Non-homogeneous Gagliardo-Nirenberg inequalities in R^N and application to a biharmonic non-linear Schrödinger equation - Laboratoire de Mathématiques de Besançon (UMR 6623)
Article Dans Une Revue Journal of Differential Equations Année : 2022

Non-homogeneous Gagliardo-Nirenberg inequalities in R^N and application to a biharmonic non-linear Schrödinger equation

Résumé

We study the standing waves for a fourth-order Schr\"odinger equation with mixed dispersion that minimize the associated energy when the $L^2-$norm (the \textit{mass}) } is kept fixed. We need some non-homogeneous Gagliardo-Nirenberg-type inequalities and we develop a method to prove such estimates that should be useful elsewhere. We prove optimal results on the existence of minimizers in the {\it mass-subcritical } and {\it mass-critical } cases. In the { \it mass supercritical} case we show that global minimizers do not exist, and we investigate the existence of local minimizers. If the mass does not exceed some threshold $ \mu_0 \in (0,+\infty)$, our results on "best" local minimizers are also optimal.
Fichier principal
Vignette du fichier
minimisation-bilaplacian-revised.pdf (607.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03336068 , version 1 (06-09-2021)
hal-03336068 , version 2 (14-09-2024)

Identifiants

  • HAL Id : hal-03336068 , version 2

Citer

Antonio Fernández, Louis Jeanjean, Rainer Mandel, Mihai Mariş. Non-homogeneous Gagliardo-Nirenberg inequalities in R^N and application to a biharmonic non-linear Schrödinger equation. Journal of Differential Equations, 2022, 330, pp.1-65. ⟨hal-03336068v2⟩
144 Consultations
48 Téléchargements

Partager

More