VANISHING VISCOSITY VERSUS ROSENAU APPROXIMATION FOR SCALAR CONSERVATION LAWS: THE FRACTIONAL CASE - Laboratoire de Mathématiques de Besançon (UMR 6623)
Pré-Publication, Document De Travail Année : 2024

VANISHING VISCOSITY VERSUS ROSENAU APPROXIMATION FOR SCALAR CONSERVATION LAWS: THE FRACTIONAL CASE

Résumé

We consider approximations of scalar conservation laws obtained by adding non-local diffusive operators. In particular, we compare solutions associated to fractional Laplacian and fractional Rosenau perturbations and show that for any t > 0 the mutual L1 -distance of their profiles is lower than their common distance to the underlying inviscid entropy solution. We provide explicit examples showing that our rates are optimal in the subcritical case, in one space dimension and for convex fluxes.
Fichier principal
Vignette du fichier
AlCoDaDo24.pdf (524.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04572655 , version 1 (11-05-2024)
hal-04572655 , version 2 (26-09-2024)

Licence

Identifiants

  • HAL Id : hal-04572655 , version 2

Citer

Nathaël Alibaud, Giuseppe Maria Coclite, Maxime Dalery, Carlotta Donadello. VANISHING VISCOSITY VERSUS ROSENAU APPROXIMATION FOR SCALAR CONSERVATION LAWS: THE FRACTIONAL CASE. 2024. ⟨hal-04572655v2⟩
84 Consultations
95 Téléchargements

Partager

More