Article Dans Une Revue Journal of Logic and Computation Année : 2024

Logics for Contact and Measure

Résumé

We enrich contact algebras with a new binary relation that compares the size of regions, and provide axiom systems for various logics of contact and measure. Our contribution is three-fold: (1) we characterize the relations on a Boolean algebra that derive from a measure, thereby improving an old result of Kraft, Pratt and Seidenberg; (2) for all n≥1, we axiomatize the logic of regular closed sets of R^n with null boundary; (3) considering a broad class of equational theories that contains all logics of contact, we prove that they all have unary or finitary unification, and that unification and admissibility are decidable.
Fichier principal
Vignette du fichier
main_2024_08_09.pdf (716.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04544145 , version 1 (12-04-2024)
hal-04544145 , version 2 (16-04-2024)
hal-04544145 , version 3 (24-11-2024)

Identifiants

  • HAL Id : hal-04544145 , version 3

Citer

Philippe Balbiani, Quentin Gougeon, Tinko Tinchev. Logics for Contact and Measure. Journal of Logic and Computation, 2024. ⟨hal-04544145v3⟩
565 Consultations
206 Téléchargements

Partager

More