ϕ-FD : A well-conditioned finite difference method inspired by ϕ-FEM for general geometries on elliptic PDEs - Laboratoire de Mathématiques de Besançon (UMR 6623)
Pré-Publication, Document De Travail Année : 2024

ϕ-FD : A well-conditioned finite difference method inspired by ϕ-FEM for general geometries on elliptic PDEs

Résumé

This paper presents a new finite difference method, called ϕ-FD, inspired by the ϕ-FEM approach for solving elliptic partial differential equations (PDEs) on general geometries. The proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover, contrary to the previous finite difference scheme on non-rectangular domain, the associated matrix is well-conditioned. The use of a level-set function for the geometry description makes this approach relatively flexible. We prove the quasi-optimal convergence rates in several norms and the fact that the matrix is well-conditioned. Additionally, the paper explores the use of multigrid techniques to further accelerate the computation. Finally, numerical experiments in both 2D and 3D validate the performance of the ϕ-FD method compared to standard finite element methods and the Shortley-Weller approach.
Fichier principal
Vignette du fichier
phiFD.pdf (564.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04731164 , version 1 (10-10-2024)

Identifiants

  • HAL Id : hal-04731164 , version 1

Citer

Michel Duprez, Vanessa Lleras, Alexei Lozinski, Vincent Vigon, Killian Vuillemot. ϕ-FD : A well-conditioned finite difference method inspired by ϕ-FEM for general geometries on elliptic PDEs. 2024. ⟨hal-04731164⟩
5 Consultations
1 Téléchargements

Partager

More