent aux données enregistrées lorsque le
sujet appuie sur certaines touches du clavier. La touche espace lors de la phase d’apprentissage si l’élève a déjà vu l’image, et les touches « S » et « L » lors de la phase de reconnaissance pour signifier avoir déjà vu, ou non, l’image.

Les données brutes devaient également permettre certaines analyses. Effectivement, celles-ci permettent de mettre en évidence l’indice de discriminabilité noté A’ correspondant à la capacité du sujet à discriminer s’il a déjà, ou non, rencontré l’image auparavant. L’indice de discriminabilité A’ se calcule en étudiant le rapport entre le taux de réponses correctes données par l’élève (taux de hits H) et le taux de réponses fausses données par l’élève (taux de fausses alarmes FA).

Concernant les apprentissages visuo-perceptifs, l’indice est calculé en fonction du taux de réponses justes données par le sujet par rapport aux taux de réponses fausses (sont considérées comme fausses toutes réponses autres que justes. Une absence de réponse est donc considérée comme fausse).

3. Expériences proposées

3.1. Echantillon d’étude

Les participants qui devaient permettre la réalisation de ces études sont des élèves de cycle 1, de petite et moyenne sections âgés de 3 à 5 ans et scolarisés à l’école maternelle de Corbenay (70). Il s’agissait de ma classe d’affectation durant mon année de titularisation. Cette classe de 26 élèves était composée de 9 élèves de petite section et 17 élèves de moyenne section.

Pour chaque tâche et chaque condition (apprentissage d’images restitution immédiate, apprentissage d’images restitution 3 semaines, apprentissage de comptines restitution immédiate, apprentissage de comptines restitution 3 semaines), ma classe contenait deux groupes :

- Deuxième Apprentissage Avant la Sieste : 13 enfants dont 4 petites sections et 9 moyennes sections (N=13).
- Deuxième Apprentissage Après la Sieste : 13 enfants dont 5 petites sections et 8 moyennes sections (N=13).
Consentement

J’ai fait le choix de ne pas faire circuler de demande d’autorisation pour réaliser ces expériences. Effectivement après entretien avec ma Directrice d’école, nous avons décidé qu’il s’agissait d’expériences purement pédagogiques, qui s’effectuerait dans le cadre scolaire et habituel de la journée de classe et qui ne nécessitaient aucune information personnelle. Ainsi nous avons pensé que le fait d’évoquer aux parents « des expériences » pourrait les effrayer et diminuer la population d’étude, alors qu’il n’y avait pas lieu de s’inquiéter.

3.2. Expérience 1 : Apprentissage visuel

3.2.1. Méthode

3.2.1.1. Matériel

3.2.1.1.1. Logiciel

3.2.1.1.2. Stimuli

Les stimuli présentés aux élèves devaient être deux suites distinctes de photographies (une suite pour chaque condition). Chaque suite était constituée de 80 photographies. Celles-ci étaient de deux types possibles : la moitié était « signifiant », c’est-à-dire porteuses de sens, alors que l’autre moitié étaient sans signification a priori. (i.e. des représentations abstraites mélangant formes, lignes et couleurs).

Comme cela a été indiqué, le matériel était différent pour chaque test. C’est-à-dire que les banques d’images étaient différentes pour la condition de restitution immédiate et pour la condition de restitution sous 3 semaines. Ainsi, le fait de présenter deux matériels par méthode d’apprentissage, soit un pour chaque délai de restitution, nous permet de conserver pour chaque expérience une plus grande population, nous permettant ainsi d’obtenir des résultats plus précis et plus fiables. De plus, ceci nous permettait de comparer pour chaque élève la variable restitution.
Images avec signification :

- Animaux
- Objets
- Paysages

Images sans signification :

Figure 17 : Exemples d’images avec et sans signification présentées dans les banques d’images de l’expérience

3.2.1.2. Procédure

On note ici le fait que les procédures des deux expériences ont été établies dans l’idée d’imposer une certaine stabilité dans les horaires d’apprentissage (premier(s) apprentissage(s) le matin, et dernier apprentissage l’après-midi), afin d’éviter des résultats biaisés par une quelconque corrélation entre efficacité de l’apprentissage et moment de la journée. Les horaires proposés, ainsi que l’organisation ont également été choisis dans l’idée de laisser à chaque élève un temps de repos optimal d’1H30 correspondant à un cycle de sommeil, comme le préconise les textes. On souligne aussi que ce temps est bel et bien un temps de repos, et que certains enfants ne dorment pas.

3.2.1.2.1. Phases d'apprentissage

Les élèves devaient être soumis à deux phases d'apprentissage visuel.

La première phase devait se dérouler de façon individuelle dans le bureau attenant à la salle de classe avec un adulte (stagiaire, ATSEM ou enseignante) durant la matinée de classe.
La deuxième phase d’apprentissage se déroulait dans les mêmes conditions mais comportait une certaine variabilité concernant l’heure à laquelle l’apprentissage était proposé. Effectivement la classe devait être divisée en deux groupes. Le premier groupe bénéficiant de ce dernier temps d’apprentissage avant la sieste, c’est-à-dire avant 13H30, alors que l’autre moitié devait être soumise au même apprentissage mais après la sieste, à partir de 15H00.

Pour ces deux phases, on proposait à l’élève le matériel présenté plus tôt, soit une banque d’images porteuse ou non de sens où chaque image était affichée 3 secondes. La banque d’image était organisée de façon très structurée. Il y avait d’abord l’apparition d’un point de fixation, suivi de l’image (porteuse de sens ou non) qui restait active trois secondes, suivi d’un masque perceptif et d’un blanc. Il devait être expliqué aux enfants que le masque percutif n’est en rien une image à part entière dans cet apprentissage.

Figure 18 : Organisation de la banque d’images proposée aux élèves

Etant donné qu’il s’agissait d’une population très jeune, nous avions mis en place d’autres précautions afin de s’assurer que l’élève reste concentré. D’abord, l’élève devait être isolé dans un bureau attenant à la classe, afin d’éviter toute décentration par les éléments extérieurs (bruits, camarades, activités). Puis l’adulte restait en permanence avec l’élève afin de le garder concentré sur sa tâche. De plus, seul l’adulte avait accès au clavier de l’ordinateur, pour ne pas que les réponses de l’élève soient biaisées par une potentielle incompréhension des touches à utiliser. On demandait également à l’élève de signaler lorsque certaines images étaient déjà apparues durant cette même suite, afin d’observer leur concentration pendant la tâche et
de les motiver. Pour terminer, entre chaque image était placé un écran noir qui « mettait en pause » la série, et qui permettait de régler un éventuel problème de l’enfant, de lui laisser le temps de se reconcentrer… Ainsi ces précautions étaient prises pour éviter tout éventuel résultat biaisé dû à ce matériel et à l’âge des élèves.

3.2.1.2.2. Phases de restitution

3.2.1.3. Résumé de l’expérience

Voici le résumé de l’expérience « apprentissage visuo-perceptif » telle que nous l’avions imaginée.

Tâche 1 « apprentissage d’images » :

Condition 1 : Apprentissage d’images avec restitution J0 (N=26) : APPRENTISSAGE VISUEL rappel immédiat

-**Groupe 1 :** Premier apprentissage le matin – Deuxième apprentissage _avant_ la sieste – Restitution le soir même (N=13)
-**Groupe 2 :** Premier apprentissage le matin – Deuxième apprentissage _après_ la sieste – Restitution le soir même (N=13)
Condition 2 : Apprentissage d’images avec restitution J+21 (N=26) :
APPRENTISSAGE VISUEL rappel J+21.

-Groupe 1 : Premier apprentissage le matin – Deuxième apprentissage après la sieste –
Restitution trois semaines plus tard (N=13)

-Groupe 2 : Premier apprentissage le matin - Deuxième apprentissage avant la sieste –
Restitution trois semaines plus tard (N=13)

Les groupes sont identiques à l’intérieur de chaque tâche. Or ils ont été contrebalancés pour que chaque groupe se retrouve une fois en condition de deuxième apprentissage avant la sieste, et l’autre fois en condition de deuxième apprentissage après la sieste.

2.2.2. Résultats

On présente ici des simulations de résultats attendus :

Figure 19 : Simulation des résultats attendus pour les expériences d’apprentissage d’images selon deux conditions de restitution, avec ou sans présence de sieste entre les deux phases d’apprentissages.

Effectivement, concernant les apprentissages visuels, pour la variable « place de la sieste » on estime comme résultat une absence d’impact du sommeil sur la consolidation des apprentissages. C’est pourquoi j’attends des résultats similaires pour les conditions : « Apprentissage 1 – Apprentissage 2 – Sieste » et « Apprentissage 1– Sieste – Apprentissage
2», comme nous pouvons le voir sur les graphes ci-dessus. Ceci pourrait s’expliquer par le fait que la consolidation de ce type d’apprentissage pourrait ne pas impliquer le lobe temporal médian, fortement sollicité durant le sommeil et la consolidation à long terme. Le sieste n’apporterait donc pas de bénéfice à l’apprentissage d’images.

Pour la variable « délai entre phase d’apprentissage et phase de restitution », on estime qu’il n’y aura pas d’effet de la sieste sur la mémorisation à long terme. Dans les deux situations, l’indice de discriminabilité diminue au fur et à mesure des jours. Effectivement, le temps a un effet d’oubli naturel sur les apprentissages.

2.2.3. Discussion

Les résultats de Salomée Pernin quant à l’étude de l’impact du sommeil sur la consolidation des apprentissages nous ont permis de réaliser des estimations des résultats attendus ici. Effectivement, l’étude de ses données (voir annexe 1) révèle une absence d’effet du sommeil sur la mémorisation aussi bien à court terme qu’à long terme.

Il s’agirait donc de confirmer une première hypothèse de ce mémoire : « Si la mémoire d’images implique le système non déclaratif, le sommeil ne devrait pas favoriser la consolidation des apprentissages en MLT. » Effectivement, l’étude de ces résultats révèle clairement que le sommeil n’a pas d’impact sur la consolidation des apprentissages d’images. Ceci voudrait donc dire que la mémorisation d’images n’implique pas le système déclaratif, mais sollicite bien la mémoire implicite. Or, on précise que même si le sommeil n’a pas d’effet positif sur les apprentissages, il n’a pas non plus d’effet négatif. Les résultats révèleraient simplement une absence d’effet du sommeil sur les apprentissages. Ceci nous permettrait donc de conclure qu’il n’est pas nécessaire d’adapter la pédagogie au rythme du sommeil de l’élève, lors d’apprentissages d’images.

Les résultats de Salomée Pernin révèlent également d’autres informations. On observe une différence de mémorisation de l’apprentissage selon le délai. Effectivement, lorsque l’enfant bénéficie d’une restitution immédiate, la mémorisation est meilleure que lors de la restitution différée. Ce qui signifie que les participants se souviennent mieux des images lorsqu’ils viennent de les apprendre que six semaines plus tard.

Or, on sait par ailleurs qu’il existe une forte dégradation de la mémorisation au cours du temps, qu’il y ait ou non une sieste entre les phases d’apprentissage. Le cerveau sélectionne et délaisse beaucoup d’informations déclaratives ou non déclaratives pendant le sommeil.
Pour analyser plus précisément la variable « consolidation des apprentissages en MLT avec ou sans sieste », il semblerait intéressant de réaliser des apprentissages plus poussés avant un long délai séparant l'apprentissage et la restitution. En effet, d’autres études révèlent ce « facteur délai » qui, sans parler de sommeil, montre simplement que des informations peu répétées (comme dans nos expériences : seulement deux phases d’apprentissage) subissent une forte dégradation au cours du temps. Pour étudier le véritable « impact du sommeil sur les apprentissages en MLT » et ainsi écarter ce facteur délai, il faudrait donc réaliser des expériences avec plus de répétitions d’apprentissage. Cependant, le temps choisi pour étudier la MLT dans mon protocole semble également être une alternative possible. Effectivement le fait de garder un temps de plusieurs semaines (trois), mais de le diminuer considérablement marque un premier palier pour maintenir l’étude du sommeil sur la consolidation des apprentissages en MLT tout en espérant avoir des résultats plus concluants, et notamment avec cette population d’enfants très jeunes.

3.3. Expérience 2 : Apprentissage auditif

3.3.1. Méthode

3.3.1.1. Matériel

3.3.1.1.1. Logiciel

Le seul logiciel utilisé ici était destiné à la récupération des résultats. Effectivement, ceux-ci devaient être récupérés sur Microsoft Excel de façon très simple : « l’élève se souvient de la comptine », « l’élève se rappelle partiellement de la comptine », « l’élève ne se rappelle pas de la comptine ».

3.3.1.1.2. Stimuli

Concernant les apprentissages auditifs, deux comptines simples avaient été choisies. Elles n’avaient encore jamais été apprises ou entendues par les élèves et étaient relativement courtes. Ces comptines avaient été pré-enregistrées par l’enseignante, et devaient être écouteres cinq fois à la suite par les élèves lors de trois phases d’apprentissage. S’ensuivait ensuite une phase de restitution. On note également que comme pour les images, les élèves étaient confrontés à deux comptines. Une comptine pour la condition de restitution immédiate, et une
comptine pour la condition de restitution sous 3 semaines. Il s’agit du même raisonnement que pour les banques d’images : proposer chaque expérience à chaque élève afin de garder une plus grande population d’étude.

Figure 20 : Comptines proposées pour ce type d’apprentissage (POHL, F., THIBON, D., DALTON, G. 2018. 100 Chansons & Comptines à l’école maternelle)

3.3.1.2. Procédures

3.3.1.2.1. Phases d’apprentissage

Les deux premières phases d’apprentissage auditivo-perceptif se déroulaient en classe entière sur les bancs du coin regroupement, la première le matin à 9H00, et la seconde en rentrant de récréation à 10H45. L’enregistrement de la comptine était passé aux élèves, qui devaient simplement fermer les yeux et écouter. La comptine était répétée 5 fois sur chaque enregistrement.

3.3.1.2.2. Phases de restitution

Pour la phase de reconnaissance, l’idée était de demander à l’élève individuellement de restituer la comptine. Pour cela, l’enseignant s’isolait avec l’élève dans un coin de la classe.
Durant cette restitution, l’enseignant récitait la comptine avec l’enfant, et enlevait certains mots que celui-ci devait compléter seul.

Figure 21 : Comptine 1 pour la restitution

Figure 22 : Comptine 2 pour la restitution
3.3.1.3. Résumé de l’expérience

Voici le résumé de l’expérience « apprentissage auditivo-perceptif » telle que nous l’avions imaginée.

Tâche 2 « apprentissage de comptines »

Condition 1 : Apprentissage de comptines avec restitution J-0 (N=26) :
- Apprentissage auditif rappel immédiat
 - **Groupe a** : Premier et deuxième apprentissages le matin – Troisième apprentissage **avant** la sieste – Restitution le soir même (N=13)
 - **Groupe b** : Premier et deuxième apprentissage le matin - Troisième apprentissage **après** la sieste – Restitution le soir même (N=13)

Condition 2 : Apprentissage de comptines avec restitution J+21 (N=26) :
- Apprentissage auditif rappel J+21.
 - **Groupe a** : Premier et deuxième apprentissage le matin – Troisième apprentissage **après** la sieste – Restitution trois semaines plus tard (N=13)
 - **Groupe b** : Premier et deuxième apprentissage le matin – Troisième apprentissage **avant** la sieste – Restitution trois semaines plus tard (N=13)

On modifie les groupes lorsqu’on change de tâche pour minimiser des potentiels résultats biaisés. Les groupes concernant les apprentissages auditifs sont donc différents des groupes établis pour les apprentissages visuels.

3.3.2. Résultats

De la même façon que pour la tâche précédente (apprentissages visuels), l’expérience auditive n’a pas pu être réalisée en raison de la pandémie de COVID19.
On présente ici des simulations de résultats attendus :

Figure 23 : Simulation des résultats attendus pour les expériences d’apprentissage de comptines selon deux conditions de restitution, avec ou sans présence de sieste entre les deux phases d’apprentissages.

Concernant les apprentissages de comptines, on attend comme résultat un impact positif du sommeil sur les apprentissages, comme le montre le graphique « Apprentissage de comptines avec sieste ». Lorsque qu’on regarde la figure 24 on voit qu’en comparant les deux conditions, la mémorisation est nettement supérieure lorsque l’enfant a bénéficié d’une sieste entre ses phases d’apprentissage que lorsqu’il n’en a pas eu l’occasion. J’estime donc que
l’organisation d’apprentissage optimale concernant l’apprentissage auditif est la suivante :
« Apprentissage 1 – Sieste – Apprentissage 2 ».

Pour ce qui est du délai de restitution, on sait qu’il y aura un oubli important lors de la restitution sous trois semaines, dû au « facteur délai » décrit plus tôt. Or, on estime que cet oubli sera moins marqué lorsque l’enfant est soumis à une sieste entre les deux phases d’apprentissage.

3.3.3. Discussion

D’après l’étude des résultats de Backhaus, Hoeckesfeld, Born, Hohagen & Junghanns, datant de 2008 (voir annexe 2), la mémorisation des apprentissages verbaux serait bel et bien impactée positivement par le sommeil, et principalement lorsque celui-ci a lieu entre la phase d’apprentissage et la phase de restitution.

La simulation des résultats de ce mémoire, en accord avec les résultats des études précédemment citées permettrait donc de valider une autre hypothèse de ce mémoire : « Si la mémoire de comptines implique le système déclaratif, le sommeil devrait favoriser la consolidation des apprentissages en MLT. La configuration optimale d’apprentissage serait alors : Apprentissage 1 – Sieste – Apprentissage 2. » Effectivement, si les résultats positifs qu’on attend s’avèrent exacts, ceci signifierait que la mémorisation de comptines implique le système de mémoire déclaratif et que la configuration à privilégier avec ce type d’apprentissage serait la suivante : « Apprentissage 1 – Sieste – Apprentissage 2 ». Ceci amène à penser que pour l’apprentissage de comptines, il semblerait judicieux d’adapter sa pédagogie en proposant un deuxième apprentissage après une sieste ou un temps de repos.

Or, la nuance de mes expériences réside dans le fait que je propose un apprentissage totalement auditif, sans aucune intervention d’un autre sens. Dans les expériences de Backhaus et Wilhelm, on entend par apprentissage verbal l’apprentissage de paires de mots énoncées à l’oral par l’expérimentateur en même temps que l’apparition visuelle de ces mots sur un écran. Ainsi, dans ces expériences, plusieurs sens sont mobilisés chez le sujet : la vision, l’audition. L’idée ici est d’isoler le sens de l’ouïe afin d’étudier son lien avec le sommeil, mais également de soumettre les élèves à des apprentissages de nature verbale et symbolique traduits par la comptine.
4. Discussion générale

Les hypothèses testées au travers de ces expériences étaient les suivantes :

1) La sieste aurait un impact moindre sur l’apprentissage d’images que sur l’apprentissage de comptines.

2) Si la mémoire de comptines implique le système déclaratif, le sommeil devrait favoriser la consolidation des apprentissages en MLT. La configuration optimale d’apprentissage serait alors : Apprentissage 1 – Sieste – Apprentissage 2.

3) Si la mémoire d’images implique le système non déclaratif, le sommeil ne devrait pas favoriser la consolidation des apprentissages en MLT.

4) A restitution immédiate, on s’attend à ce que la sieste ait un rôle bénéfique sur l’apprentissage de comptines. Concernant la mémorisation d’images, les résultats devraient être moindres, mais nettement supérieurs qu’à restitution trois semaines plus tard.

5) A restitution sous 3 semaines, on s’attend à une baisse naturelle de la mémorisation. Cependant, on s’attend à ce que la sieste ait un rôle très bénéfique sur la mémorisation de comptines, mais peu d’effet sur la mémorisation d’images à long terme.

Au vu des lectures et des analyses d’études réalisées ici et malgré le fait que les expériences de ce mémoire n’aient pu être réalisées, il semblerait que ces hypothèses pourraient s’avérer exactes. Elles vont effectivement dans le sens des résultats actuels. Je réitère largement l’intérêt que je porte à ce mémoire et à ces questionnements. Il serait réellement intéressant de mener à terme ces études pour en connaître les conclusions exactes.

D’autant plus que les études qui permettent d’arriver à mes hypothétiques conclusions ont essentiellement étudié le rôle d’une nuit de sommeil sur les apprentissages. La promesse ici était davantage de se pencher sur la sieste, peu étudiée mais qui pourrait constituer un réel outil d’apprentissage. Les résultats de Salomée Pernin (annexe 1) sur la mémorisation d’images prennent en compte ce temps de sieste, nous laissent penser que les hypothèses concernant la sieste et les apprentissages d’images pourraient s’avérer exactes. Or, concernant les études sur les apprentissages auditifs, il semblerait réellement intéressant de tester les expériences ici pour étudier l’impact de la sieste et non d’une nuit de sommeil sur les apprentissages.
4.1. Impact du travail de lecture sur mes pratiques professionnelles

Le travail de lecture constitue le socle même de notre mémoire. Il est très important de rester ouvert d’esprit et vigilant durant cette première phase de travail, afin d’éviter de relayer toute fausse information, ou encore toute idée reçue qui nous empêcherait de prendre la bonne direction de travail. C’est dans cette optique que j’ai abordé mes recherches et mes lectures pour ce mémoire, afin d’obtenir un travail le plus juste et le plus scientifique possible.

Les ressources que j’ai utilisées pour préparer mon travail d’expérimentation se sont révélées très intéressantes. Effectivement, j’ai réellement pris conscience que même si l’effet du sommeil sur les apprentissages s’avérait positif chez l’adulte, cela n’était pas aussi évident chez l’enfant. J’étais persuadée de l’inverse, qu’il était nécessaire que l’enfant bénéficie de sommeil pour consolider ses apprentissages, alors que l’adulte n’en avait pas forcément besoin. Mon autre étonnement concerna les différents types d’apprentissage. C’est d’ailleurs pour cela que j’ai finalement décidé de réorienter mon mémoire dans cette direction. La lecture de cet article révélant que le sommeil avait un effet négatif sur la mémorisation d’odeur chez l’enfant m’a totalement déstabilisée. Je ne m’attendais pas à ce genre d’information, et celle-ci m’a permis d’aborder mon mémoire sous un autre angle et de me poser des questions plus poussées.

Le travail de lecture a pu m’amener à certaines réflexions, qui ont construit mon raisonnement pour la réalisation de ce mémoire, mais m’a également permis d’arriver à de nouvelles hypothèses.

Nous savons que des expositions multiples aux apprentissages sont nécessaires pour que ceux-ci soient retenus par notre mémoire, ce qui signifie qu’il est nécessaire de fournir à l’apprenant au moins deux phases d’apprentissage. La littérature révèle que, dans de nombreux cas, la deuxième phase d’apprentissage est bénéfique lorsqu’elle est placée après un temps de sommeil, ce qui signifierait que la configuration d’apprentissage « Apprentissage 1- Sieste – Apprentissage 2 » serait la configuration idéale confirmant que durant le sommeil certains mécanismes consolident l’apprentissage.

Or, d’autres études révèlent le fait que certains apprentissages n’utilisent pas le sommeil pour leur consolidation. Effectivement, pour certains types d’apprentissage, les mécanismes impliquant la mémorisation n’auraient pas lieu pendant le sommeil, et la présence de celui-ci juste après l’apprentissage induirait plus facilement un oubli de l’apprentissage. Pour ces apprentissages, la configuration optimale serait alors « Apprentissage 1 – Apprentissage 2 –
Sieste » afin que l’apprentissage soit davantage consolidé avant le temps de sommeil pour éviter d’être oublié. Pour d’autres, le sommeil n’aurait simplement aucun impact, ni positif, ni négatif sur les apprentissages.

Les résultats espérés et étudiés m’ont permis de continuer cette réflexion. En effet, l’absence d’effet du sommeil sur la mémorisation d’images révèlerait que la mémoire d’images n’utilise pas les circuits de la consolidation systémique durant le sommeil pour maintenir son apprentissage. Or, de nombreuses études révèlent que la mémoire implicite et plus particulièrement procédurale n’utilise pas la consolidation systémique mais nécessite d’un temps d’éveil pour consolider ses apprentissages, alors que la mémoire déclarative et notamment épisodique aurait préférentiellement besoin de sommeil pour se consolider. On pourrait donc aisément en déduire que la mémoire d’images sollicite le système implicite. Parallèlement, la mémoire implicite chez l’adulte réagit positivement à l’influence du sommeil. Cette différence enfant/adulte concernant les types de mémoire et leurs besoins en terme de sommeil me questionne donc.

On pourrait expliquer cela en émettant l’hypothèse que l’enfant possède certaines immaturités des structures nerveuses et neuronales par rapport à l’adulte. De plus, l’hippocampe étant la zone majeure du processus de mémorisation (les informations sont stockées dans l’hippocampe avant d’être relayées au néocortex durant le sommeil suivant l’apprentissage), il est possible d’envisager une potentielle immaturité de l’hippocampe chez l’enfant, qui impliquerait que certains types de mémoire n’aient pas accès au même processus de mémorisation que chez l’adulte. Effectivement on pourrait imaginer que l’immaturité de l’hippocampe de l’enfant empêche la consolidation systémique des apprentissages implicites, consolidation systémique qui se déroule durant le sommeil par dialogue hippocampo-cortical. La mémorisation dans le néocortex ne serait alors pas possible durant le sommeil puisque l’hippocampe immature ne serait pas en capacité de fournir les structures adéquats pour ce genre de transfert, ce qui signifie que chez l’enfant, d’autres structures que l’hippocampe seraient responsables de la mémorisation implicite.

4.2. Résultats attendus et impact sur mes pratiques professionnelles

D’après les hypothèses que j’ai émises, j’attends donc comme résultat un impact positif de la sieste sur la consolidation immédiate et à long terme des apprentissages auditifs lorsque l’enfant dort immédiatement après l’apprentissage et que celui-ci est répété au moins deux fois.
Mes attentes sont d’autant plus confortées par les résultats réels que j’ai pu analyser.

Ainsi, si mes hypothèses s’avèrent exactes, je pourrais adapter ma pratique d’enseignante. Effectivement, le fait de prouver que certains apprentissages s’ancrent mieux avec une sieste permettrait d’adapter les journées de classe au rythme des élèves. Si on considère que l’enfant retient mieux si son apprentissage est suivi d’un temps de repos, on pourrait imaginer mettre en place une certaine organisation, qui ferait suivre chaque nouvel apprentissage important d’un temps de repos afin de favoriser la mémorisation. D’autre part, si on considère que certains autres apprentissages passent par la mémoire implicite, on pourra plus facilement adapter la journée pour que l’apprentissage soit acquis et répété avant une phase de sommeil.

Ceci est à réfléchir dans ma pratique de maternelle, en choisissant mieux l’apprentissage prodigué aux enfants juste avant la sieste. On pourrait imaginer instaurer la comptine numérique qui serait alors retenue plus facilement et qui pourrait ensuite faire l’objet de jeux (compter à l’envers, de deux en deux…) et qui permettrait aux maternelles de se préparer au mieux pour leur entrée en CP, en ayant acquis rapidement et facilement une aisance avec les nombres. On peut également imaginer un travail autour du vocabulaire, ou tous les autres apprentissages qui doivent habituellement être déclinés, repris et décortiqués à de nombreuses reprises pour être retenus. Il s’agit là d’une occasion de permettre aux enfants un apprentissage plus rapide, puisque le sommeil consolidera directement l’apprentissage.

Il s’agit également d’une réflexion que l’on peut mener avec des cycles 2 ou des cycles 3, puisqu’il paraît évident que je serai un jour affectée dans un de ces niveaux. L’idée d’une sieste semble compliquée à ce niveau, mais il est tout à fait envisageable qu’un temps de repos, ou qu’un temps de relaxation puisse être bénéfique pour les élèves. Effectivement, après un apprentissage lourd et fondamental, on pourrait imaginer proposer aux élèves un temps calme, se poser sur sa table, fermer les yeux, vider sa tête et laisser le cerveau prendre le relais. Ceci permettrait alors comme pour les maternelles des apprentissages plus rapides, mais une autre dimension est également à prendre en compte.

On pourrait envisager que cette méthode aide les élèves en difficulté dans leur mémorisation. Effectivement, beaucoup d’élèves aujourd’hui sont en difficulté scolaire, en raison de problèmes physiques ou sociaux. Le fait de leur proposer une méthode d’apprentissage qui favoriseraient naturellement la mémorisation serait peut-être pour ces élèves une nouvelle façon d’aborder les apprentissages qui leur permettrait de faire des pauses.
régulièrement et de laisser du temps à leurs circuits neuronaux de faire leur chemin de façon plus régulière (plutôt qu’une seule fois la nuit). Mais ceci permettrait également aux enfants rencontrant des difficultés sociales et familiales, d’obtenir un cadre encore plus bienveillant et sécurisant. Effectivement, certains enfants ne dorment pas correctement, ou sont énormément exposés aux écrans. Le fait de leur fournir des temps de repos, de relaxation à l’école pourrait peut-être leur apporter un certain apaisement, qui ne serait que bénéfique pour leur santé et leurs apprentissages. Ainsi, il semblerait intéressant de tester cette idée de temps de repos et de relaxation chez l’enfant de cycles 2 et 3 après un apprentissage, qui pourrait selon les résultats apporter de nombreuses réponses et solutions pour certains enfants, et améliorer le confort d’apprentissage des autres.

4.3. Compétences du professeur des écoles développées par ces réflexions

La réalisation de ce mémoire, les recherches effectuées dans la littérature, les hypothèses élaborées, les protocoles imaginés, les résultats espérés mais également pour certains observés et les pistes de travail évoquées ont permis de contribuer à ma formation en tant qu’enseignante.

Effectivement, j’ai pu développer certaines compétences, qui m’ont faite progresser en tant que professionnelle, et qui ont largement contribué à me former en tant qu’enseignante.

La première compétence que j’ai pu développer est la compétence CC3 du référentiel de compétences communes à tous les professeurs et personnels de l’éducation. Il s’agit de « connaître les élèves et les processus d’apprentissage ». Effectivement, pour ce mémoire, et notamment pour écrire ma partie théorique, j’ai cherché à comprendre l’élève dans sa façon d’apprendre, dans les processus cognitifs mis en place. Je me suis intéressée aux processus et aux mécanismes d’apprentissage, afin de mieux comprendre les paramètres qui pouvaient les influencer. Il s’agit de la compétence que j’ai le plus développé avec mes recherches.

La compétence CC4 « prendre en compte la diversité des élèves » est également une compétence que j’ai développé avec ce mémoire. Comme je l’ai notamment abordé il y a peu, l’aboutissement de toutes mes recherches et les réflexions qui ont émergé en moi par la suite m’ont conduite à imaginer que les recherches autour du sommeil et de la mémorisation pourraient impacter de façon très positive un grand nombre d’élèves, que ce soit des élèves sans difficulté, qui pourraient augmenter l’efficacité de leur mémorisation, tout comme les élèves avec des difficultés qui pourraient trouver dans ces méthodes, une aide pour mieux apprendre.
Ces réflexions m’ont donc permis de voir les enfants dans leur globalité, et dans leur diversité, en imaginant pouvoir aider différents profils d’élèves.

La compétence P3 des compétences communes à tous les professeurs « Construire, mettre en œuvre et animer des situations d’enseignement et d’apprentissage prenant en compte la diversité des élèves » que j’estime avoir également développé se joint à l’idée précédente. Mais elle apporte également une autre dimension par les mots « construction » et « mise en œuvre ». Effectivement, j’ai également pu réfléchir sur ces paramètres, et ainsi repenser ma façon de construire et organiser ma journée. En tant qu’enseignante je dois être capable d’organiser une journée qui permettra à mes élèves de se sentir bien et en forme et de leur proposer les meilleures conditions d’apprentissage possibles. Pour cela, je dois réfléchir en terme d’organisation des apprentissages au sein de la journée, afin d’équilibrer apprentissages lourds et nouveaux avec repos et relaxation.

<table>
<thead>
<tr>
<th>A</th>
<th>R</th>
<th>Rotation</th>
<th>R</th>
<th>Rotation</th>
<th>M</th>
<th>Apprentissage</th>
<th>S</th>
<th>Apprentissage</th>
<th>R</th>
<th>Activités artistiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>E</td>
<td>Ateliers</td>
<td>E</td>
<td>Ateliers</td>
<td>I</td>
<td>age 1</td>
<td>I</td>
<td>age 2</td>
<td>E</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>Avec</td>
<td>C</td>
<td>Avec</td>
<td>D</td>
<td>mobilisant</td>
<td>E</td>
<td>mobilisant</td>
<td>R</td>
<td>E</td>
</tr>
<tr>
<td>U</td>
<td>R</td>
<td>apprentissage</td>
<td>R</td>
<td>apprentissage</td>
<td>I</td>
<td>la</td>
<td>T</td>
<td>mémoire</td>
<td>E</td>
<td>T</td>
</tr>
<tr>
<td>E</td>
<td>O</td>
<td>s mobilisant</td>
<td>E</td>
<td>s mobilisant</td>
<td>S</td>
<td>la mémoire</td>
<td>E</td>
<td>déclarative</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>I</td>
<td>U</td>
<td>tout type de mémoire</td>
<td>A</td>
<td>tout type de mémoire</td>
<td>T</td>
<td>déclarative</td>
<td>I</td>
<td>O</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Figure 25 : Organisation type d’une journée de maternelle prenant en compte la nature des apprentissages
4.4. Pistes et perspectives de recherche

L’idée de chercher de nouvelles méthodes d’apprentissage positives et efficaces, m’a amenée à imaginer ce type d’expériences. Je réitère mon sentiment sur le caractère intéressant de ces études, qui mériteraient d’être menées et notamment l’expérience auditivo-perceptive.

Effectivement, les résultats surprenants concernant l’odorat, qui révélaient un effet négatif du sommeil sur ce sens, m’interrogent et me laissent penser qu’il serait intéressant de tester à son tour, l’ouïe (c’est-à-dire l’odorat du coup), isolément des autres sens afin d’en observer les effets.

D’autre part, il semblerait également intéressant d’étudier la **signification** pour ce type d’apprentissage. Effectivement, on pourrait imaginer proposer aux élèves l’expérience auditive prévue ici sous la condition « comptine significative », ainsi que la même expérience sous la condition « comptine non significative » qui présenterait comme matériel une comptine résultant de l’enchainement de syllabes, non porteuses de sens. Ceci couplé aux résultats de Salomée Pernin concernant l’impact du sommeil sur la mémorisation des images selon leur signification (porteuses de sens ou non) permettrait d’affiner ma recherche. Nous pourrions
ainsi aborder la dimension sémantique de l’apprentissage, qui implique davantage le système déclaratif que les apprentissages perceptifs (ici comptines et images non porteuses de sens). Les apprentissages sémantiques pourraient alors se révéler davantage favorisés par un temps de sommeil que les apprentissages perceptifs. Il semblerait donc judicieux de tester prochainement cette variable d’apprentissages sémantiques.
CONCLUSION

Ce mémoire avait pour objectif principal d’étudier l’impact de la sieste sur la consolidation des apprentissages chez les jeunes enfants, en fonction de la méthode d’apprentissage.

Effectivement, on estime que les apprentissages visuo-perceptifs ne sont pas influencés par la sieste, révélant qu’ils mobiliseraient la mémoire implicite, qui chez l’enfant ne fonctionne pas avec le sommeil pour sa consolidation. Pour ce genre d’apprentissages il n’est donc pas nécessaire de prendre en compte le sommeil dans sa pédagogie. Au contraire, les apprentissages auditivo-perceptifs seraient quant à eux bel et bien impactés positivement par un temps de sieste. La mémoire sollicitée par ce type d’apprentissage serait la mémoire explicite qui utilise l’hippocampe pendant le sommeil pour consolider l’information. Les apprentissages auditifs gagneraient donc à inclure un temps de sommeil entre leurs phases d’apprentissage afin que l’information soit maintenue plus facilement et sur le long terme.

Ceci révèle donc qu’il serait intéressant, dans un autre contexte sanitaire, de mener à terme ces expériences afin d’avoir des résultats précis, dans le but de développer des méthodes et des outils concrets permettant de proposer aux élèves des apprentissages les plus adaptés et efficaces possibles, en restant bienveillant et en utilisant les pouvoirs naturels du cerveau humain.
Annexes

Annexe 1 : Résultats de Salomée Pernin

Annexe 2 : Résultats de Backhaus, Hoeckesfeld, Born, Hohagen & Junghanns
Annexe 1

Résultats de Salomée Pernin
Je me suis penchée sur les résultats de Salomée Pernin (cf Le rôle du sommeil dans la consolidation des apprentissages-2018).

Ces résultats concernent des enfants de 3 et 4 ans, et révèlent l’impact du sommeil sur la mémorisation d’images aussi bien à court terme (restitution immédiate) qu’à long terme (restitution six semaines plus tard). Ces expériences sont intéressantes pour moi car elles suivent les mêmes principes que celles prévues dans le cadre de ce mémoire (même logiciel, même type d’expériences…).

Concernant la mémorisation sur le long terme, on observe une légère tendance de diminution de mémorisation entre la restitution immédiate et la restitution 6 semaines plus tard. Cependant, il n’y pas d’effet significatif du sommeil sur cette diminution : elle est quasi équivalente que l’enfant ait bénéficié ou non de sommeil.

Figure 18 - Moyennes des indices de discriminabilité (A*) en fonction du délai (immédiat vs. 6 semaines), du type d’images (meaningful vs. meaningless), du nombre d’expositions (2 vs. 4) et du sommeil (sommeil vs. pas sommeil).
Résultats de Backhaus, Hoeckesfeld, Born, Hohagen & Junghanns

Concernant les apprentissages auditivo-perceptif, j’ai utilisé les résultats de Backhaus, Hoeckesfeld, Born, Hohagen & Junghanns, datant de 2008. Effectivement, ils ont étudié les apprentissages verbaux en cherchant l’impact du sommeil sur la rétention de paires de mots chez des enfants de 9 à 12 ans. La tâche conduite ici était l’apprentissage de paires de mots apparaissant sur un écran et verbalisées dans un même temps. Deux conditions ont été mises en place pour étudier cette tâche :

<table>
<thead>
<tr>
<th></th>
<th>Condition 1</th>
<th>Condition 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apprentissage 1</td>
<td>Soir J0</td>
<td>Matin J0</td>
</tr>
<tr>
<td></td>
<td>Sommeil</td>
<td></td>
</tr>
<tr>
<td>Restitution 1</td>
<td>Matin J+1</td>
<td>Soir J0</td>
</tr>
<tr>
<td></td>
<td>Sommeil</td>
<td></td>
</tr>
<tr>
<td>Restitution 2</td>
<td>Soir J+1</td>
<td>Matin J+1</td>
</tr>
</tbody>
</table>

Les résultats révèlent une augmentation significative des performances de mémorisation de paires de mots après une période de sommeil et même si le sommeil ne suit pas l’apprentissage de façon immédiate.

La même année, Wilhelm, Diekelmann & Born ont utilisé la même tâche, et ont réalisé d’autres études qui ont permis de révéler une importante augmentation des performances lorsque le sommeil a lieu entre l’apprentissage et la restitution.

Ces résultats révèlent donc clairement le fait que les apprentissages verbaux impliquent le système déclaratif et sont donc très encourageants concernant les résultats que j’attends ici.
BIBLIOGRAPHIE

BENOIT, O., FORET, J. 1995. Le sommeil humain, Bases expérimentales physiologiques et physiopathologiques.

DAVET, L. 2017. Le stockage des informations en mémoire à long terme.

Eduscol – Programme, ressources et évaluation pour le cycle 1 - BOEN spécial n°2 du 26 mars 2015. Lien URL: https://www.education.gouv.fr/bo/15/Special2/MENE1504759A.htm

FAMOSE, J-P., MARGNES, E. 2016. Apprendre à apprendre. La compétence clé pour s'affirmer et réussir à l'école.

HOUDE, O., BORST G. 2018. Le cerveau et les apprentissages

JOUVET, M. 2000. Pourquoi rêvons-nous? Pourquoi dormons-nous?

MARQUIE-DUBIE, H., BAIXAS, M. 2016. Pratique de la concentration et de la relaxation pour mieux apprendre à l'école.

POHL, F., THIBON, D., DALTON, G. 2018. 100 Chansons & Comptines à l'école maternelle

Référentiel de compétences professionnelles des métiers du professorat et de l'éducation
(BO n°30 du 25 juillet 2013).

ROMAN, F. 2003. Apprentissages, Mémoires et amnésies, de la cognition à la génétique

Résumé

Cadre théorique : Ce mémoire aborde dans un premier temps les notions d’apprentissages, permettant ensuite de comprendre la mémoire et particulièrement le processus de mémorisation. On retrouve ainsi l’exposé des différents types de mémoires existants, ainsi que les composantes de la mémorisation soit l’encodage, le stockage et la restitution. On y aborde également les processus de plasticité cérébrale et de consolidation mnésique (au travers de la consolidation synaptique et systémique). Le sommeil est ensuite abordé et décrit par ses caractéristiques et ses stades avant d’être détaillé chez l’enfant. Pour terminer, la dernière partie révèle les liens étroits qu’entretiennent sommeil et mémoire. Des informations physiologiques sont données ainsi que des résultats d’études menées pour analyser ce lien particulier.

Méthode : Afin d’étudier au mieux l’impact de la sieste sur la consolidation des apprentissages chez les jeunes enfants en fonction de la méthode d’apprentissage, deux expériences ont été mises en place.

Une première expérience de type visuo-perceptif, durant laquelle des élèves de petite et moyenne sections étaient confrontés à deux phases d’apprentissage d’images, dont la deuxième phase se trouvait avant la sieste pour un groupe et après la sieste pour l’autre groupe, suivi d’une phase de restitution selon deux conditions, restitution immédiate ou sous 3 semaines.

La seconde expérience de nature auditivo-perceptive, était composée quant à elle de trois phases d’apprentissage, dont la dernière avait lieu soit avant la sieste pour un groupe, soit après la sieste pour l’autre groupe, et d’une phase de restitution sous deux conditions, restitution immédiate ou restitution sous trois semaines.

Prédictions : On estime que ces études pourraient révéler une absence d’effet de la sieste sur les apprentissages de type visuo-perceptifs, ne demandant pas à l’enseignant d’inclure un temps de sieste dans ce genre d’apprentissage. Or, on estime que la sieste a un impact positif sur la mémorisation d’apprentissage auditivo-perceptifs de type apprentissage de comptines. Cette prédiction pourrait permettre à l’enseignant d’adapter sa pédagogie pour améliorer la qualité de l’apprentissage en proposant un temps de sieste entre deux phases d’apprentissage pour les élèves de cycle 1 ou un temps de repos ou de relaxation pour les élèves des cycles 2 et 3.

Mots clé : Mémoire, mémorisation, apprentissages, apprentissage visuo-perceptifs, apprentissage auditivo-perceptifs, sommeil, sieste, pédagogie.