Normalized solutions of $L^2$-supercritical NLS equations on compact metric graphs - Laboratoire de Mathématiques de Besançon (UMR 6623)
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2023

Normalized solutions of $L^2$-supercritical NLS equations on compact metric graphs

Résumé

This paper is devoted to the existence of non-trivial bound states of prescribed mass for the mass-supercritical nonlinear Schrödinger equation on compact metric graphs. The investigation is based upon a min-max principle for some constrained functionals which combines the monotonicity trick and second-order information on the Palais–Smale sequences, and upon the blow-up analysis of bound states with prescribed mass and bounded Morse index.
Fichier principal
Vignette du fichier
10.4171-aihpc-88.pdf (356.34 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04697660 , version 1 (17-09-2024)

Licence

Identifiants

Citer

Xiaojun Chang, Louis Jeanjean, Nicola Soave. Normalized solutions of $L^2$-supercritical NLS equations on compact metric graphs. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2023, 41 (4), pp.933-959. ⟨10.4171/AIHPC/88⟩. ⟨hal-04697660⟩
30 Consultations
5 Téléchargements

Altmetric

Partager

More