Diagnostic checking of periodic vector autoregressive time series models with dependent errors - Laboratoire de Mathématiques de Besançon (UMR 6623)
Pré-Publication, Document De Travail Année : 2024

Diagnostic checking of periodic vector autoregressive time series models with dependent errors

Résumé

In this article, we study the asymptotic behaviour of the residual autocorrelations for periodic vector autoregressive time series models (PVAR henceforth) with uncorrelated but dependent innovations (i.e., weak PVAR). We then deduce the asymptotic distribution of the Ljung-Box-McLeod modified Portmanteau statistics for weak PVAR models. In Monte Carlo experiments, we illustrate that the proposed test statistics have reasonable finite sample performance. When the innovations exhibit conditional heteroscedasticity or other forms of dependence, it appears that the standard test statistics (under independent and identically distributed innovations) are generally nonreliable, overrejecting, or underrejecting severely, while the proposed test statistics offer satisfactory levels. An illustrative application on real data is also proposed.

Fichier principal
Vignette du fichier
diagnostic_PVAR25052024_version_longue.pdf (378.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04711375 , version 1 (26-09-2024)

Identifiants

Citer

Yacouba Boubacar Mainassara, Eugen Ursu. Diagnostic checking of periodic vector autoregressive time series models with dependent errors. 2024. ⟨hal-04711375⟩
10 Consultations
15 Téléchargements

Altmetric

Partager

More