Inverse Regge poles problem on a warped ball - Laboratoire de Mathématiques de Besançon (UMR 6623)
Article Dans Une Revue Inverse Problems and Imaging Année : 2023

Inverse Regge poles problem on a warped ball

Résumé

In this paper, we study a new type of inverse problem on warped product Riemannian manifolds with connected boundary that we name warped balls. Using the symmetry of the geometry, we first define the set of Regge poles as the poles of the meromorphic continuation of the Dirichlet-to-Neumann map with respect to the complex angular momentum appearing in the separation of variables procedure. These Regge poles can also be viewed as the set of eigenvalues and resonances of a one-dimensional Schr\"odinger equation on the half-line, obtained after separation of variables. Secondly, we find a precise asymptotic localisation of the Regge poles in the complex plane and prove that they uniquely determine the warping function of the warped balls.
Fichier principal
Vignette du fichier
2203.13850v2.pdf (622.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03622618 , version 1 (10-10-2024)

Identifiants

Citer

Jack Borthwick, Nabile Boussaïd, Thierry Daudé. Inverse Regge poles problem on a warped ball. Inverse Problems and Imaging , inPress, ⟨10.3934/ipi.2023031⟩. ⟨hal-03622618⟩
34 Consultations
5 Téléchargements

Altmetric

Partager

More